organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1,1-Bis(di­phenyl­phosphor­yl)hydrazine

CROSSMARK_Color_square_no_text.svg

aLeibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
*Correspondence e-mail: uwe.rosenthal@catalysis.de

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 27 April 2018; accepted 3 May 2018; online 11 May 2018)

The title compound, C24H22N2O2P2, contains a diphosphazane backbone, as well as a hydrazine entity. The P—N—P diphosphazane unit and the N-amine N atom are almost coplanar, and the O atoms of the Ph2P(O) units are oriented trans to each other with respect to the P⋯P axis. In the crystal, centrosymmetrically related mol­ecules are linked into dimers by pairs of N—H⋯O hydrogen bonds, forming rings of graph-set motif R22(10).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound (Fig. 1[link]) contains a diphosphazane backbone, as well as a hydrazine entity. The P—N—P diphosphazane unit and the N-amine N atom are almost coplanar (r.m.s. deviation for P1/N1/P2/N2 = 0.045 Å). The N2 atom deviates from the P1/N1/P2 plane by 0.312 (4) Å. The geometry at atom N1 is nearly trigonal planar [Σ(∠N1) = 358.7°]. The O atoms of the Ph2P(O) units are oriented trans to each other with respect to the P⋯P axis, as was found in other Ph2P(O)—N(R)—(O)PPh2 compounds (Song et al., 2009[Song, K., Gao, H., Liu, F., Pan, J., Guo, L., Zai, S. & Wu, Q. (2009). Eur. J. Inorg. Chem. pp. 3016-3024.]; Slawin et al., 2001[Slawin, A. M. Z., Woollins, J. D. & Zhang, Q. (2001). J. Chem. Soc. Dalton Trans. pp. 621-632.]; Gümgüm et al., 2006[Gümgüm, B., Akba, O., Durap, F., Yildirim, L. T., Ülkü, D. & Özkar, S. (2006). Polyhedron, 25, 3133-3137.]; Copolovici et al., 2007[Copolovici, L., Varga, R. A., Lippolis, V. & Silvestru, C. (2007). Acta Cryst. E63, o4206-o4207.]). The P—N—P angle is 129.68 (6)°. The P—N bond lengths [P1—N1 = 1.6989 (10) Å and P2—N1 1.6769 (10) Å] are noticeably shortened compared to the calculated sum of the covalent radii by Pyykkö and show significant multiple-bond character [single: Σrcov(P—N) = 1.82 Å; double: Σrcov(P=N) = 1.62 Å] (Pyykkö, 2015[Pyykkö, P. (2015). J. Phys. Chem. A, 119, 2326-2337.]). Nevertheless, these values are comparable to those observed in similar compounds with a Ph2P(O)—N(R)—(O)PPh2 skeleton (Song et al., 2009[Song, K., Gao, H., Liu, F., Pan, J., Guo, L., Zai, S. & Wu, Q. (2009). Eur. J. Inorg. Chem. pp. 3016-3024.]; Slawin et al., 2001[Slawin, A. M. Z., Woollins, J. D. & Zhang, Q. (2001). J. Chem. Soc. Dalton Trans. pp. 621-632.]; Gümgüm et al., 2006[Gümgüm, B., Akba, O., Durap, F., Yildirim, L. T., Ülkü, D. & Özkar, S. (2006). Polyhedron, 25, 3133-3137.]). The N—N distance within the hydrazine entity is 1.4391 (13) Å. In the crystal, centrosymmetrically related mol­ecules are linked into dimers by pairs of N—H⋯O hydrogen bonds (Table 1[link]), forming rings of graph-set motif R22(10).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.909 (17) 2.089 (18) 2.9737 (15) 164.0 (14)
Symmetry code: (i) -x+2, -y+1, -z.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. Aromatic H atoms have been omitted for clarity.

Synthesis and crystallization

A solution of N,N-bis­(di­phenyl­phosphine)hydrazine, [Ph2P—N(NH2)—PPh2; 0.385 g, 0.965 mmol] and tri­methyl­amine N-oxide (0.235 g, 2.115 mmol) in THF (10 ml) was stirred for 3 d at room temperature, followed by heating at 60°C for four weeks. Afterwards, the THF was removed in a vacuum and the product was recrystallized from mixed solvents of DCM/n-hexane (1:1 v/v). Yield 0.332 g (80%). 31P NMR (162 MHz, THF-d8, 298 K): δ 29.8. MS (ESI): m/z = 433 [M + H]+. Elemental analysis calculated (%) for C24H22N2O2P2: C 66.67, H 5.13, N 6.48, P 14.33; found: C 66.65, H 5.15, N 6.69, P 14.38. M.p. 211–212°C.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C24H22N2O2P2
Mr 432.37
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 200
a, b, c (Å) 8.6901 (5), 10.1547 (5), 12.6282 (7)
α, β, γ (°) 71.352 (4), 84.442 (4), 81.817 (4)
V3) 1043.56 (10)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.23
Crystal size (mm) 0.50 × 0.30 × 0.25
 
Data collection
Diffractometer Stoe IPDS II
No. of measured, independent and observed [I > 2σ(I)] reflections 15868, 5037, 4301
Rint 0.014
(sin θ/λ)max−1) 0.661
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.081, 1.05
No. of reflections 5037
No. of parameters 279
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.35, −0.28
Computer programs: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-SHAPE, X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.]), XP in SHELXTL and SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

1,1-Bis(diphenylphosphoryl)hydrazine top
Crystal data top
C24H22N2O2P2Z = 2
Mr = 432.37F(000) = 452
Triclinic, P1Dx = 1.376 Mg m3
a = 8.6901 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.1547 (5) ÅCell parameters from 5988 reflections
c = 12.6282 (7) Åθ = 2.1–29.7°
α = 71.352 (4)°µ = 0.23 mm1
β = 84.442 (4)°T = 200 K
γ = 81.817 (4)°Prism, colourless
V = 1043.56 (10) Å30.50 × 0.30 × 0.25 mm
Data collection top
Stoe IPDS II
diffractometer
4301 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.014
Graphite monochromatorθmax = 28.0°, θmin = 2.1°
ω scansh = 1111
15868 measured reflectionsk = 1313
5037 independent reflectionsl = 1616
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0504P)2 + 0.1335P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
5037 reflectionsΔρmax = 0.35 e Å3
279 parametersΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.89750 (13)0.48325 (12)0.26480 (10)0.0223 (2)
C20.77523 (15)0.55487 (13)0.19719 (11)0.0274 (2)
H2C0.77710.55310.12230.033*
C30.65113 (16)0.62857 (15)0.23907 (12)0.0331 (3)
H30.56810.67750.19280.040*
C40.64754 (17)0.63124 (15)0.34843 (13)0.0349 (3)
H40.56190.68140.37710.042*
C50.76835 (17)0.56106 (16)0.41553 (12)0.0360 (3)
H50.76600.56300.49040.043*
C60.89352 (16)0.48747 (14)0.37381 (11)0.0308 (3)
H60.97690.43980.42010.037*
C71.20749 (13)0.32186 (12)0.29927 (10)0.0209 (2)
C81.35584 (14)0.36535 (13)0.27120 (10)0.0258 (2)
H81.37400.43820.20370.031*
C91.47602 (14)0.30254 (14)0.34133 (12)0.0296 (3)
H91.57610.33370.32280.036*
C101.45090 (15)0.19430 (14)0.43856 (11)0.0296 (3)
H101.53460.14950.48540.036*
C111.30418 (16)0.15118 (14)0.46774 (11)0.0287 (3)
H111.28710.07760.53500.034*
C121.18228 (14)0.21521 (13)0.39899 (10)0.0245 (2)
H121.08140.18650.41970.029*
C131.01250 (14)0.02059 (12)0.25987 (10)0.0231 (2)
C141.08887 (15)0.08649 (13)0.35836 (10)0.0266 (2)
H141.07390.04630.41750.032*
C151.18663 (16)0.21031 (14)0.37088 (12)0.0341 (3)
H151.23910.25430.43810.041*
C161.20760 (17)0.26968 (15)0.28517 (14)0.0387 (3)
H161.27450.35450.29360.046*
C171.13138 (19)0.20583 (16)0.18727 (13)0.0388 (3)
H171.14570.24730.12890.047*
C181.03422 (17)0.08176 (14)0.17395 (11)0.0318 (3)
H180.98230.03820.10640.038*
C190.72636 (14)0.14265 (13)0.17142 (10)0.0247 (2)
C200.64662 (18)0.02528 (17)0.20351 (13)0.0375 (3)
H200.68320.05580.26160.045*
C210.51300 (19)0.0271 (2)0.15020 (16)0.0476 (4)
H210.45770.05250.17250.057*
C220.46105 (17)0.1442 (2)0.06523 (15)0.0462 (4)
H220.37170.14420.02750.055*
C230.53780 (18)0.26136 (19)0.03472 (13)0.0415 (3)
H230.49940.34280.02250.050*
C240.67102 (15)0.26122 (15)0.08710 (11)0.0305 (3)
H240.72430.34200.06530.037*
N10.98664 (11)0.27181 (10)0.16766 (8)0.02110 (19)
N21.03825 (14)0.24976 (12)0.06221 (9)0.0270 (2)
O11.12316 (11)0.49585 (9)0.09599 (7)0.02781 (19)
O20.84523 (10)0.16030 (9)0.36001 (7)0.02361 (17)
P11.05904 (3)0.39960 (3)0.20082 (2)0.02008 (8)
P20.88965 (3)0.14098 (3)0.24925 (2)0.01921 (8)
H2A1.0080 (19)0.3320 (18)0.0093 (14)0.031 (4)*
H2B1.146 (2)0.2365 (19)0.0615 (15)0.042 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0234 (5)0.0172 (5)0.0260 (6)0.0025 (4)0.0035 (4)0.0057 (4)
C20.0285 (6)0.0265 (6)0.0254 (6)0.0006 (5)0.0057 (5)0.0055 (5)
C30.0296 (6)0.0318 (7)0.0359 (7)0.0049 (5)0.0089 (5)0.0093 (6)
C40.0321 (7)0.0331 (7)0.0418 (8)0.0063 (5)0.0050 (6)0.0183 (6)
C50.0406 (7)0.0387 (8)0.0330 (7)0.0060 (6)0.0076 (6)0.0199 (6)
C60.0320 (6)0.0309 (7)0.0312 (6)0.0053 (5)0.0106 (5)0.0132 (5)
C70.0204 (5)0.0200 (5)0.0225 (5)0.0009 (4)0.0032 (4)0.0070 (4)
C80.0244 (6)0.0244 (6)0.0273 (6)0.0036 (5)0.0010 (5)0.0065 (5)
C90.0200 (5)0.0321 (7)0.0385 (7)0.0019 (5)0.0009 (5)0.0142 (5)
C100.0268 (6)0.0292 (6)0.0340 (6)0.0061 (5)0.0110 (5)0.0128 (5)
C110.0329 (6)0.0250 (6)0.0253 (6)0.0006 (5)0.0071 (5)0.0033 (5)
C120.0247 (6)0.0239 (6)0.0239 (5)0.0044 (4)0.0032 (4)0.0047 (5)
C130.0265 (6)0.0189 (5)0.0232 (5)0.0035 (4)0.0005 (4)0.0055 (4)
C140.0312 (6)0.0221 (6)0.0248 (6)0.0037 (5)0.0026 (5)0.0045 (5)
C150.0341 (7)0.0242 (6)0.0400 (7)0.0009 (5)0.0071 (6)0.0038 (5)
C160.0355 (7)0.0236 (6)0.0560 (9)0.0010 (5)0.0013 (6)0.0141 (6)
C170.0470 (8)0.0319 (7)0.0424 (8)0.0034 (6)0.0043 (6)0.0208 (6)
C180.0417 (7)0.0283 (6)0.0274 (6)0.0043 (5)0.0019 (5)0.0116 (5)
C190.0234 (5)0.0299 (6)0.0231 (5)0.0042 (5)0.0027 (4)0.0108 (5)
C200.0374 (7)0.0380 (8)0.0402 (8)0.0138 (6)0.0055 (6)0.0113 (6)
C210.0359 (8)0.0553 (10)0.0637 (11)0.0171 (7)0.0041 (7)0.0300 (9)
C220.0263 (7)0.0692 (11)0.0568 (10)0.0029 (7)0.0128 (6)0.0395 (9)
C230.0345 (7)0.0535 (9)0.0387 (8)0.0101 (7)0.0147 (6)0.0203 (7)
C240.0294 (6)0.0346 (7)0.0279 (6)0.0004 (5)0.0057 (5)0.0108 (5)
N10.0246 (5)0.0213 (5)0.0170 (4)0.0044 (4)0.0001 (4)0.0050 (4)
N20.0331 (6)0.0269 (6)0.0195 (5)0.0014 (4)0.0033 (4)0.0073 (4)
O10.0303 (4)0.0240 (4)0.0244 (4)0.0070 (3)0.0025 (3)0.0009 (3)
O20.0250 (4)0.0263 (4)0.0199 (4)0.0039 (3)0.0005 (3)0.0076 (3)
P10.02100 (14)0.01798 (14)0.01910 (14)0.00280 (10)0.00280 (10)0.00205 (11)
P20.02125 (14)0.01898 (14)0.01705 (14)0.00319 (10)0.00204 (10)0.00449 (10)
Geometric parameters (Å, º) top
C1—C61.3879 (17)C14—H140.9500
C1—C21.3948 (17)C15—C161.384 (2)
C1—P11.7957 (12)C15—H150.9500
C2—C31.3841 (19)C16—C171.383 (2)
C2—H2C0.9500C16—H160.9500
C3—C41.387 (2)C17—C181.385 (2)
C3—H30.9500C17—H170.9500
C4—C51.379 (2)C18—H180.9500
C4—H40.9500C19—C241.3890 (18)
C5—C61.3887 (19)C19—C201.3916 (18)
C5—H50.9500C19—P21.7980 (12)
C6—H60.9500C20—C211.393 (2)
C7—C121.3959 (16)C20—H200.9500
C7—C81.3987 (16)C21—C221.377 (3)
C7—P11.7961 (12)C21—H210.9500
C8—C91.3821 (18)C22—C231.375 (3)
C8—H80.9500C22—H220.9500
C9—C101.384 (2)C23—C241.3875 (19)
C9—H90.9500C23—H230.9500
C10—C111.3848 (19)C24—H240.9500
C10—H100.9500N1—N21.4391 (13)
C11—C121.3857 (17)N1—P21.6769 (10)
C11—H110.9500N1—P11.6989 (10)
C12—H120.9500N2—H2A0.909 (17)
C13—C141.3916 (17)N2—H2B0.927 (19)
C13—C181.3988 (17)O1—P11.4843 (9)
C13—P21.7994 (12)O2—P21.4810 (8)
C14—C151.3866 (19)
C6—C1—C2119.31 (11)C17—C16—C15120.17 (13)
C6—C1—P1123.61 (9)C17—C16—H16119.9
C2—C1—P1116.94 (9)C15—C16—H16119.9
C3—C2—C1120.08 (12)C16—C17—C18120.31 (13)
C3—C2—H2C120.0C16—C17—H17119.8
C1—C2—H2C120.0C18—C17—H17119.8
C2—C3—C4120.20 (12)C17—C18—C13120.02 (13)
C2—C3—H3119.9C17—C18—H18120.0
C4—C3—H3119.9C13—C18—H18120.0
C5—C4—C3119.98 (13)C24—C19—C20119.65 (12)
C5—C4—H4120.0C24—C19—P2121.71 (10)
C3—C4—H4120.0C20—C19—P2118.42 (10)
C4—C5—C6120.07 (13)C19—C20—C21119.81 (15)
C4—C5—H5120.0C19—C20—H20120.1
C6—C5—H5120.0C21—C20—H20120.1
C1—C6—C5120.35 (12)C22—C21—C20120.01 (15)
C1—C6—H6119.8C22—C21—H21120.0
C5—C6—H6119.8C20—C21—H21120.0
C12—C7—C8119.26 (11)C23—C22—C21120.35 (14)
C12—C7—P1122.47 (9)C23—C22—H22119.8
C8—C7—P1118.17 (9)C21—C22—H22119.8
C9—C8—C7120.17 (12)C22—C23—C24120.31 (15)
C9—C8—H8119.9C22—C23—H23119.8
C7—C8—H8119.9C24—C23—H23119.8
C8—C9—C10120.14 (12)C23—C24—C19119.85 (14)
C8—C9—H9119.9C23—C24—H24120.1
C10—C9—H9119.9C19—C24—H24120.1
C9—C10—C11120.20 (12)N2—N1—P2111.01 (7)
C9—C10—H10119.9N2—N1—P1118.03 (8)
C11—C10—H10119.9P2—N1—P1129.68 (6)
C10—C11—C12120.08 (12)N1—N2—H2A105.2 (10)
C10—C11—H11120.0N1—N2—H2B105.7 (11)
C12—C11—H11120.0H2A—N2—H2B108.7 (15)
C11—C12—C7120.12 (11)O1—P1—N1107.98 (5)
C11—C12—H12119.9O1—P1—C1112.80 (6)
C7—C12—H12119.9N1—P1—C1105.50 (5)
C14—C13—C18119.11 (12)O1—P1—C7111.04 (5)
C14—C13—P2117.92 (9)N1—P1—C7109.40 (5)
C18—C13—P2122.96 (10)C1—P1—C7109.90 (5)
C15—C14—C13120.55 (12)O2—P2—N1110.58 (5)
C15—C14—H14119.7O2—P2—C19113.78 (5)
C13—C14—H14119.7N1—P2—C19105.17 (5)
C16—C15—C14119.83 (13)O2—P2—C13112.32 (5)
C16—C15—H15120.1N1—P2—C13107.58 (5)
C14—C15—H15120.1C19—P2—C13106.97 (6)
C6—C1—C2—C30.35 (19)N2—N1—P1—C1139.66 (9)
P1—C1—C2—C3176.26 (10)P2—N1—P1—C154.55 (9)
C1—C2—C3—C40.2 (2)N2—N1—P1—C7102.16 (9)
C2—C3—C4—C50.4 (2)P2—N1—P1—C763.63 (9)
C3—C4—C5—C60.1 (2)C6—C1—P1—O1123.31 (11)
C2—C1—C6—C50.6 (2)C2—C1—P1—O152.41 (11)
P1—C1—C6—C5176.27 (11)C6—C1—P1—N1119.04 (11)
C4—C5—C6—C10.4 (2)C2—C1—P1—N165.25 (10)
C12—C7—C8—C90.39 (18)C6—C1—P1—C71.19 (12)
P1—C7—C8—C9176.16 (9)C2—C1—P1—C7176.91 (9)
C7—C8—C9—C101.34 (19)C12—C7—P1—O1172.27 (9)
C8—C9—C10—C111.92 (19)C8—C7—P1—O14.17 (11)
C9—C10—C11—C120.75 (19)C12—C7—P1—N153.18 (11)
C10—C11—C12—C70.99 (19)C8—C7—P1—N1123.26 (9)
C8—C7—C12—C111.55 (18)C12—C7—P1—C162.22 (11)
P1—C7—C12—C11174.85 (9)C8—C7—P1—C1121.35 (10)
C18—C13—C14—C150.72 (19)N2—N1—P2—O2176.63 (8)
P2—C13—C14—C15179.18 (10)P1—N1—P2—O210.06 (10)
C13—C14—C15—C160.5 (2)N2—N1—P2—C1960.13 (9)
C14—C15—C16—C170.0 (2)P1—N1—P2—C19133.29 (8)
C15—C16—C17—C180.3 (2)N2—N1—P2—C1353.64 (9)
C16—C17—C18—C130.2 (2)P1—N1—P2—C13112.94 (8)
C14—C13—C18—C170.4 (2)C24—C19—P2—O299.51 (11)
P2—C13—C18—C17179.52 (11)C20—C19—P2—O275.13 (12)
C24—C19—C20—C210.6 (2)C24—C19—P2—N121.65 (12)
P2—C19—C20—C21175.37 (12)C20—C19—P2—N1163.71 (11)
C19—C20—C21—C220.7 (2)C24—C19—P2—C13135.85 (10)
C20—C21—C22—C231.9 (2)C20—C19—P2—C1349.51 (12)
C21—C22—C23—C241.9 (2)C14—C13—P2—O218.63 (11)
C22—C23—C24—C190.6 (2)C18—C13—P2—O2161.48 (10)
C20—C19—C24—C230.7 (2)C14—C13—P2—N1103.29 (10)
P2—C19—C24—C23175.25 (10)C18—C13—P2—N176.60 (11)
N2—N1—P1—O118.81 (10)C14—C13—P2—C19144.15 (10)
P2—N1—P1—O1175.40 (7)C18—C13—P2—C1935.95 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.909 (17)2.089 (18)2.9737 (15)164.0 (14)
Symmetry code: (i) x+2, y+1, z.
 

Funding information

The publication of this article was funded by the Open Access Fund of the Leibniz Association.

References

First citationCopolovici, L., Varga, R. A., Lippolis, V. & Silvestru, C. (2007). Acta Cryst. E63, o4206–o4207.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGümgüm, B., Akba, O., Durap, F., Yildirim, L. T., Ülkü, D. & Özkar, S. (2006). Polyhedron, 25, 3133–3137.  Google Scholar
First citationPyykkö, P. (2015). J. Phys. Chem. A, 119, 2326–2337.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSlawin, A. M. Z., Woollins, J. D. & Zhang, Q. (2001). J. Chem. Soc. Dalton Trans. pp. 621–632.  Web of Science CSD CrossRef Google Scholar
First citationSong, K., Gao, H., Liu, F., Pan, J., Guo, L., Zai, S. & Wu, Q. (2009). Eur. J. Inorg. Chem. pp. 3016–3024.  CrossRef Google Scholar
First citationStoe & Cie (2005). X-SHAPE, X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds