metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Tris(1,10-phenanthroline-κ2N,N′)nickel(II) bis­­(hexa­fluorido­phosphate)

aMétallation, Complexes Moléculaires et Applications, Université Moulay Ismail, Faculté des Sciences, Meknès, BP 11201 Zitoune, 50000 Meknès, Morocco, bCNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, F-31077 Toulouse, France, and cUniversité de Toulouse, UPS, INPT, LCC, F-31077 Toulouse, France
*Correspondence e-mail: elhamdanihicham41@gmail.com

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 17 April 2018; accepted 10 May 2018; online 18 May 2018)

The asymmetric unit of the title compound, [Ni(C36H24N6)3](PF6)2, contains one and a half nickel(II) complex dications and three hexa­fluorido­phosphate anions, one of the dications having crystallographic twofold rotational symmetry. Each NiII atom displays a distorted octa­hedral coordination geometry provided by the six N atoms of three bidentate 1,10-phenanthroline ligands with bite angles of 79.68 (11)–80.76 (12)°. In the crystal, C—H⋯F hydrogen bonds link the anions and dications into a three-dimensional supra­molecular framework. Within the framework complex dications with twofold rotational symmetry are linked by weak ππ stacking inter­actions [centroid-to-centroid distances = 3.712 (2) Å].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Cationic complexes of general formula [M(L)3]n+ (where L is a chelate ligand such as 1,10-phenanthroline, bi­pyridine and their derivatives) are important agents for developing novel diagnostic and therapeutic compounds that can recognize and cleave DNA (Zaworotko et al., 2007[Zaworotko, M. J., Hammud, H. H. & Kravtsov, V. Ch. (2007). J. Chem. Crystallogr. 37, 219-231.]; Zelenko et al., 1997[Zelenko, O., Gallagher, J. & Sigman, D. S. (1997). Angew. Chem. Int. Ed. Engl. 36, 2776-2778.]; Naing et al., 1995[Naing, K., Takahashi, M., Taniguchi, M. & Yamagishi, A. (1995). Inorg. Chem. 34, 350-356.]; Barton, 1986[Barton, J. K. (1986). Science, 233, 727-734.]; Liu et al., 2004[Liu, F., Wang, K., Bai, G., Zhang, Y. & Gao, L. (2004). Inorg. Chem. 43, 1799-1806.]; Sammes & Yahioglu, 1994[Sammes, P. G. & Yahioglu, G. (1994). Chem. Soc. Rev. 23, 327-334.]; Sigman et al., 1979[Sigman, D. S., Graham, D. R., D'Aurora, V. & Stern, A. M. (1979). J. Biol. Chem. 254, 12269-12272.]), and show the ability to form outer-sphere complexes with anions, neutral mol­ecules or a combination of them (Zaworotko et al., 2007[Zaworotko, M. J., Hammud, H. H. & Kravtsov, V. Ch. (2007). J. Chem. Crystallogr. 37, 219-231.]; Johansson, 1976[Johansson, L. (1976). Chem. Scr. 10, 72.]). Herein, the synthesis and crystal structure of tris­(1,10-phenanthroline-κ2N,N′)nickel(II) bis­(hexa­fluorido­phosphate) are reported. The crystal structure of the hemihydrate of the title compound has been reported at least twice (Brewer et al., 2003[Brewer, B., Brooks, N. R., Abdul-Halim, S. & Sykes, A. G. (2003). J. Chem. Crystallogr. 33, 651-662.]; Bouzaid et al., 2012[Bouzaid, J., Schultz, M., Lao, Z., Bartley, J., Bostrom, T. & McMurtrie, J. (2012). Cryst. Growth Des. 12, 3906-3916.]).

The bond lengths and angles in the title complex are very similar to those reported for the hemihydrate form (Brewer et al., 2003[Brewer, B., Brooks, N. R., Abdul-Halim, S. & Sykes, A. G. (2003). J. Chem. Crystallogr. 33, 651-662.]; Bouzaid et al., 2012[Bouzaid, J., Schultz, M., Lao, Z., Bartley, J., Bostrom, T. & McMurtrie, J. (2012). Cryst. Growth Des. 12, 3906-3916.]). The asymmetric unit of the title compound is illustrated in Fig. 1[link]. It consists of one and a half nickel(II) complex dications and three anions. One dication has crystallographic imposed twofold rotational symmetry, the twofold axis passing through the Ni1 atom and bis­ecting the C62—C62i and C63—C63i bonds [symmetry code: (i) 1 − x, y, [{3\over 2}] − z]. Both nickel(II) cations are coordinated in a distorted octa­hedral geometry by six N atoms from three 1,10-phenanthroline ligands. The Ni—N bond lengths are similar and fall in a narrow range [2.077 (3)–2.108 (3) Å; mean value 2.091 (4) Å]. The 1,10-phenanthroline ligands adopt the expected chelating coordination mode with chelating angles in the range 79.68 (11)–80.76 (12)°. The P—F bond lengths in the hexa­fluorido­phosphate anions are unexceptional, and range from 1.559 (5) to 1.606 (2) Å (mean value 1.593 Å).

[Figure 1]
Figure 1
The expanded asymmetric unit of the title compound, with displacement ellipsoids drawn at the 50% probability level. C-atom labels have been omitted for clarity. [Symmetry code: (i) 1 − x, y, [{3\over 2}] − z.]

In the crystal, C—H⋯F hydrogen bonds link the anions and dications into a three-dimensional framework (Table 1[link] and Fig. 2[link]). Within the framework, inversion-related six-membered rings of 1,10-phenanthroline ligands belonging to complex dications with twofold rotational symmetry are connected through ππ stacking inter­actions [CgCgi = 3.712 Å; Cg is the centroid of the N57/C58–C63 ring; symmetry code: (i) 1 − x, 1 − y, 2 − z].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H91⋯F6i 0.93 2.53 3.385 (6) 152
C10—H101⋯F2i 0.94 2.43 3.226 (6) 143
C16—H161⋯F12ii 0.95 2.36 3.126 (5) 137
C20—H201⋯F16iii 0.94 2.46 3.385 (5) 171
C24—H241⋯F4iv 0.93 2.42 3.271 (6) 152
C25—H251⋯F5iv 0.94 2.50 3.266 (6) 139
C44—H441⋯F9ii 0.95 2.50 3.173 (5) 129
C51—H511⋯F18v 0.94 2.41 3.253 (6) 149
C52—H521⋯F13vi 0.94 2.48 3.209 (6) 134
C59—H591⋯F9vii 0.94 2.50 3.417 (6) 167
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2]; (ii) [x, -y+1, z+{\script{1\over 2}}]; (iii) [x, -y, z+{\script{1\over 2}}]; (iv) [x, -y, z-{\script{1\over 2}}]; (v) -x+1, -y, -z+1; (vi) [-x+1, y, -z+{\script{3\over 2}}]; (vii) x, y, z+1.
[Figure 2]
Figure 2
A view along the c axis of the crystal packing of the title compound. The hydrogen bonds (Table 1[link]) are shown as dashed lines.

Synthesis and crystallization

1,10-Phenanthroline hydro­chloride (3 mmol, 0.702 g) and potassium hexa­fluorido­phosphate (2 mmol, 0.368 g) were dissolved separately in 10 ml of ethanol, and NiCl2 (1 mmol, 0,125 g) was dissolved in 5 ml of water. The 1,10-phenanthroline hydro­chloride solution was added dropwise to the metal salt solution while stirring at room temperature. The potassium hexa­fluorido­phosphate solution was then added dropwise to the reaction mixture while stirring at room temperature. The solution was kept at room temperature to evaporate slowly. After two months, crystals suitable for X-ray analysis were obtained.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Ni(C12H8N2)3](PF6P)2
Mr 889.26
Crystal system, space group Monoclinic, C2/c
Temperature (K) 180
a, b, c (Å) 55.058 (8), 15.8074 (9), 12.0688 (7)
β (°) 95.088 (9)
V3) 10462.4 (17)
Z 12
Radiation type Mo Kα
μ (mm−1) 0.75
Crystal size (mm) 0.30 × 0.15 × 0.15
 
Data collection
Diffractometer Oxford Diffraction Gemini
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.76, 0.89
No. of measured, independent and observed [I > 2.0σ(I)] reflections 174626, 13212, 8649
Rint 0.105
(sin θ/λ)max−1) 0.683
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.063, 1.11
No. of reflections 8015
No. of parameters 771
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.98, −0.56
Computer programs: Gemini (Oxford Diffraction, 2006[Oxford Diffraction (2006). Gemini User Manual. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]), CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]), CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]) and CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]). Weighting scheme: Prince (1982[Prince, E. (1982). in Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.]); Watkin (1994[Watkin, D. (1994). Acta Cryst. A50, 411-437.]).

Structural data


Computing details top

Data collection: Gemini (Oxford Diffraction, 2006); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Tris(1,10-phenanthroline-κ2N,N')nickel(II) bis(hexafluoridophosphate) top
Crystal data top
[Ni(C12H8N2)3](PF6P)2F(000) = 5376
Mr = 889.26Dx = 1.694 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 13382 reflections
a = 55.058 (8) Åθ = 3–25°
b = 15.8074 (9) ŵ = 0.75 mm1
c = 12.0688 (7) ÅT = 180 K
β = 95.088 (9)°Rod, colourless
V = 10462.4 (17) Å30.30 × 0.15 × 0.15 mm
Z = 12
Data collection top
Oxford Diffraction Gemini
diffractometer
8649 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.105
φ & ω scansθmax = 29.0°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
h = 7473
Tmin = 0.76, Tmax = 0.89k = 2121
174626 measured reflectionsl = 1616
13212 independent reflections
Refinement top
Refinement on FPrimary atom site location: other
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: difference Fourier map
wR(F2) = 0.063H-atom parameters constrained
S = 1.11 Method, part 1, Chebychev polynomial (Watkin, 1994; Prince, 1982) with the coefficients 18.5, 18.7, 17.2, 6.67
8015 reflections(Δ/σ)max = 0.001
771 parametersΔρmax = 0.98 e Å3
0 restraintsΔρmin = 0.56 e Å3
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1 K.

Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.28702 (4)0.75000.0225
Ni20.335001 (8)0.26714 (3)0.58164 (3)0.0256
C20.35684 (7)0.4148 (2)0.4524 (3)0.0340
C30.36127 (7)0.4999 (3)0.4323 (4)0.0436
C40.35140 (8)0.5601 (3)0.4966 (4)0.0470
C50.33704 (7)0.5355 (2)0.5815 (4)0.0401
C60.32584 (9)0.5945 (3)0.6538 (5)0.0580
C70.31233 (8)0.5660 (3)0.7344 (5)0.0569
C80.30842 (7)0.4789 (3)0.7512 (4)0.0442
C90.29420 (8)0.4457 (3)0.8335 (4)0.0508
C100.29149 (8)0.3615 (3)0.8442 (4)0.0508
C110.30293 (7)0.3074 (3)0.7732 (3)0.0441
C130.31907 (6)0.4199 (3)0.6826 (3)0.0360
C140.33340 (6)0.4484 (2)0.5959 (3)0.0317
C160.38217 (6)0.3227 (2)0.7271 (3)0.0342
C170.39874 (7)0.3189 (3)0.8206 (4)0.0446
C180.39795 (7)0.2522 (3)0.8933 (4)0.0466
C190.37986 (7)0.1890 (3)0.8712 (3)0.0413
C200.37686 (9)0.1177 (3)0.9420 (3)0.0508
C210.35819 (9)0.0636 (3)0.9215 (3)0.0483
C220.34057 (7)0.0734 (2)0.8269 (3)0.0388
C230.32040 (9)0.0215 (3)0.8037 (4)0.0494
C240.30482 (8)0.0351 (3)0.7091 (4)0.0467
C250.30947 (7)0.1018 (2)0.6396 (4)0.0396
C270.34385 (7)0.1399 (2)0.7524 (3)0.0318
C280.36362 (6)0.1988 (2)0.7752 (3)0.0302
C300.28248 (7)0.2968 (3)0.4666 (3)0.0398
C310.26463 (7)0.2946 (3)0.3759 (4)0.0503
C320.26997 (8)0.2581 (3)0.2784 (4)0.0505
C330.29363 (7)0.2256 (2)0.2685 (3)0.0405
C340.30145 (10)0.1915 (3)0.1673 (4)0.0528
C350.32438 (10)0.1635 (3)0.1615 (4)0.0502
C360.34196 (8)0.1669 (2)0.2572 (3)0.0398
C370.36599 (9)0.1341 (3)0.2595 (4)0.0461
C380.38097 (7)0.1374 (2)0.3562 (3)0.0398
C390.37276 (7)0.1760 (2)0.4500 (3)0.0325
C410.33495 (7)0.2013 (2)0.3571 (3)0.0294
C420.31047 (6)0.2314 (2)0.3624 (3)0.0313
C440.44804 (6)0.3264 (2)0.6375 (3)0.0303
C450.42959 (7)0.3218 (3)0.5502 (3)0.0384
C460.43194 (7)0.2672 (3)0.4646 (3)0.0369
C470.45302 (6)0.2177 (2)0.4638 (3)0.0299
C480.45713 (8)0.1594 (3)0.3752 (3)0.0409
C490.47815 (9)0.1160 (3)0.3771 (4)0.0534
C500.49742 (9)0.1271 (3)0.4647 (3)0.0468
C510.52012 (10)0.0859 (3)0.4673 (4)0.0639
C520.53742 (10)0.1013 (3)0.5540 (4)0.0605
C530.53241 (8)0.1582 (3)0.6377 (3)0.0453
C550.49376 (7)0.1827 (2)0.5520 (3)0.0318
C560.47110 (6)0.2271 (2)0.5517 (3)0.0268
C580.47251 (7)0.3882 (3)0.9230 (3)0.0437
C590.46412 (8)0.4631 (4)0.9695 (4)0.0575
C600.47035 (9)0.5380 (4)0.9277 (5)0.0623
C610.48501 (8)0.5421 (3)0.8395 (4)0.0472
C620.49283 (9)0.6192 (3)0.7922 (5)0.0636
C630.49248 (6)0.4643 (2)0.7966 (3)0.0334
N10.34328 (5)0.38920 (18)0.5323 (2)0.0286
N120.31617 (6)0.3355 (2)0.6940 (3)0.0350
N150.36507 (5)0.26401 (19)0.7026 (2)0.0298
N260.32829 (5)0.1537 (2)0.6601 (3)0.0330
N290.30495 (5)0.26429 (18)0.4606 (2)0.0287
N400.35058 (5)0.20718 (17)0.4516 (2)0.0265
N430.46863 (5)0.28123 (17)0.6385 (2)0.0256
N540.51094 (6)0.19813 (19)0.6374 (2)0.0328
N570.48651 (5)0.38841 (19)0.8375 (2)0.0293
F10.27673 (8)0.1148 (4)0.9191 (3)0.1264
F20.23623 (8)0.1238 (3)0.9320 (3)0.0994
F30.25131 (6)0.0441 (2)0.8016 (2)0.0695
F40.25927 (6)0.0566 (4)1.0635 (3)0.1113
F50.27424 (8)0.0263 (4)0.9308 (4)0.1228
F60.23327 (6)0.0145 (3)0.9432 (3)0.0852
F70.41325 (6)0.4319 (3)0.3368 (3)0.0777
F80.43308 (6)0.3495 (2)0.2241 (3)0.0839
F90.43158 (7)0.4876 (2)0.1956 (3)0.0841
F100.39201 (7)0.3460 (3)0.2180 (5)0.1143
F110.41023 (6)0.4020 (2)0.0740 (3)0.0743
F120.39042 (6)0.4841 (2)0.1897 (3)0.0765
F130.41694 (5)0.02840 (17)0.79123 (19)0.0506
F140.41810 (4)0.13614 (14)0.6696 (2)0.0425
F150.42032 (5)0.04235 (17)0.53008 (19)0.0509
F160.41912 (5)0.06609 (15)0.6520 (2)0.0530
F170.38947 (4)0.03366 (15)0.6404 (2)0.0438
F180.44786 (4)0.03646 (17)0.6804 (2)0.0506
P10.25548 (2)0.04758 (11)0.93193 (10)0.0602
P20.411657 (19)0.41582 (7)0.20514 (10)0.0426
P30.418689 (17)0.03522 (6)0.66055 (7)0.0290
H210.36370.37320.40960.0425*
H310.37090.51580.37580.0554*
H410.35410.61810.48450.0571*
H610.32810.65210.64410.0804*
H710.30510.60550.77960.0782*
H910.28650.48260.87970.0673*
H1010.28230.33920.89930.0725*
H1110.30110.24860.78100.0561*
H1610.38310.36870.67760.0513*
H1710.41020.36210.83520.0561*
H1810.40940.24730.95520.0571*
H2010.38810.10891.00380.0604*
H2110.35650.01830.97020.0603*
H2310.31780.02400.85200.0605*
H2410.29110.00120.69230.0594*
H2510.29880.11100.57550.0502*
H3010.27890.32230.53380.0515*
H3110.24930.31810.38170.0623*
H3210.25800.25350.21820.0592*
H3410.28990.18740.10520.0690*
H3510.32890.14200.09350.0633*
H3710.37140.11060.19500.0584*
H3810.39660.11450.35940.0505*
H3910.38330.18020.51490.0402*
H4410.44590.36240.69840.0363*
H4510.41580.35630.55160.0454*
H4610.41960.26360.40650.0441*
H4810.44500.15080.31660.0531*
H4910.48040.07820.31960.0652*
H5110.52330.04750.41060.0761*
H5210.55280.07590.55650.0701*
H5310.54410.16730.69780.0612*
H5810.46840.33510.95100.0593*
H5910.45440.46021.02930.0762*
H6010.46480.58810.95850.0804*
H6210.48840.67160.82210.0803*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0293 (3)0.0199 (3)0.0181 (3)0.00000.0016 (2)0.0000
Ni20.0252 (2)0.0287 (2)0.0231 (2)0.00003 (17)0.00271 (16)0.00161 (16)
C20.0325 (18)0.034 (2)0.0347 (19)0.0019 (15)0.0002 (15)0.0009 (15)
C30.0311 (19)0.047 (2)0.051 (2)0.0088 (17)0.0065 (17)0.0110 (19)
C40.045 (2)0.0289 (19)0.064 (3)0.0077 (17)0.014 (2)0.0034 (18)
C50.0298 (18)0.0312 (18)0.056 (2)0.0010 (16)0.0116 (17)0.0058 (18)
C60.046 (2)0.038 (2)0.087 (4)0.0071 (19)0.011 (2)0.020 (2)
C70.039 (2)0.055 (3)0.074 (3)0.009 (2)0.006 (2)0.027 (2)
C80.0262 (18)0.058 (3)0.046 (2)0.0092 (17)0.0100 (16)0.0224 (19)
C90.036 (2)0.079 (3)0.038 (2)0.010 (2)0.0066 (18)0.026 (2)
C100.036 (2)0.078 (3)0.039 (2)0.005 (2)0.0090 (18)0.010 (2)
C110.033 (2)0.062 (3)0.038 (2)0.0031 (18)0.0076 (17)0.0010 (18)
C130.0210 (16)0.055 (2)0.0300 (18)0.0057 (15)0.0080 (14)0.0121 (16)
C140.0199 (15)0.0365 (18)0.0365 (19)0.0014 (13)0.0099 (14)0.0079 (15)
C160.0272 (17)0.0363 (19)0.039 (2)0.0031 (14)0.0045 (15)0.0058 (15)
C170.0303 (19)0.060 (3)0.043 (2)0.0023 (18)0.0017 (17)0.0157 (19)
C180.0331 (19)0.069 (3)0.036 (2)0.0152 (19)0.0058 (16)0.0176 (19)
C190.039 (2)0.054 (2)0.0315 (19)0.0184 (18)0.0041 (16)0.0003 (17)
C200.050 (2)0.073 (3)0.030 (2)0.029 (2)0.0047 (18)0.0082 (19)
C210.059 (3)0.052 (3)0.035 (2)0.023 (2)0.012 (2)0.0153 (18)
C220.048 (2)0.037 (2)0.0338 (19)0.0126 (17)0.0156 (17)0.0048 (15)
C230.058 (3)0.033 (2)0.062 (3)0.0076 (19)0.031 (2)0.0113 (19)
C240.042 (2)0.035 (2)0.066 (3)0.0005 (17)0.017 (2)0.0022 (19)
C250.038 (2)0.0309 (19)0.050 (2)0.0028 (15)0.0037 (18)0.0021 (16)
C270.0349 (18)0.0332 (18)0.0293 (17)0.0076 (14)0.0145 (14)0.0000 (14)
C280.0290 (17)0.039 (2)0.0226 (16)0.0080 (14)0.0027 (13)0.0017 (14)
C300.0307 (18)0.046 (2)0.044 (2)0.0018 (16)0.0090 (16)0.0170 (17)
C310.0216 (17)0.064 (3)0.065 (3)0.0012 (17)0.0002 (18)0.026 (2)
C320.036 (2)0.059 (3)0.052 (3)0.0152 (19)0.0194 (19)0.016 (2)
C330.042 (2)0.035 (2)0.042 (2)0.0069 (16)0.0113 (17)0.0057 (16)
C340.069 (3)0.047 (2)0.038 (2)0.012 (2)0.016 (2)0.0018 (18)
C350.077 (3)0.041 (2)0.031 (2)0.002 (2)0.001 (2)0.0073 (17)
C360.061 (3)0.0271 (18)0.0315 (19)0.0017 (17)0.0056 (18)0.0027 (14)
C370.068 (3)0.032 (2)0.040 (2)0.0089 (19)0.015 (2)0.0072 (16)
C380.039 (2)0.034 (2)0.048 (2)0.0083 (16)0.0120 (18)0.0018 (16)
C390.0301 (18)0.0254 (17)0.042 (2)0.0002 (13)0.0032 (15)0.0009 (14)
C410.0374 (18)0.0167 (15)0.0333 (17)0.0021 (13)0.0010 (14)0.0016 (12)
C420.0343 (18)0.0237 (16)0.0343 (18)0.0050 (14)0.0061 (14)0.0073 (14)
C440.0270 (17)0.0326 (18)0.0316 (18)0.0017 (13)0.0041 (14)0.0028 (14)
C450.0244 (18)0.048 (2)0.043 (2)0.0009 (15)0.0021 (16)0.0085 (17)
C460.0299 (17)0.043 (2)0.038 (2)0.0122 (16)0.0022 (15)0.0128 (16)
C470.0325 (17)0.0290 (18)0.0270 (16)0.0088 (14)0.0041 (14)0.0078 (13)
C480.049 (2)0.048 (2)0.0238 (18)0.0070 (18)0.0090 (16)0.0031 (15)
C490.066 (3)0.053 (3)0.039 (2)0.005 (2)0.007 (2)0.0198 (19)
C500.063 (3)0.041 (2)0.034 (2)0.0134 (19)0.0036 (19)0.0102 (17)
C510.083 (4)0.066 (3)0.039 (2)0.037 (3)0.011 (2)0.025 (2)
C520.067 (3)0.067 (3)0.046 (3)0.045 (3)0.006 (2)0.015 (2)
C530.054 (3)0.045 (2)0.034 (2)0.0253 (19)0.0130 (18)0.0061 (17)
C550.042 (2)0.0263 (17)0.0255 (17)0.0073 (14)0.0033 (15)0.0013 (13)
C560.0321 (17)0.0219 (16)0.0265 (16)0.0001 (13)0.0035 (13)0.0058 (12)
C580.0308 (19)0.063 (3)0.038 (2)0.0032 (18)0.0089 (16)0.0095 (19)
C590.028 (2)0.105 (4)0.041 (2)0.007 (2)0.0085 (18)0.029 (3)
C600.045 (3)0.074 (4)0.066 (3)0.020 (2)0.004 (2)0.032 (3)
C610.034 (2)0.042 (2)0.062 (3)0.0089 (17)0.0152 (19)0.016 (2)
C620.064 (3)0.030 (2)0.091 (4)0.0090 (19)0.027 (3)0.006 (2)
C630.0248 (16)0.0336 (19)0.041 (2)0.0025 (14)0.0038 (15)0.0050 (15)
N10.0286 (14)0.0260 (14)0.0311 (15)0.0006 (11)0.0023 (12)0.0001 (11)
N120.0323 (16)0.0427 (19)0.0297 (16)0.0035 (13)0.0013 (13)0.0046 (13)
N150.0263 (14)0.0354 (16)0.0277 (14)0.0027 (12)0.0033 (11)0.0018 (12)
N260.0311 (15)0.0352 (16)0.0329 (16)0.0039 (12)0.0043 (13)0.0017 (12)
N290.0247 (13)0.0279 (15)0.0333 (15)0.0008 (11)0.0014 (11)0.0079 (12)
N400.0251 (14)0.0247 (14)0.0297 (14)0.0014 (11)0.0015 (11)0.0011 (11)
N430.0315 (14)0.0217 (14)0.0230 (13)0.0001 (11)0.0005 (11)0.0032 (10)
N540.0434 (17)0.0278 (15)0.0258 (15)0.0125 (13)0.0052 (13)0.0029 (11)
N570.0233 (13)0.0358 (16)0.0291 (14)0.0030 (11)0.0042 (11)0.0078 (12)
F10.100 (3)0.200 (5)0.087 (3)0.081 (3)0.051 (2)0.069 (3)
F20.113 (3)0.119 (3)0.073 (2)0.023 (3)0.047 (2)0.001 (2)
F30.075 (2)0.097 (2)0.0379 (14)0.0023 (17)0.0082 (14)0.0026 (14)
F40.0544 (19)0.243 (6)0.0360 (16)0.002 (3)0.0008 (14)0.009 (2)
F50.099 (3)0.191 (5)0.081 (3)0.068 (3)0.020 (2)0.049 (3)
F60.069 (2)0.119 (3)0.068 (2)0.024 (2)0.0075 (17)0.016 (2)
F70.0672 (19)0.113 (3)0.0529 (17)0.0268 (18)0.0049 (15)0.0250 (17)
F80.0631 (19)0.093 (2)0.097 (3)0.0404 (18)0.0115 (18)0.027 (2)
F90.099 (3)0.083 (2)0.069 (2)0.050 (2)0.0048 (18)0.0007 (17)
F100.075 (2)0.074 (2)0.198 (5)0.033 (2)0.034 (3)0.008 (3)
F110.075 (2)0.086 (2)0.0576 (18)0.0052 (17)0.0161 (16)0.0223 (16)
F120.087 (2)0.0665 (19)0.070 (2)0.0381 (17)0.0264 (17)0.0016 (15)
F130.0607 (16)0.0662 (17)0.0246 (11)0.0020 (13)0.0021 (10)0.0049 (10)
F140.0478 (13)0.0289 (12)0.0505 (13)0.0044 (9)0.0032 (11)0.0041 (9)
F150.0677 (17)0.0617 (16)0.0238 (11)0.0035 (13)0.0061 (11)0.0007 (10)
F160.0678 (17)0.0286 (12)0.0590 (16)0.0035 (11)0.0145 (13)0.0001 (10)
F170.0346 (12)0.0424 (13)0.0527 (14)0.0079 (9)0.0056 (10)0.0041 (10)
F180.0318 (12)0.0618 (16)0.0575 (16)0.0037 (11)0.0003 (11)0.0174 (12)
P10.0423 (6)0.1060 (12)0.0325 (6)0.0096 (7)0.0043 (5)0.0044 (6)
P20.0366 (5)0.0364 (6)0.0528 (6)0.0015 (4)0.0071 (5)0.0107 (5)
P30.0318 (4)0.0301 (5)0.0246 (4)0.0022 (3)0.0008 (3)0.0005 (3)
Geometric parameters (Å, º) top
Ni1—N43i2.096 (3)C34—H3410.941
Ni1—N57i2.092 (3)C35—C361.441 (6)
Ni1—N54i2.080 (3)C35—H3510.943
Ni1—N432.096 (3)C36—C371.419 (6)
Ni1—N542.080 (3)C36—C411.408 (5)
Ni1—N572.092 (3)C37—C381.369 (6)
Ni2—N12.082 (3)C37—H3710.934
Ni2—N122.082 (3)C38—C391.397 (5)
Ni2—N152.108 (3)C38—H3810.931
Ni2—N262.077 (3)C39—N401.318 (4)
Ni2—N292.108 (3)C39—H3910.936
Ni2—N402.082 (3)C41—C421.436 (5)
C2—C31.392 (6)C41—N401.369 (4)
C2—N11.333 (5)C42—N291.353 (5)
C2—H210.938C44—C451.399 (5)
C3—C41.371 (7)C44—N431.339 (4)
C3—H310.934C44—H4410.945
C4—C51.403 (7)C45—C461.362 (6)
C4—H410.942C45—H4510.935
C5—C61.452 (6)C46—C471.401 (5)
C5—C141.404 (5)C46—H4610.933
C6—C71.353 (8)C47—C481.444 (5)
C6—H610.926C47—C561.397 (5)
C7—C81.410 (7)C48—C491.343 (6)
C7—H710.940C48—H4810.938
C8—C91.420 (7)C49—C501.441 (6)
C8—C131.409 (5)C49—H4910.932
C9—C101.347 (7)C50—C511.407 (6)
C9—H910.933C50—C551.401 (5)
C10—C111.399 (6)C51—C521.373 (7)
C10—H1010.939C51—H5110.942
C11—N121.329 (5)C52—C531.399 (6)
C11—H1110.941C52—H5210.933
C13—C141.438 (5)C53—N541.340 (5)
C13—N121.351 (5)C53—H5310.935
C14—N11.355 (5)C55—C561.431 (5)
C16—C171.388 (6)C55—N541.357 (5)
C16—N151.336 (5)C56—N431.369 (4)
C16—H1610.945C58—C591.405 (7)
C17—C181.375 (7)C58—N571.342 (5)
C17—H1710.937C58—H5810.939
C18—C191.419 (7)C59—C601.344 (8)
C18—H1810.936C59—H5910.937
C19—C201.433 (6)C60—C611.394 (8)
C19—C281.408 (5)C60—H6010.938
C20—C211.343 (7)C61—C621.429 (7)
C20—H2010.935C61—C631.409 (5)
C21—C221.440 (6)C62—C62i1.344 (12)
C21—H2110.936C62—H6210.944
C22—C231.390 (6)C63—C63i1.455 (8)
C22—C271.405 (5)C63—N571.349 (5)
C23—C241.383 (7)F1—P11.598 (4)
C23—H2310.944F2—P11.605 (4)
C24—C251.385 (6)F3—P11.571 (3)
C24—H2410.934F4—P11.589 (3)
C25—N261.327 (5)F5—P11.559 (5)
C25—H2510.940F6—P11.583 (4)
C27—C281.440 (5)F7—P21.603 (3)
C27—N261.361 (5)F8—P21.580 (3)
C28—N151.361 (5)F9—P21.590 (3)
C30—C311.405 (6)F10—P21.563 (3)
C30—N291.348 (5)F11—P21.593 (3)
C30—H3010.942F12—P21.590 (3)
C31—C321.366 (7)F13—P31.592 (2)
C31—H3110.933F14—P31.599 (2)
C32—C331.415 (6)F15—P31.589 (2)
C32—H3210.940F16—P31.605 (3)
C33—C341.436 (6)F17—P31.606 (2)
C33—C421.402 (5)F18—P31.603 (2)
C34—C351.345 (7)
N43i—Ni1—N57i92.77 (11)C36—C41—C42119.7 (3)
N43i—Ni1—N54i79.68 (11)C36—C41—N40122.6 (3)
N57i—Ni1—N54i169.60 (12)C42—C41—N40117.7 (3)
N43i—Ni1—N43175.00 (15)C41—C42—C33119.9 (3)
N57i—Ni1—N4391.07 (11)C41—C42—N29116.8 (3)
N54i—Ni1—N4396.90 (11)C33—C42—N29123.3 (3)
N43i—Ni1—N5496.90 (11)C45—C44—N43122.5 (3)
N57i—Ni1—N5492.94 (12)C45—C44—H441119.0
N54i—Ni1—N5495.04 (18)N43—C44—H441118.5
N43—Ni1—N5479.68 (11)C44—C45—C46119.5 (4)
N43i—Ni1—N5791.07 (11)C44—C45—H451119.4
N57i—Ni1—N5779.97 (16)C46—C45—H451121.1
N54i—Ni1—N5792.94 (12)C45—C46—C47119.6 (3)
N43—Ni1—N5792.77 (11)C45—C46—H461119.8
N54—Ni1—N57169.60 (12)C47—C46—H461120.6
N1—Ni2—N1280.76 (12)C46—C47—C48123.1 (3)
N1—Ni2—N1592.37 (12)C46—C47—C56118.0 (3)
N12—Ni2—N1588.11 (12)C48—C47—C56118.9 (3)
N1—Ni2—N26169.54 (12)C47—C48—C49120.3 (4)
N12—Ni2—N2691.86 (12)C47—C48—H481120.2
N15—Ni2—N2679.91 (12)C49—C48—H481119.5
N1—Ni2—N2990.00 (11)C48—C49—C50121.8 (4)
N12—Ni2—N2993.27 (12)C48—C49—H491118.9
N15—Ni2—N29177.43 (12)C50—C49—H491119.2
N26—Ni2—N2997.87 (12)C49—C50—C51123.7 (4)
N1—Ni2—N4095.21 (11)C49—C50—C55118.9 (4)
N12—Ni2—N40171.81 (12)C51—C50—C55117.4 (4)
N15—Ni2—N4099.23 (11)C50—C51—C52119.3 (4)
N26—Ni2—N4093.00 (11)C50—C51—H511120.2
N29—Ni2—N4079.54 (11)C52—C51—H511120.5
C3—C2—N1122.5 (4)C51—C52—C53119.8 (4)
C3—C2—H21119.7C51—C52—H521120.9
N1—C2—H21117.8C53—C52—H521119.3
C2—C3—C4119.2 (4)C52—C53—N54122.1 (4)
C2—C3—H31120.5C52—C53—H531119.6
C4—C3—H31120.3N54—C53—H531118.3
C3—C4—C5119.9 (4)C50—C55—C56119.3 (3)
C3—C4—H41120.8C50—C55—N54123.1 (3)
C5—C4—H41119.3C56—C55—N54117.6 (3)
C4—C5—C6123.9 (4)C55—C56—C47120.8 (3)
C4—C5—C14117.2 (4)C55—C56—N43116.7 (3)
C6—C5—C14118.9 (4)C47—C56—N43122.4 (3)
C5—C6—C7120.5 (4)C59—C58—N57122.4 (4)
C5—C6—H61119.2C59—C58—H581120.6
C7—C6—H61120.4N57—C58—H581117.0
C6—C7—C8122.0 (4)C58—C59—C60119.3 (4)
C6—C7—H71118.9C58—C59—H591119.8
C8—C7—H71119.1C60—C59—H591120.9
C7—C8—C9124.2 (4)C59—C60—C61120.7 (4)
C7—C8—C13119.0 (4)C59—C60—H601119.5
C9—C8—C13116.7 (4)C61—C60—H601119.8
C8—C9—C10120.4 (4)C60—C61—C62124.0 (4)
C8—C9—H91119.6C60—C61—C63116.6 (5)
C10—C9—H91120.1C62—C61—C63119.4 (5)
C9—C10—C11119.0 (4)C61—C62—C62i121.4 (3)
C9—C10—H101120.7C61—C62—H621119.9
C11—C10—H101120.3C62i—C62—H621118.7
C10—C11—N12122.8 (4)C63i—C63—C61119.2 (3)
C10—C11—H111119.0C63i—C63—N57117.2 (2)
N12—C11—H111118.2C61—C63—N57123.6 (4)
C8—C13—C14120.2 (4)C14—N1—C2118.6 (3)
C8—C13—N12122.3 (4)C14—N1—Ni2111.6 (2)
C14—C13—N12117.4 (3)C2—N1—Ni2129.7 (2)
C13—C14—C5119.4 (3)C13—N12—C11118.7 (3)
C13—C14—N1118.0 (3)C13—N12—Ni2112.1 (2)
C5—C14—N1122.6 (4)C11—N12—Ni2129.2 (3)
C17—C16—N15123.3 (4)C28—N15—C16117.7 (3)
C17—C16—H161118.5C28—N15—Ni2112.1 (2)
N15—C16—H161118.2C16—N15—Ni2129.2 (3)
C16—C17—C18119.7 (4)C27—N26—C25118.5 (3)
C16—C17—H171120.4C27—N26—Ni2112.7 (2)
C18—C17—H171119.8C25—N26—Ni2128.1 (3)
C17—C18—C19118.8 (4)C42—N29—C30118.2 (3)
C17—C18—H181121.1C42—N29—Ni2113.1 (2)
C19—C18—H181120.1C30—N29—Ni2128.5 (3)
C18—C19—C20123.9 (4)C41—N40—C39118.5 (3)
C18—C19—C28117.5 (4)C41—N40—Ni2112.8 (2)
C20—C19—C28118.6 (4)C39—N40—Ni2128.7 (3)
C19—C20—C21121.2 (4)C56—N43—C44117.9 (3)
C19—C20—H201119.3C56—N43—Ni1112.7 (2)
C21—C20—H201119.5C44—N43—Ni1129.2 (2)
C20—C21—C22121.9 (4)C55—N54—C53118.2 (3)
C20—C21—H211119.2C55—N54—Ni1113.2 (2)
C22—C21—H211118.9C53—N54—Ni1128.5 (3)
C21—C22—C23124.5 (4)C63—N57—C58117.4 (3)
C21—C22—C27118.2 (4)C63—N57—Ni1112.8 (2)
C23—C22—C27117.3 (4)C58—N57—Ni1129.8 (3)
C22—C23—C24120.0 (4)F2—P1—F189.4 (3)
C22—C23—H231119.2F2—P1—F487.7 (2)
C24—C23—H231120.8F1—P1—F490.3 (2)
C23—C24—C25119.0 (4)F2—P1—F687.2 (2)
C23—C24—H241121.4F1—P1—F6176.5 (3)
C25—C24—H241119.6F4—P1—F690.2 (2)
C24—C25—N26122.7 (4)F2—P1—F389.4 (2)
C24—C25—H251118.8F1—P1—F388.3 (2)
N26—C25—H251118.4F4—P1—F3176.7 (3)
C22—C27—C28119.9 (3)F6—P1—F391.06 (19)
C22—C27—N26122.4 (4)F2—P1—F5179.5 (2)
C28—C27—N26117.6 (3)F1—P1—F590.3 (3)
C27—C28—C19120.1 (4)F4—P1—F592.7 (3)
C27—C28—N15116.9 (3)F6—P1—F593.1 (3)
C19—C28—N15123.0 (4)F3—P1—F590.2 (2)
C31—C30—N29122.1 (4)F7—P2—F11178.8 (2)
C31—C30—H301119.6F7—P2—F988.9 (2)
N29—C30—H301118.3F11—P2—F989.98 (19)
C30—C31—C32119.5 (4)F7—P2—F1289.08 (18)
C30—C31—H311120.6F11—P2—F1290.32 (18)
C32—C31—H311119.9F9—P2—F1290.7 (2)
C31—C32—C33119.7 (4)F7—P2—F889.25 (19)
C31—C32—H321120.6F11—P2—F891.33 (19)
C33—C32—H321119.7F9—P2—F888.5 (2)
C32—C33—C34123.8 (4)F12—P2—F8178.1 (2)
C32—C33—C42117.1 (4)F7—P2—F1089.5 (3)
C34—C33—C42119.0 (4)F11—P2—F1091.6 (2)
C33—C34—C35121.4 (4)F9—P2—F10178.4 (3)
C33—C34—H341118.1F12—P2—F1089.0 (2)
C35—C34—H341120.5F8—P2—F1091.8 (2)
C34—C35—C36120.9 (4)F17—P3—F1689.72 (14)
C34—C35—H351119.1F17—P3—F18179.79 (14)
C36—C35—H351120.0F16—P3—F1890.09 (14)
C35—C36—C37124.1 (4)F17—P3—F1489.97 (13)
C35—C36—C41119.0 (4)F16—P3—F14179.57 (15)
C37—C36—C41116.8 (4)F18—P3—F1490.22 (14)
C36—C37—C38119.6 (4)F17—P3—F1390.05 (14)
C36—C37—H371119.5F16—P3—F1389.91 (14)
C38—C37—H371120.9F18—P3—F1390.03 (14)
C37—C38—C39119.6 (4)F14—P3—F1389.79 (14)
C37—C38—H381120.4F17—P3—F1589.73 (14)
C39—C38—H381120.1F16—P3—F1590.27 (15)
C38—C39—N40122.8 (4)F18—P3—F1590.19 (15)
C38—C39—H391119.1F14—P3—F1590.02 (14)
N40—C39—H391118.1F13—P3—F15179.72 (16)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H91···F6ii0.932.533.385 (6)152
C10—H101···F2ii0.942.433.226 (6)143
C16—H161···F12iii0.952.363.126 (5)137
C20—H201···F16iv0.942.463.385 (5)171
C24—H241···F4v0.932.423.271 (6)152
C25—H251···F5v0.942.503.266 (6)139
C44—H441···F9iii0.952.503.173 (5)129
C51—H511···F18vi0.942.413.253 (6)149
C52—H521···F13i0.942.483.209 (6)134
C59—H591···F9vii0.942.503.417 (6)167
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1/2, y+1/2, z+2; (iii) x, y+1, z+1/2; (iv) x, y, z+1/2; (v) x, y, z1/2; (vi) x+1, y, z+1; (vii) x, y, z+1.
 

Acknowledgements

The authors are grateful to the LCC CNRS (Laboratory of Chemistry of Coordination) for their help.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationBarton, J. K. (1986). Science, 233, 727–734.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBouzaid, J., Schultz, M., Lao, Z., Bartley, J., Bostrom, T. & McMurtrie, J. (2012). Cryst. Growth Des. 12, 3906–3916.  CSD CrossRef CAS Google Scholar
First citationBrewer, B., Brooks, N. R., Abdul-Halim, S. & Sykes, A. G. (2003). J. Chem. Crystallogr. 33, 651–662.  Web of Science CSD CrossRef CAS Google Scholar
First citationJohansson, L. (1976). Chem. Scr. 10, 72.  Google Scholar
First citationLiu, F., Wang, K., Bai, G., Zhang, Y. & Gao, L. (2004). Inorg. Chem. 43, 1799–1806.  CrossRef Google Scholar
First citationNaing, K., Takahashi, M., Taniguchi, M. & Yamagishi, A. (1995). Inorg. Chem. 34, 350–356.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2006). Gemini User Manual. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPrince, E. (1982). in Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.  Google Scholar
First citationSammes, P. G. & Yahioglu, G. (1994). Chem. Soc. Rev. 23, 327–334.  CrossRef Google Scholar
First citationSigman, D. S., Graham, D. R., D'Aurora, V. & Stern, A. M. (1979). J. Biol. Chem. 254, 12269–12272.  Google Scholar
First citationWatkin, D. (1994). Acta Cryst. A50, 411–437.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar
First citationZaworotko, M. J., Hammud, H. H. & Kravtsov, V. Ch. (2007). J. Chem. Crystallogr. 37, 219–231.  CrossRef Google Scholar
First citationZelenko, O., Gallagher, J. & Sigman, D. S. (1997). Angew. Chem. Int. Ed. Engl. 36, 2776–2778.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds