organic compounds
Ethyl 2-[(2E)-4-decyl-3-oxo-1,2,3,4-tetrahydroquinoxalin-2-ylidene]acetate
aLaboratoire de Chimie Organique Hétérocyclique, Centre de Recherche des Sciences des médicaments, URAC 21, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bLaboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco, and cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: ab.nadeem2018@gmail.com
In the title compound, C22H32N2O3, the tetrahydroquinoxaline unit is planar. The ester substituent is nearly coplanar with this ring system as a result of an intramolecular N—H⋯O hydrogen bond. In the crystal, C—H⋯O hydrogen bonds and π-stacking interactions form oblique stacks which are connected into pairs by additional C—H⋯O hydrogen bonds. These pairs are further linked into thick sheets, with the n-decyl chains extending out from both surfaces as a result of a third set of C—H⋯O hydrogen bonds. Intercalation of the n-decyl chains completes the crystal packing.
Keywords: crystal structure; quinoxaline; hydrogen bonds; π-stacking.
CCDC reference: 1841182
Structure description
A number of compounds based on nitrogen-containing heterocycles show antimicrobial activity and have been developed for clinical use (Ohkanda & Katoh, 1998). Among the various classes of heterocyclic units, the quinoxaline ring system has frequently been used as a component of various antibiotic molecules, such as hinomycin, levomycin and actindeutin, which inhibit the growth of Gram-positive bacteria and are active against various transplantable tumors (Dell et al., 1975; Bailly et al., 1999; Sato et al., 1967). In addition, many reports describe a variety of biological properties of quinoxaline derivatives, including anticancer, antibacterial, antifungal, antiviral and antiprotozoal activities (Sanna et al., 1999; Rao et al., 2009; Fonseca et al., 2004; Budakoti et al., 2008). The numerous applications of quinoxaline derivatives prompted researchers to develop efficient methods for the synthesis of new quinoxaline derivatives likely to show interesting pharmaceutical activities (Ramli et al., 2011, 2013, 2018; Caleb et al., 2016; Abad et al., 2018). We report here the synthesis and of the title tetrahydroquinoxaline compound (Fig. 1).
The 10-membered ring is planar to within 0.0507 (11) Å (r.m.s. deviation of the fitted atoms is 0.0227 Å), with atom C8 furthest from the mean plane [0.0507 (11) Å] and atom O1 0.162 (2) Å from this plane. The ester substituent is nearly coplanar with the bicyclic core, as indicated by the N1—C7—C9—C10 torsion angle of −1.0 (2)°. This is due to the intramolecular N1—H1⋯O2 hydrogen bond. In the crystal, molecules form oblique stacks extending along the b-axis direction through a combination of C13—H13B⋯O1iii hydrogen bonds and π-stacking interations between the C1–C6 and C1/C6/N1/C7/C8/N2 rings [centroid–centroid distance = 3.7896 (9) Å; dihedral angle = 1.9 (7)°]. The stacks are connected by C3—H3⋯O1i hydrogen bonds (Fig. 2). Inversion-related C11—H11A⋯O2ii hydrogen bonds (Table 1 and Fig. 3) form dimers with R22(10) ring motifs. These combine with the previously mentioned C3—H3⋯O1i contacts to generate sheets of molecules in the ac plane, with the decyl chains intercalated in opposite directions between adjacent dimers (Fig. 3).
Synthesis and crystallization
To a solution of ethyl 2-(3-oxo-3,4-dihydroquinoxalin-2-yl)acetate (0.5 g, 2.15 mmol) in N,N-dimethylformamide (20 ml) were added 1-bromodecane (0.45 ml, 2.15 mmol), potassium carbonate (K2CO3; 0.3 g, 2.15 mmol) and a catalytic quantity of tetra-n-butylammonium bromide (TBAB). The mixture was stirred at room temperature for 48 h. The solution was filtered and the solvent removed under reduced pressure. The residue obtained, after evaporation of solvent, was chromatographed on a silica-gel column using hexane/ethyl acetate (9:1) as The solid obtained was crystallized from ethanol to afford the title compound as yellow crystals.
Refinement
Crystal and data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1841182
https://doi.org/10.1107/S2414314618006806/sj4177sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314618006806/sj4177Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314618006806/sj4177Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2414314618006806/sj4177Isup4.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Bruker, 2016).C22H32N2O3 | F(000) = 808 |
Mr = 372.49 | Dx = 1.205 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54178 Å |
a = 28.0610 (8) Å | Cell parameters from 9673 reflections |
b = 4.7650 (1) Å | θ = 3.2–72.2° |
c = 15.3667 (4) Å | µ = 0.63 mm−1 |
β = 91.503 (1)° | T = 150 K |
V = 2053.98 (9) Å3 | Plate, yellow |
Z = 4 | 0.21 × 0.07 × 0.03 mm |
Bruker D8 VENTURE PHOTON 100 CMOS diffractometer | 4009 independent reflections |
Radiation source: INCOATEC IµS micro-focus source | 3075 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.049 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 72.2°, θmin = 4.7° |
ω scans | h = −34→34 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −5→5 |
Tmin = 0.86, Tmax = 0.98 | l = −18→18 |
16668 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.102 | All H-atom parameters refined |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0365P)2 + 0.6332P] where P = (Fo2 + 2Fc2)/3 |
4009 reflections | (Δ/σ)max < 0.001 |
372 parameters | Δρmax = 0.18 e Å−3 |
0 restraints | Δρmin = −0.17 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.23816 (4) | 0.7156 (2) | 0.58536 (7) | 0.0334 (3) | |
O2 | 0.07295 (4) | 0.9468 (3) | 0.47288 (7) | 0.0392 (3) | |
O3 | 0.08353 (4) | 1.1955 (2) | 0.59667 (7) | 0.0354 (3) | |
N1 | 0.14315 (5) | 0.5888 (3) | 0.43313 (8) | 0.0320 (3) | |
H1 | 0.1148 (7) | 0.660 (4) | 0.4198 (12) | 0.044 (5)* | |
N2 | 0.23287 (4) | 0.3938 (3) | 0.47640 (8) | 0.0278 (3) | |
C1 | 0.20821 (5) | 0.2817 (3) | 0.40277 (9) | 0.0284 (3) | |
C2 | 0.22774 (6) | 0.0724 (3) | 0.35065 (10) | 0.0326 (3) | |
H2 | 0.2596 (7) | 0.002 (4) | 0.3653 (11) | 0.037 (5)* | |
C3 | 0.20276 (6) | −0.0267 (4) | 0.27830 (11) | 0.0369 (4) | |
H3 | 0.2168 (7) | −0.175 (4) | 0.2412 (12) | 0.044 (5)* | |
C4 | 0.15807 (6) | 0.0801 (4) | 0.25643 (11) | 0.0377 (4) | |
H4 | 0.1405 (7) | 0.016 (4) | 0.2052 (13) | 0.044 (5)* | |
C5 | 0.13824 (6) | 0.2857 (4) | 0.30769 (11) | 0.0358 (4) | |
H5 | 0.1070 (6) | 0.364 (3) | 0.2933 (11) | 0.031 (4)* | |
C6 | 0.16306 (6) | 0.3855 (3) | 0.38092 (10) | 0.0301 (3) | |
C7 | 0.16541 (5) | 0.7038 (3) | 0.50423 (9) | 0.0283 (3) | |
C8 | 0.21484 (5) | 0.6064 (3) | 0.52594 (9) | 0.0279 (3) | |
C9 | 0.14518 (6) | 0.9036 (3) | 0.55540 (10) | 0.0303 (3) | |
H9 | 0.1634 (6) | 0.973 (4) | 0.6043 (11) | 0.031 (4)* | |
C10 | 0.09832 (6) | 1.0108 (3) | 0.53625 (10) | 0.0316 (3) | |
C11 | 0.03737 (6) | 1.3213 (4) | 0.57921 (12) | 0.0412 (4) | |
H11A | 0.0146 (8) | 1.172 (4) | 0.5712 (13) | 0.050 (6)* | |
H11B | 0.0399 (7) | 1.439 (4) | 0.5231 (14) | 0.051 (6)* | |
C12 | 0.02591 (8) | 1.5045 (5) | 0.65563 (14) | 0.0478 (5) | |
H12A | −0.0044 (9) | 1.597 (5) | 0.6452 (14) | 0.062 (6)* | |
H12B | 0.0512 (8) | 1.658 (5) | 0.6648 (13) | 0.057 (6)* | |
H12C | 0.0249 (8) | 1.389 (5) | 0.7103 (15) | 0.065 (7)* | |
C13 | 0.28087 (5) | 0.2893 (3) | 0.50025 (10) | 0.0300 (3) | |
H13A | 0.2863 (6) | 0.342 (3) | 0.5639 (11) | 0.029 (4)* | |
H13B | 0.2804 (6) | 0.084 (4) | 0.4959 (11) | 0.033 (4)* | |
C14 | 0.31933 (6) | 0.4135 (3) | 0.44375 (11) | 0.0299 (3) | |
H14A | 0.3206 (6) | 0.615 (4) | 0.4553 (11) | 0.031 (4)* | |
H14B | 0.3101 (6) | 0.399 (4) | 0.3814 (12) | 0.035 (4)* | |
C15 | 0.36764 (5) | 0.2769 (3) | 0.46053 (10) | 0.0292 (3) | |
H15A | 0.3783 (7) | 0.302 (4) | 0.5226 (13) | 0.044 (5)* | |
H15B | 0.3649 (6) | 0.071 (4) | 0.4518 (11) | 0.035 (5)* | |
C16 | 0.40639 (6) | 0.3910 (3) | 0.40243 (11) | 0.0298 (3) | |
H16A | 0.4091 (6) | 0.598 (4) | 0.4114 (11) | 0.036 (5)* | |
H16B | 0.3965 (6) | 0.366 (4) | 0.3403 (12) | 0.035 (5)* | |
C17 | 0.45527 (5) | 0.2572 (3) | 0.41760 (10) | 0.0293 (3) | |
H17A | 0.4655 (6) | 0.286 (3) | 0.4785 (12) | 0.031 (4)* | |
H17B | 0.4527 (6) | 0.051 (4) | 0.4078 (11) | 0.040 (5)* | |
C18 | 0.49321 (5) | 0.3742 (3) | 0.35852 (10) | 0.0297 (3) | |
H18A | 0.4951 (6) | 0.584 (4) | 0.3682 (10) | 0.031 (4)* | |
H18B | 0.4824 (6) | 0.349 (4) | 0.2957 (12) | 0.038 (5)* | |
C19 | 0.54237 (5) | 0.2458 (3) | 0.37324 (10) | 0.0295 (3) | |
H19A | 0.5527 (6) | 0.273 (3) | 0.4355 (11) | 0.030 (4)* | |
H19B | 0.5404 (6) | 0.041 (4) | 0.3637 (11) | 0.040 (5)* | |
C20 | 0.58003 (6) | 0.3680 (3) | 0.31472 (10) | 0.0299 (3) | |
H20A | 0.5820 (6) | 0.577 (4) | 0.3249 (11) | 0.036 (5)* | |
H20B | 0.5696 (7) | 0.343 (4) | 0.2525 (13) | 0.042 (5)* | |
C21 | 0.62922 (6) | 0.2390 (3) | 0.32837 (11) | 0.0328 (3) | |
H21A | 0.6397 (6) | 0.260 (4) | 0.3904 (12) | 0.039 (5)* | |
H21B | 0.6269 (7) | 0.034 (4) | 0.3165 (12) | 0.045 (5)* | |
C22 | 0.66655 (6) | 0.3645 (4) | 0.26983 (12) | 0.0399 (4) | |
H22A | 0.6573 (7) | 0.346 (4) | 0.2060 (14) | 0.049 (5)* | |
H22B | 0.6706 (7) | 0.567 (5) | 0.2824 (13) | 0.053 (6)* | |
H22C | 0.6984 (8) | 0.272 (4) | 0.2793 (13) | 0.052 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0292 (6) | 0.0390 (6) | 0.0319 (5) | −0.0010 (5) | −0.0008 (5) | −0.0027 (5) |
O2 | 0.0287 (6) | 0.0504 (7) | 0.0384 (6) | 0.0026 (5) | −0.0003 (5) | −0.0066 (5) |
O3 | 0.0289 (6) | 0.0391 (6) | 0.0382 (6) | 0.0057 (5) | 0.0032 (5) | −0.0059 (5) |
N1 | 0.0250 (7) | 0.0387 (7) | 0.0322 (7) | 0.0021 (6) | 0.0015 (6) | −0.0035 (6) |
N2 | 0.0235 (6) | 0.0314 (6) | 0.0285 (6) | −0.0005 (5) | 0.0033 (5) | 0.0011 (5) |
C1 | 0.0271 (8) | 0.0315 (7) | 0.0268 (7) | −0.0040 (6) | 0.0053 (6) | 0.0010 (6) |
C2 | 0.0289 (8) | 0.0351 (8) | 0.0342 (8) | 0.0007 (7) | 0.0068 (7) | 0.0002 (7) |
C3 | 0.0388 (9) | 0.0393 (9) | 0.0330 (8) | −0.0023 (7) | 0.0083 (7) | −0.0056 (7) |
C4 | 0.0387 (9) | 0.0436 (9) | 0.0308 (8) | −0.0041 (7) | 0.0019 (7) | −0.0058 (7) |
C5 | 0.0300 (9) | 0.0432 (9) | 0.0340 (8) | 0.0000 (7) | 0.0004 (7) | −0.0019 (7) |
C6 | 0.0281 (8) | 0.0337 (8) | 0.0286 (7) | −0.0033 (6) | 0.0054 (6) | −0.0003 (6) |
C7 | 0.0254 (8) | 0.0328 (8) | 0.0269 (7) | −0.0035 (6) | 0.0036 (6) | 0.0032 (6) |
C8 | 0.0260 (8) | 0.0306 (7) | 0.0274 (7) | −0.0028 (6) | 0.0048 (6) | 0.0029 (6) |
C9 | 0.0277 (8) | 0.0341 (8) | 0.0293 (8) | −0.0020 (6) | 0.0033 (6) | −0.0007 (6) |
C10 | 0.0280 (8) | 0.0341 (8) | 0.0327 (8) | −0.0027 (6) | 0.0052 (6) | −0.0002 (6) |
C11 | 0.0280 (9) | 0.0474 (10) | 0.0482 (10) | 0.0084 (8) | 0.0026 (8) | −0.0055 (8) |
C12 | 0.0422 (11) | 0.0522 (11) | 0.0492 (11) | 0.0140 (9) | 0.0085 (9) | −0.0040 (9) |
C13 | 0.0256 (8) | 0.0319 (8) | 0.0325 (8) | 0.0010 (6) | 0.0023 (6) | 0.0021 (6) |
C14 | 0.0268 (8) | 0.0285 (8) | 0.0346 (8) | −0.0010 (6) | 0.0034 (6) | 0.0015 (6) |
C15 | 0.0257 (8) | 0.0289 (8) | 0.0332 (8) | −0.0009 (6) | 0.0035 (6) | 0.0004 (6) |
C16 | 0.0262 (8) | 0.0300 (8) | 0.0335 (8) | −0.0011 (6) | 0.0028 (6) | −0.0005 (6) |
C17 | 0.0261 (8) | 0.0291 (8) | 0.0328 (8) | −0.0001 (6) | 0.0039 (6) | −0.0004 (6) |
C18 | 0.0261 (8) | 0.0301 (8) | 0.0330 (8) | −0.0011 (6) | 0.0020 (6) | 0.0007 (6) |
C19 | 0.0277 (8) | 0.0278 (8) | 0.0332 (8) | −0.0001 (6) | 0.0041 (6) | −0.0006 (6) |
C20 | 0.0272 (8) | 0.0297 (8) | 0.0329 (8) | −0.0011 (6) | 0.0029 (6) | 0.0007 (6) |
C21 | 0.0286 (8) | 0.0351 (8) | 0.0348 (8) | 0.0009 (7) | 0.0022 (7) | −0.0017 (7) |
C22 | 0.0269 (9) | 0.0503 (11) | 0.0426 (10) | −0.0017 (8) | 0.0041 (7) | −0.0001 (8) |
O1—C8 | 1.2253 (18) | C13—C14 | 1.522 (2) |
O2—C10 | 1.2294 (19) | C13—H13A | 1.017 (17) |
O3—C10 | 1.3524 (19) | C13—H13B | 0.983 (18) |
O3—C11 | 1.446 (2) | C14—C15 | 1.520 (2) |
N1—C7 | 1.3595 (19) | C14—H14A | 0.977 (17) |
N1—C6 | 1.385 (2) | C14—H14B | 0.989 (18) |
N1—H1 | 0.88 (2) | C15—C16 | 1.525 (2) |
N2—C8 | 1.3720 (19) | C15—H15A | 1.00 (2) |
N2—C1 | 1.4153 (19) | C15—H15B | 0.991 (18) |
N2—C13 | 1.4731 (19) | C16—C17 | 1.525 (2) |
C1—C6 | 1.393 (2) | C16—H16A | 0.998 (18) |
C1—C2 | 1.400 (2) | C16—H16B | 0.994 (18) |
C2—C3 | 1.382 (2) | C17—C18 | 1.523 (2) |
C2—H2 | 0.976 (19) | C17—H17A | 0.982 (18) |
C3—C4 | 1.387 (3) | C17—H17B | 0.997 (19) |
C3—H3 | 0.995 (19) | C18—C19 | 1.521 (2) |
C4—C5 | 1.383 (2) | C18—H18A | 1.013 (17) |
C4—H4 | 0.967 (19) | C18—H18B | 1.011 (18) |
C5—C6 | 1.392 (2) | C19—C20 | 1.521 (2) |
C5—H5 | 0.973 (18) | C19—H19A | 1.000 (17) |
C7—C9 | 1.368 (2) | C19—H19B | 0.988 (19) |
C7—C8 | 1.492 (2) | C20—C21 | 1.521 (2) |
C9—C10 | 1.434 (2) | C20—H20A | 1.010 (18) |
C9—H9 | 0.957 (17) | C20—H20B | 1.000 (19) |
C11—C12 | 1.505 (3) | C21—C22 | 1.521 (2) |
C11—H11A | 0.96 (2) | C21—H21A | 0.996 (19) |
C11—H11B | 1.03 (2) | C21—H21B | 1.00 (2) |
C12—H12A | 0.97 (2) | C22—H22A | 1.01 (2) |
C12—H12B | 1.03 (2) | C22—H22B | 0.99 (2) |
C12—H12C | 1.01 (2) | C22—H22C | 1.00 (2) |
C10—O3—C11 | 115.58 (13) | C15—C14—C13 | 112.28 (13) |
C7—N1—C6 | 124.32 (14) | C15—C14—H14A | 111.2 (10) |
C7—N1—H1 | 115.1 (13) | C13—C14—H14A | 107.5 (10) |
C6—N1—H1 | 120.5 (13) | C15—C14—H14B | 110.1 (10) |
C8—N2—C1 | 122.85 (13) | C13—C14—H14B | 110.7 (10) |
C8—N2—C13 | 117.36 (12) | H14A—C14—H14B | 104.7 (14) |
C1—N2—C13 | 119.74 (12) | C14—C15—C16 | 113.22 (13) |
C6—C1—C2 | 118.83 (14) | C14—C15—H15A | 110.7 (11) |
C6—C1—N2 | 118.78 (13) | C16—C15—H15A | 108.5 (11) |
C2—C1—N2 | 122.39 (14) | C14—C15—H15B | 109.5 (10) |
C3—C2—C1 | 120.40 (16) | C16—C15—H15B | 109.1 (10) |
C3—C2—H2 | 120.7 (10) | H15A—C15—H15B | 105.5 (15) |
C1—C2—H2 | 118.9 (10) | C17—C16—C15 | 114.44 (13) |
C2—C3—C4 | 120.39 (16) | C17—C16—H16A | 109.1 (10) |
C2—C3—H3 | 120.2 (11) | C15—C16—H16A | 108.9 (10) |
C4—C3—H3 | 119.4 (11) | C17—C16—H16B | 108.9 (10) |
C5—C4—C3 | 119.79 (16) | C15—C16—H16B | 109.6 (10) |
C5—C4—H4 | 118.8 (11) | H16A—C16—H16B | 105.5 (14) |
C3—C4—H4 | 121.5 (11) | C18—C17—C16 | 113.33 (13) |
C4—C5—C6 | 120.15 (16) | C18—C17—H17A | 109.0 (10) |
C4—C5—H5 | 121.0 (10) | C16—C17—H17A | 109.0 (10) |
C6—C5—H5 | 118.8 (10) | C18—C17—H17B | 108.6 (11) |
N1—C6—C5 | 120.44 (14) | C16—C17—H17B | 109.2 (11) |
N1—C6—C1 | 119.13 (14) | H17A—C17—H17B | 107.5 (14) |
C5—C6—C1 | 120.43 (14) | C19—C18—C17 | 114.19 (13) |
N1—C7—C9 | 123.62 (14) | C19—C18—H18A | 109.3 (10) |
N1—C7—C8 | 117.33 (13) | C17—C18—H18A | 108.1 (10) |
C9—C7—C8 | 119.05 (13) | C19—C18—H18B | 110.0 (10) |
O1—C8—N2 | 121.97 (14) | C17—C18—H18B | 109.2 (10) |
O1—C8—C7 | 120.64 (14) | H18A—C18—H18B | 105.8 (14) |
N2—C8—C7 | 117.38 (13) | C18—C19—C20 | 113.55 (13) |
C7—C9—C10 | 121.49 (14) | C18—C19—H19A | 109.2 (10) |
C7—C9—H9 | 118.2 (10) | C20—C19—H19A | 109.2 (10) |
C10—C9—H9 | 120.3 (10) | C18—C19—H19B | 109.2 (11) |
O2—C10—O3 | 121.56 (14) | C20—C19—H19B | 109.1 (11) |
O2—C10—C9 | 125.67 (15) | H19A—C19—H19B | 106.3 (14) |
O3—C10—C9 | 112.78 (13) | C21—C20—C19 | 113.94 (13) |
O3—C11—C12 | 107.73 (15) | C21—C20—H20A | 109.4 (10) |
O3—C11—H11A | 107.8 (12) | C19—C20—H20A | 108.7 (10) |
C12—C11—H11A | 112.0 (12) | C21—C20—H20B | 108.9 (11) |
O3—C11—H11B | 107.5 (11) | C19—C20—H20B | 109.3 (11) |
C12—C11—H11B | 110.8 (11) | H20A—C20—H20B | 106.2 (14) |
H11A—C11—H11B | 110.8 (16) | C20—C21—C22 | 113.34 (14) |
C11—C12—H12A | 109.9 (13) | C20—C21—H21A | 109.7 (11) |
C11—C12—H12B | 111.1 (12) | C22—C21—H21A | 109.6 (11) |
H12A—C12—H12B | 107.5 (18) | C20—C21—H21B | 108.4 (11) |
C11—C12—H12C | 110.2 (13) | C22—C21—H21B | 108.7 (11) |
H12A—C12—H12C | 110.2 (18) | H21A—C21—H21B | 106.9 (15) |
H12B—C12—H12C | 108.0 (18) | C21—C22—H22A | 112.0 (11) |
N2—C13—C14 | 112.57 (12) | C21—C22—H22B | 110.2 (12) |
N2—C13—H13A | 105.6 (9) | H22A—C22—H22B | 107.5 (16) |
C14—C13—H13A | 111.2 (9) | C21—C22—H22C | 111.5 (12) |
N2—C13—H13B | 108.1 (10) | H22A—C22—H22C | 107.9 (16) |
C14—C13—H13B | 110.9 (10) | H22B—C22—H22C | 107.6 (17) |
H13A—C13—H13B | 108.1 (14) | ||
C8—N2—C1—C6 | −2.0 (2) | C13—N2—C8—C7 | −177.40 (13) |
C13—N2—C1—C6 | −179.39 (13) | N1—C7—C8—O1 | 174.79 (13) |
C8—N2—C1—C2 | 177.41 (14) | C9—C7—C8—O1 | −4.5 (2) |
C13—N2—C1—C2 | 0.0 (2) | N1—C7—C8—N2 | −4.6 (2) |
C6—C1—C2—C3 | 0.7 (2) | C9—C7—C8—N2 | 176.12 (13) |
N2—C1—C2—C3 | −178.67 (14) | N1—C7—C9—C10 | −1.0 (2) |
C1—C2—C3—C4 | 0.0 (2) | C8—C7—C9—C10 | 178.21 (14) |
C2—C3—C4—C5 | −0.4 (3) | C11—O3—C10—O2 | −3.0 (2) |
C3—C4—C5—C6 | 0.1 (3) | C11—O3—C10—C9 | 177.34 (14) |
C7—N1—C6—C5 | −177.99 (15) | C7—C9—C10—O2 | −2.9 (3) |
C7—N1—C6—C1 | 2.2 (2) | C7—C9—C10—O3 | 176.72 (14) |
C4—C5—C6—N1 | −179.18 (15) | C10—O3—C11—C12 | 176.51 (15) |
C4—C5—C6—C1 | 0.7 (2) | C8—N2—C13—C14 | −99.13 (15) |
C2—C1—C6—N1 | 178.79 (14) | C1—N2—C13—C14 | 78.44 (17) |
N2—C1—C6—N1 | −1.8 (2) | N2—C13—C14—C15 | −172.45 (13) |
C2—C1—C6—C5 | −1.1 (2) | C13—C14—C15—C16 | 178.02 (13) |
N2—C1—C6—C5 | 178.34 (14) | C14—C15—C16—C17 | −179.84 (13) |
C6—N1—C7—C9 | −179.69 (14) | C15—C16—C17—C18 | 179.79 (13) |
C6—N1—C7—C8 | 1.1 (2) | C16—C17—C18—C19 | 179.39 (13) |
C1—N2—C8—O1 | −174.27 (13) | C17—C18—C19—C20 | −179.12 (13) |
C13—N2—C8—O1 | 3.2 (2) | C18—C19—C20—C21 | −179.46 (14) |
C1—N2—C8—C7 | 5.1 (2) | C19—C20—C21—C22 | −179.64 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2 | 0.88 (2) | 1.99 (2) | 2.6885 (18) | 134.8 (17) |
C3—H3···O1i | 0.996 (19) | 2.491 (19) | 3.278 (2) | 135.6 (14) |
C11—H11A···O2ii | 0.96 (2) | 2.59 (2) | 3.424 (2) | 144.7 (16) |
C13—H13B···O1iii | 0.983 (18) | 2.541 (18) | 3.2714 (19) | 131.0 (13) |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x, −y+2, −z+1; (iii) x, y−1, z. |
Acknowledgements
The support of Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.
Funding information
Funding for this research was provided by: NSF-MRI (grant No. 1228232).
References
Abad, N., El Bakri, Y., Sebhaoui, J., Ramli, Y., Essassi, E. M. & Mague, J. T. (2018). IUCrData, 3, x180519. Google Scholar
Bailly, C., Echepare, S., Gago, F. & Waring, M. (1999). Anticancer Drug. Des. 15, 291–303. Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Budakoti, A., Bhat, A. R., Athar, F. & Azam, A. (2008). Eur. J. Med. Chem. 43, 1749–1757. Web of Science CrossRef PubMed CAS Google Scholar
Caleb, A. A., Ramli, Y., Benabdelkame, H., Bouhfid, R., Es-Safi, N., Kandri Rodi, Y., Essassi, E. M. & Banoub, J. (2016). J. Marocain Chim. Heterocycl. 15, 109–123. CAS Google Scholar
Dell, A., William, D. H., Morris, H. R., Smith, G. A., Feeney, J. & Roberts, G. C. K. (1975). J. Am. Chem. Soc. 97, 2497–2502. CrossRef CAS Google Scholar
Fonseca, T., Gigante, B., Marques, M. M., Gilchrist, T. L. & Clercq, E. D. (2004). Bioorg. Med. Chem. 12, 103–112. CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ohkanda, J. & Katoh, A. (1998). Rev. Heteroatom Chem. 18, 87–118. CAS Google Scholar
Ramli, Y., El Bakri, Y., El Ghayati, L., Essassi, E. M. & Mague, J. T. (2018). IUCrData, 3, x180390. Google Scholar
Ramli, Y., Karrouchi, K., Essassi, E. M. & El Ammari, L. (2013). Acta Cryst. E69, o1320–o1321. CSD CrossRef IUCr Journals Google Scholar
Ramli, Y., Moussaif, A., Zouihri, H., Bourichi, H. & Essassi, E. M. (2011). Acta Cryst. E67, o1374. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rao, G. K., Kotnal, R. B. & Pai, P. N. S. (2009). Int. J. Biol. Chem. 3, 71–77. CAS Google Scholar
Sanna, P., Carta, A., Loriga, M., Zanetti, S. & Sechi, L. (1999). Farmaco, 54, 161–168. CrossRef CAS Google Scholar
Sato, S., Shiratori, O. & Katagiri, K. (1967). J. Antibiot. 20, 270–276. CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.