organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ethyl 2-[(2E)-4-decyl-3-oxo-1,2,3,4-tetra­hydro­quinoxalin-2-yl­­idene]acetate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique, Centre de Recherche des Sciences des médicaments, URAC 21, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bLaboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco, and cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: ab.nadeem2018@gmail.com

Edited by J. Simpson, University of Otago, New Zealand (Received 25 April 2018; accepted 3 May 2018; online 11 May 2018)

In the title compound, C22H32N2O3, the tetra­hydro­quinoxaline unit is planar. The ester substituent is nearly coplanar with this ring system as a result of an intra­molecular N—H⋯O hydrogen bond. In the crystal, C—H⋯O hydrogen bonds and π-stacking inter­actions form oblique stacks which are connected into pairs by additional C—H⋯O hydrogen bonds. These pairs are further linked into thick sheets, with the n-decyl chains extending out from both surfaces as a result of a third set of C—H⋯O hydrogen bonds. Inter­calation of the n-decyl chains completes the crystal packing.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

A number of compounds based on nitro­gen-containing heterocycles show anti­microbial activity and have been developed for clinical use (Ohkanda & Katoh, 1998[Ohkanda, J. & Katoh, A. (1998). Rev. Heteroatom Chem. 18, 87-118.]). Among the various classes of heterocyclic units, the quinoxaline ring system has frequently been used as a component of various anti­biotic mol­ecules, such as hinomycin, levomycin and actindeutin, which inhibit the growth of Gram-positive bacteria and are active against various transplantable tumors (Dell et al., 1975[Dell, A., William, D. H., Morris, H. R., Smith, G. A., Feeney, J. & Roberts, G. C. K. (1975). J. Am. Chem. Soc. 97, 2497-2502.]; Bailly et al., 1999[Bailly, C., Echepare, S., Gago, F. & Waring, M. (1999). Anticancer Drug. Des. 15, 291-303.]; Sato et al., 1967[Sato, S., Shiratori, O. & Katagiri, K. (1967). J. Antibiot. 20, 270-276.]). In addition, many reports describe a variety of biological properties of quinoxaline derivatives, including anti­cancer, anti­bacterial, anti­fungal, anti­viral and anti­protozoal activities (Sanna et al., 1999[Sanna, P., Carta, A., Loriga, M., Zanetti, S. & Sechi, L. (1999). Farmaco, 54, 161-168.]; Rao et al., 2009[Rao, G. K., Kotnal, R. B. & Pai, P. N. S. (2009). Int. J. Biol. Chem. 3, 71-77.]; Fonseca et al., 2004[Fonseca, T., Gigante, B., Marques, M. M., Gilchrist, T. L. & Clercq, E. D. (2004). Bioorg. Med. Chem. 12, 103-112.]; Budakoti et al., 2008[Budakoti, A., Bhat, A. R., Athar, F. & Azam, A. (2008). Eur. J. Med. Chem. 43, 1749-1757.]). The numerous applications of quinoxaline derivatives prompted researchers to develop efficient methods for the synthesis of new quinoxaline derivatives likely to show inter­esting pharmaceutical activities (Ramli et al., 2011[Ramli, Y., Moussaif, A., Zouihri, H., Bourichi, H. & Essassi, E. M. (2011). Acta Cryst. E67, o1374.], 2013[Ramli, Y., Karrouchi, K., Essassi, E. M. & El Ammari, L. (2013). Acta Cryst. E69, o1320-o1321.], 2018[Ramli, Y., El Bakri, Y., El Ghayati, L., Essassi, E. M. & Mague, J. T. (2018). IUCrData, 3, x180390.]; Caleb et al., 2016[Caleb, A. A., Ramli, Y., Benabdelkame, H., Bouhfid, R., Es-Safi, N., Kandri Rodi, Y., Essassi, E. M. & Banoub, J. (2016). J. Marocain Chim. Heterocycl. 15, 109-123.]; Abad et al., 2018[Abad, N., El Bakri, Y., Sebhaoui, J., Ramli, Y., Essassi, E. M. & Mague, J. T. (2018). IUCrData, 3, x180519.]). We report here the synthesis and crystal structure of the title tetra­hydro­quinoxaline compound (Fig. 1[link]).

[Figure 1]
Figure 1
The title mol­ecule, showing the labeling scheme and 50% probability displacement ellipsoids. The intra­molecular N—H⋯O hydrogen bond is shown as a dashed line.

The 10-membered ring is planar to within 0.0507 (11) Å (r.m.s. deviation of the fitted atoms is 0.0227 Å), with atom C8 furthest from the mean plane [0.0507 (11) Å] and atom O1 0.162 (2) Å from this plane. The ester substituent is nearly coplanar with the bicyclic core, as indicated by the N1—C7—C9—C10 torsion angle of −1.0 (2)°. This is due to the intra­molecular N1—H1⋯O2 hydrogen bond. In the crystal, mol­ecules form oblique stacks extending along the b-axis direction through a combination of C13—H13B⋯O1iii hydrogen bonds and π-stacking inter­ations between the C1–C6 and C1/C6/N1/C7/C8/N2 rings [centroid–centroid distance = 3.7896 (9) Å; dihedral angle = 1.9 (7)°]. The stacks are connected by C3—H3⋯O1i hydrogen bonds (Fig. 2[link]). Inversion-related C11—H11A⋯O2ii hydrogen bonds (Table 1[link] and Fig. 3[link]) form dimers with R22(10) ring motifs. These combine with the previously mentioned C3—H3⋯O1i contacts to generate sheets of mol­ecules in the ac plane, with the decyl chains inter­calated in opposite directions between adjacent dimers (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.88 (2) 1.99 (2) 2.6885 (18) 134.8 (17)
C3—H3⋯O1i 0.996 (19) 2.491 (19) 3.278 (2) 135.6 (14)
C11—H11A⋯O2ii 0.96 (2) 2.59 (2) 3.424 (2) 144.7 (16)
C13—H13B⋯O1iii 0.983 (18) 2.541 (18) 3.2714 (19) 131.0 (13)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x, -y+2, -z+1; (iii) x, y-1, z.
[Figure 2]
Figure 2
Side view of two stacks projected onto (50[\overline{1}]), with the b-axis direction running from left to right. C—H⋯O hydrogen bonds are shown as black dashed lines, while orange dashed lines show the π-stacking inter­actions.
[Figure 3]
Figure 3
The packing, viewed along the b-axis direction, with C—H⋯O hydrogen bonds shown as dashed lines.

Synthesis and crystallization

To a solution of ethyl 2-(3-oxo-3,4-di­hydro­quinoxalin-2-yl)acetate (0.5 g, 2.15 mmol) in N,N-di­methyl­formamide (20 ml) were added 1-bromo­decane (0.45 ml, 2.15 mmol), potassium carbonate (K2CO3; 0.3 g, 2.15 mmol) and a catalytic qu­antity of tetra-n-butyl­ammonium bromide (TBAB). The mixture was stirred at room temperature for 48 h. The solution was filtered and the solvent removed under reduced pressure. The residue obtained, after evaporation of solvent, was chromatographed on a silica-gel column using hexa­ne/ethyl acetate (9:1) as eluent. The solid obtained was crystallized from ethanol to afford the title compound as yellow crystals.

Refinement

Crystal and data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C22H32N2O3
Mr 372.49
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 28.0610 (8), 4.7650 (1), 15.3667 (4)
β (°) 91.503 (1)
V3) 2053.98 (9)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.63
Crystal size (mm) 0.21 × 0.07 × 0.03
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.86, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 16668, 4009, 3075
Rint 0.049
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.102, 1.04
No. of reflections 4009
No. of parameters 372
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.18, −0.17
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Bruker, 2016[Bruker (2016). APEX3, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Bruker, 2016).

Ethyl 2-[(2E)-4-decyl-3-oxo-1,2,3,4-tetrahydroquinoxalin-2-ylidene]acetate top
Crystal data top
C22H32N2O3F(000) = 808
Mr = 372.49Dx = 1.205 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 28.0610 (8) ÅCell parameters from 9673 reflections
b = 4.7650 (1) Åθ = 3.2–72.2°
c = 15.3667 (4) ŵ = 0.63 mm1
β = 91.503 (1)°T = 150 K
V = 2053.98 (9) Å3Plate, yellow
Z = 40.21 × 0.07 × 0.03 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
4009 independent reflections
Radiation source: INCOATEC IµS micro-focus source3075 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.049
Detector resolution: 10.4167 pixels mm-1θmax = 72.2°, θmin = 4.7°
ω scansh = 3434
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 55
Tmin = 0.86, Tmax = 0.98l = 1818
16668 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: difference Fourier map
wR(F2) = 0.102All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0365P)2 + 0.6332P]
where P = (Fo2 + 2Fc2)/3
4009 reflections(Δ/σ)max < 0.001
372 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.17 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.23816 (4)0.7156 (2)0.58536 (7)0.0334 (3)
O20.07295 (4)0.9468 (3)0.47288 (7)0.0392 (3)
O30.08353 (4)1.1955 (2)0.59667 (7)0.0354 (3)
N10.14315 (5)0.5888 (3)0.43313 (8)0.0320 (3)
H10.1148 (7)0.660 (4)0.4198 (12)0.044 (5)*
N20.23287 (4)0.3938 (3)0.47640 (8)0.0278 (3)
C10.20821 (5)0.2817 (3)0.40277 (9)0.0284 (3)
C20.22774 (6)0.0724 (3)0.35065 (10)0.0326 (3)
H20.2596 (7)0.002 (4)0.3653 (11)0.037 (5)*
C30.20276 (6)0.0267 (4)0.27830 (11)0.0369 (4)
H30.2168 (7)0.175 (4)0.2412 (12)0.044 (5)*
C40.15807 (6)0.0801 (4)0.25643 (11)0.0377 (4)
H40.1405 (7)0.016 (4)0.2052 (13)0.044 (5)*
C50.13824 (6)0.2857 (4)0.30769 (11)0.0358 (4)
H50.1070 (6)0.364 (3)0.2933 (11)0.031 (4)*
C60.16306 (6)0.3855 (3)0.38092 (10)0.0301 (3)
C70.16541 (5)0.7038 (3)0.50423 (9)0.0283 (3)
C80.21484 (5)0.6064 (3)0.52594 (9)0.0279 (3)
C90.14518 (6)0.9036 (3)0.55540 (10)0.0303 (3)
H90.1634 (6)0.973 (4)0.6043 (11)0.031 (4)*
C100.09832 (6)1.0108 (3)0.53625 (10)0.0316 (3)
C110.03737 (6)1.3213 (4)0.57921 (12)0.0412 (4)
H11A0.0146 (8)1.172 (4)0.5712 (13)0.050 (6)*
H11B0.0399 (7)1.439 (4)0.5231 (14)0.051 (6)*
C120.02591 (8)1.5045 (5)0.65563 (14)0.0478 (5)
H12A0.0044 (9)1.597 (5)0.6452 (14)0.062 (6)*
H12B0.0512 (8)1.658 (5)0.6648 (13)0.057 (6)*
H12C0.0249 (8)1.389 (5)0.7103 (15)0.065 (7)*
C130.28087 (5)0.2893 (3)0.50025 (10)0.0300 (3)
H13A0.2863 (6)0.342 (3)0.5639 (11)0.029 (4)*
H13B0.2804 (6)0.084 (4)0.4959 (11)0.033 (4)*
C140.31933 (6)0.4135 (3)0.44375 (11)0.0299 (3)
H14A0.3206 (6)0.615 (4)0.4553 (11)0.031 (4)*
H14B0.3101 (6)0.399 (4)0.3814 (12)0.035 (4)*
C150.36764 (5)0.2769 (3)0.46053 (10)0.0292 (3)
H15A0.3783 (7)0.302 (4)0.5226 (13)0.044 (5)*
H15B0.3649 (6)0.071 (4)0.4518 (11)0.035 (5)*
C160.40639 (6)0.3910 (3)0.40243 (11)0.0298 (3)
H16A0.4091 (6)0.598 (4)0.4114 (11)0.036 (5)*
H16B0.3965 (6)0.366 (4)0.3403 (12)0.035 (5)*
C170.45527 (5)0.2572 (3)0.41760 (10)0.0293 (3)
H17A0.4655 (6)0.286 (3)0.4785 (12)0.031 (4)*
H17B0.4527 (6)0.051 (4)0.4078 (11)0.040 (5)*
C180.49321 (5)0.3742 (3)0.35852 (10)0.0297 (3)
H18A0.4951 (6)0.584 (4)0.3682 (10)0.031 (4)*
H18B0.4824 (6)0.349 (4)0.2957 (12)0.038 (5)*
C190.54237 (5)0.2458 (3)0.37324 (10)0.0295 (3)
H19A0.5527 (6)0.273 (3)0.4355 (11)0.030 (4)*
H19B0.5404 (6)0.041 (4)0.3637 (11)0.040 (5)*
C200.58003 (6)0.3680 (3)0.31472 (10)0.0299 (3)
H20A0.5820 (6)0.577 (4)0.3249 (11)0.036 (5)*
H20B0.5696 (7)0.343 (4)0.2525 (13)0.042 (5)*
C210.62922 (6)0.2390 (3)0.32837 (11)0.0328 (3)
H21A0.6397 (6)0.260 (4)0.3904 (12)0.039 (5)*
H21B0.6269 (7)0.034 (4)0.3165 (12)0.045 (5)*
C220.66655 (6)0.3645 (4)0.26983 (12)0.0399 (4)
H22A0.6573 (7)0.346 (4)0.2060 (14)0.049 (5)*
H22B0.6706 (7)0.567 (5)0.2824 (13)0.053 (6)*
H22C0.6984 (8)0.272 (4)0.2793 (13)0.052 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0292 (6)0.0390 (6)0.0319 (5)0.0010 (5)0.0008 (5)0.0027 (5)
O20.0287 (6)0.0504 (7)0.0384 (6)0.0026 (5)0.0003 (5)0.0066 (5)
O30.0289 (6)0.0391 (6)0.0382 (6)0.0057 (5)0.0032 (5)0.0059 (5)
N10.0250 (7)0.0387 (7)0.0322 (7)0.0021 (6)0.0015 (6)0.0035 (6)
N20.0235 (6)0.0314 (6)0.0285 (6)0.0005 (5)0.0033 (5)0.0011 (5)
C10.0271 (8)0.0315 (7)0.0268 (7)0.0040 (6)0.0053 (6)0.0010 (6)
C20.0289 (8)0.0351 (8)0.0342 (8)0.0007 (7)0.0068 (7)0.0002 (7)
C30.0388 (9)0.0393 (9)0.0330 (8)0.0023 (7)0.0083 (7)0.0056 (7)
C40.0387 (9)0.0436 (9)0.0308 (8)0.0041 (7)0.0019 (7)0.0058 (7)
C50.0300 (9)0.0432 (9)0.0340 (8)0.0000 (7)0.0004 (7)0.0019 (7)
C60.0281 (8)0.0337 (8)0.0286 (7)0.0033 (6)0.0054 (6)0.0003 (6)
C70.0254 (8)0.0328 (8)0.0269 (7)0.0035 (6)0.0036 (6)0.0032 (6)
C80.0260 (8)0.0306 (7)0.0274 (7)0.0028 (6)0.0048 (6)0.0029 (6)
C90.0277 (8)0.0341 (8)0.0293 (8)0.0020 (6)0.0033 (6)0.0007 (6)
C100.0280 (8)0.0341 (8)0.0327 (8)0.0027 (6)0.0052 (6)0.0002 (6)
C110.0280 (9)0.0474 (10)0.0482 (10)0.0084 (8)0.0026 (8)0.0055 (8)
C120.0422 (11)0.0522 (11)0.0492 (11)0.0140 (9)0.0085 (9)0.0040 (9)
C130.0256 (8)0.0319 (8)0.0325 (8)0.0010 (6)0.0023 (6)0.0021 (6)
C140.0268 (8)0.0285 (8)0.0346 (8)0.0010 (6)0.0034 (6)0.0015 (6)
C150.0257 (8)0.0289 (8)0.0332 (8)0.0009 (6)0.0035 (6)0.0004 (6)
C160.0262 (8)0.0300 (8)0.0335 (8)0.0011 (6)0.0028 (6)0.0005 (6)
C170.0261 (8)0.0291 (8)0.0328 (8)0.0001 (6)0.0039 (6)0.0004 (6)
C180.0261 (8)0.0301 (8)0.0330 (8)0.0011 (6)0.0020 (6)0.0007 (6)
C190.0277 (8)0.0278 (8)0.0332 (8)0.0001 (6)0.0041 (6)0.0006 (6)
C200.0272 (8)0.0297 (8)0.0329 (8)0.0011 (6)0.0029 (6)0.0007 (6)
C210.0286 (8)0.0351 (8)0.0348 (8)0.0009 (7)0.0022 (7)0.0017 (7)
C220.0269 (9)0.0503 (11)0.0426 (10)0.0017 (8)0.0041 (7)0.0001 (8)
Geometric parameters (Å, º) top
O1—C81.2253 (18)C13—C141.522 (2)
O2—C101.2294 (19)C13—H13A1.017 (17)
O3—C101.3524 (19)C13—H13B0.983 (18)
O3—C111.446 (2)C14—C151.520 (2)
N1—C71.3595 (19)C14—H14A0.977 (17)
N1—C61.385 (2)C14—H14B0.989 (18)
N1—H10.88 (2)C15—C161.525 (2)
N2—C81.3720 (19)C15—H15A1.00 (2)
N2—C11.4153 (19)C15—H15B0.991 (18)
N2—C131.4731 (19)C16—C171.525 (2)
C1—C61.393 (2)C16—H16A0.998 (18)
C1—C21.400 (2)C16—H16B0.994 (18)
C2—C31.382 (2)C17—C181.523 (2)
C2—H20.976 (19)C17—H17A0.982 (18)
C3—C41.387 (3)C17—H17B0.997 (19)
C3—H30.995 (19)C18—C191.521 (2)
C4—C51.383 (2)C18—H18A1.013 (17)
C4—H40.967 (19)C18—H18B1.011 (18)
C5—C61.392 (2)C19—C201.521 (2)
C5—H50.973 (18)C19—H19A1.000 (17)
C7—C91.368 (2)C19—H19B0.988 (19)
C7—C81.492 (2)C20—C211.521 (2)
C9—C101.434 (2)C20—H20A1.010 (18)
C9—H90.957 (17)C20—H20B1.000 (19)
C11—C121.505 (3)C21—C221.521 (2)
C11—H11A0.96 (2)C21—H21A0.996 (19)
C11—H11B1.03 (2)C21—H21B1.00 (2)
C12—H12A0.97 (2)C22—H22A1.01 (2)
C12—H12B1.03 (2)C22—H22B0.99 (2)
C12—H12C1.01 (2)C22—H22C1.00 (2)
C10—O3—C11115.58 (13)C15—C14—C13112.28 (13)
C7—N1—C6124.32 (14)C15—C14—H14A111.2 (10)
C7—N1—H1115.1 (13)C13—C14—H14A107.5 (10)
C6—N1—H1120.5 (13)C15—C14—H14B110.1 (10)
C8—N2—C1122.85 (13)C13—C14—H14B110.7 (10)
C8—N2—C13117.36 (12)H14A—C14—H14B104.7 (14)
C1—N2—C13119.74 (12)C14—C15—C16113.22 (13)
C6—C1—C2118.83 (14)C14—C15—H15A110.7 (11)
C6—C1—N2118.78 (13)C16—C15—H15A108.5 (11)
C2—C1—N2122.39 (14)C14—C15—H15B109.5 (10)
C3—C2—C1120.40 (16)C16—C15—H15B109.1 (10)
C3—C2—H2120.7 (10)H15A—C15—H15B105.5 (15)
C1—C2—H2118.9 (10)C17—C16—C15114.44 (13)
C2—C3—C4120.39 (16)C17—C16—H16A109.1 (10)
C2—C3—H3120.2 (11)C15—C16—H16A108.9 (10)
C4—C3—H3119.4 (11)C17—C16—H16B108.9 (10)
C5—C4—C3119.79 (16)C15—C16—H16B109.6 (10)
C5—C4—H4118.8 (11)H16A—C16—H16B105.5 (14)
C3—C4—H4121.5 (11)C18—C17—C16113.33 (13)
C4—C5—C6120.15 (16)C18—C17—H17A109.0 (10)
C4—C5—H5121.0 (10)C16—C17—H17A109.0 (10)
C6—C5—H5118.8 (10)C18—C17—H17B108.6 (11)
N1—C6—C5120.44 (14)C16—C17—H17B109.2 (11)
N1—C6—C1119.13 (14)H17A—C17—H17B107.5 (14)
C5—C6—C1120.43 (14)C19—C18—C17114.19 (13)
N1—C7—C9123.62 (14)C19—C18—H18A109.3 (10)
N1—C7—C8117.33 (13)C17—C18—H18A108.1 (10)
C9—C7—C8119.05 (13)C19—C18—H18B110.0 (10)
O1—C8—N2121.97 (14)C17—C18—H18B109.2 (10)
O1—C8—C7120.64 (14)H18A—C18—H18B105.8 (14)
N2—C8—C7117.38 (13)C18—C19—C20113.55 (13)
C7—C9—C10121.49 (14)C18—C19—H19A109.2 (10)
C7—C9—H9118.2 (10)C20—C19—H19A109.2 (10)
C10—C9—H9120.3 (10)C18—C19—H19B109.2 (11)
O2—C10—O3121.56 (14)C20—C19—H19B109.1 (11)
O2—C10—C9125.67 (15)H19A—C19—H19B106.3 (14)
O3—C10—C9112.78 (13)C21—C20—C19113.94 (13)
O3—C11—C12107.73 (15)C21—C20—H20A109.4 (10)
O3—C11—H11A107.8 (12)C19—C20—H20A108.7 (10)
C12—C11—H11A112.0 (12)C21—C20—H20B108.9 (11)
O3—C11—H11B107.5 (11)C19—C20—H20B109.3 (11)
C12—C11—H11B110.8 (11)H20A—C20—H20B106.2 (14)
H11A—C11—H11B110.8 (16)C20—C21—C22113.34 (14)
C11—C12—H12A109.9 (13)C20—C21—H21A109.7 (11)
C11—C12—H12B111.1 (12)C22—C21—H21A109.6 (11)
H12A—C12—H12B107.5 (18)C20—C21—H21B108.4 (11)
C11—C12—H12C110.2 (13)C22—C21—H21B108.7 (11)
H12A—C12—H12C110.2 (18)H21A—C21—H21B106.9 (15)
H12B—C12—H12C108.0 (18)C21—C22—H22A112.0 (11)
N2—C13—C14112.57 (12)C21—C22—H22B110.2 (12)
N2—C13—H13A105.6 (9)H22A—C22—H22B107.5 (16)
C14—C13—H13A111.2 (9)C21—C22—H22C111.5 (12)
N2—C13—H13B108.1 (10)H22A—C22—H22C107.9 (16)
C14—C13—H13B110.9 (10)H22B—C22—H22C107.6 (17)
H13A—C13—H13B108.1 (14)
C8—N2—C1—C62.0 (2)C13—N2—C8—C7177.40 (13)
C13—N2—C1—C6179.39 (13)N1—C7—C8—O1174.79 (13)
C8—N2—C1—C2177.41 (14)C9—C7—C8—O14.5 (2)
C13—N2—C1—C20.0 (2)N1—C7—C8—N24.6 (2)
C6—C1—C2—C30.7 (2)C9—C7—C8—N2176.12 (13)
N2—C1—C2—C3178.67 (14)N1—C7—C9—C101.0 (2)
C1—C2—C3—C40.0 (2)C8—C7—C9—C10178.21 (14)
C2—C3—C4—C50.4 (3)C11—O3—C10—O23.0 (2)
C3—C4—C5—C60.1 (3)C11—O3—C10—C9177.34 (14)
C7—N1—C6—C5177.99 (15)C7—C9—C10—O22.9 (3)
C7—N1—C6—C12.2 (2)C7—C9—C10—O3176.72 (14)
C4—C5—C6—N1179.18 (15)C10—O3—C11—C12176.51 (15)
C4—C5—C6—C10.7 (2)C8—N2—C13—C1499.13 (15)
C2—C1—C6—N1178.79 (14)C1—N2—C13—C1478.44 (17)
N2—C1—C6—N11.8 (2)N2—C13—C14—C15172.45 (13)
C2—C1—C6—C51.1 (2)C13—C14—C15—C16178.02 (13)
N2—C1—C6—C5178.34 (14)C14—C15—C16—C17179.84 (13)
C6—N1—C7—C9179.69 (14)C15—C16—C17—C18179.79 (13)
C6—N1—C7—C81.1 (2)C16—C17—C18—C19179.39 (13)
C1—N2—C8—O1174.27 (13)C17—C18—C19—C20179.12 (13)
C13—N2—C8—O13.2 (2)C18—C19—C20—C21179.46 (14)
C1—N2—C8—C75.1 (2)C19—C20—C21—C22179.64 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.88 (2)1.99 (2)2.6885 (18)134.8 (17)
C3—H3···O1i0.996 (19)2.491 (19)3.278 (2)135.6 (14)
C11—H11A···O2ii0.96 (2)2.59 (2)3.424 (2)144.7 (16)
C13—H13B···O1iii0.983 (18)2.541 (18)3.2714 (19)131.0 (13)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+2, z+1; (iii) x, y1, z.
 

Acknowledgements

The support of Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

Funding information

Funding for this research was provided by: NSF-MRI (grant No. 1228232).

References

First citationAbad, N., El Bakri, Y., Sebhaoui, J., Ramli, Y., Essassi, E. M. & Mague, J. T. (2018). IUCrData, 3, x180519.  Google Scholar
First citationBailly, C., Echepare, S., Gago, F. & Waring, M. (1999). Anticancer Drug. Des. 15, 291–303.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBudakoti, A., Bhat, A. R., Athar, F. & Azam, A. (2008). Eur. J. Med. Chem. 43, 1749–1757.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCaleb, A. A., Ramli, Y., Benabdelkame, H., Bouhfid, R., Es-Safi, N., Kandri Rodi, Y., Essassi, E. M. & Banoub, J. (2016). J. Marocain Chim. Heterocycl. 15, 109–123.  CAS Google Scholar
First citationDell, A., William, D. H., Morris, H. R., Smith, G. A., Feeney, J. & Roberts, G. C. K. (1975). J. Am. Chem. Soc. 97, 2497–2502.  CrossRef CAS Google Scholar
First citationFonseca, T., Gigante, B., Marques, M. M., Gilchrist, T. L. & Clercq, E. D. (2004). Bioorg. Med. Chem. 12, 103–112.  CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOhkanda, J. & Katoh, A. (1998). Rev. Heteroatom Chem. 18, 87–118.  CAS Google Scholar
First citationRamli, Y., El Bakri, Y., El Ghayati, L., Essassi, E. M. & Mague, J. T. (2018). IUCrData, 3, x180390.  Google Scholar
First citationRamli, Y., Karrouchi, K., Essassi, E. M. & El Ammari, L. (2013). Acta Cryst. E69, o1320–o1321.  CSD CrossRef IUCr Journals Google Scholar
First citationRamli, Y., Moussaif, A., Zouihri, H., Bourichi, H. & Essassi, E. M. (2011). Acta Cryst. E67, o1374.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRao, G. K., Kotnal, R. B. & Pai, P. N. S. (2009). Int. J. Biol. Chem. 3, 71–77.  CAS Google Scholar
First citationSanna, P., Carta, A., Loriga, M., Zanetti, S. & Sechi, L. (1999). Farmaco, 54, 161–168.  CrossRef CAS Google Scholar
First citationSato, S., Shiratori, O. & Katagiri, K. (1967). J. Antibiot. 20, 270–276.  CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds