organic compounds
Diisopropylammonium hydrogen phthalate
aLaboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bDepartment of Chemistry, SUNY-College at Geneseo, Geneseo, NY 14454, USA
*Correspondence e-mail: dlibasse@gmail.com
In the crystal of the title molecular salt, C6H16N+·C8H5O4−, the cation and anions are linked into [010] chains by N—H⋯O hydrogen bonds. The chains are connected to their neighbours through weak C—H⋯O hydrogen bonds, leading to a layered supramolecular architecture. The hydrogen phthalate anion exhibits an intramolecular O—H⋯O hydrogen bond in which the H atom is approximately equidistant to the two O atoms.
Keywords: crystal structure; hydrogen bonds; layered structure.
CCDC reference: 1842128
Structure description
Various ammonium hydrogen phthalate and phthalate salts have been synthesized by several groups (Edwards et al., 2001; Pereira Silva et al., 2006; Yu, 2012; Liu 2012; Shahid et al. 2015; Lin et al. 2011). These salts can react with metallic halides leading to complexes (Ma et al., 2004; Askarinejad et al., 2006; Döring & Jones, 2016). For several years, our group has been involved in the study of the interactions of similar salts with organotin(IV) and halotin(IV) compounds (Diop et al., 2016; Sarr et al., 2018). As part of our ongoing studies in this area, we now describe the synthesis and structure of the title molecular salt.
The title compound crystallizes in the monoclinic P21/c with the comprising of one diisopropylammonium cation and one hydrogen phthalate anion (Fig. 1). The C—C and C—N bonds within the cation are similar to those previously observed for compounds containing the iPr2NH2+ cation (Sarr et al., 2018; Lin et al., 2017). The C—C and C—O bonds of the hydrogen phthalate anion are close to the published values for salts containing this anion (Liu et al., 2012; Shahid et al., 2015). In the extended structure, the monomeric acidic inner (O1—H1⋯O3) hydrogen-bonded anions [PhCO2H(COO)]− are connected to the cations via hydrogen bonds (N1—H1A⋯O4i, N1—H1B⋯O2; Table 1, Fig. 2), giving rise to zigzag chains of alternating cations and anions parallel to [010]. Weak intermolecular hydrogen bonds (C3—H3C⋯O1, C13—H13⋯O1, C12—H12⋯O3, C3—H3A⋯O4 and C6—H6⋯O2), which can be described as phthalate/phthalate and phthalate/cation interactions, occur leading to a supramolecular pleated sheet architecture.
A search of the Cambridge Structural Database (CSD Version 5.39, updates Nov 2017; Groom et al., 2016) yielded 67 hits for diisopropylammonium salts while 101 hits were obtained in a search for the phthalate anion.
Synthesis and crystallization
All the chemicals were purchased from Aldrich (Germany) and used without further purification. Diisopropylammonium hydrogen phthalate [iPr2NH2·Ph(CO2H)(CO2)] was obtained from the partial neutralization of phthalic acid (Ph(COH)2); 5 g, 3 mmol) by diisopropylamine (iPr2NH; 3.05 g, 3 mmol) in ethanol (50 ml). The clear mixture was stirred for two h. Crystals suitable for X-ray were obtained after a week of slow solvent evaporation at room temperature (300 K).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 1842128
https://doi.org/10.1107/S2414314618007046/lh5874sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314618007046/lh5874Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314618007046/lh5874Isup3.cml
Data collection: APEX2 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).C6H16N+·C8H5O4− | F(000) = 576 |
Mr = 267.32 | Dx = 1.167 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 8.160 (3) Å | Cell parameters from 5881 reflections |
b = 14.876 (5) Å | θ = 2.5–25.3° |
c = 12.549 (5) Å | µ = 0.09 mm−1 |
β = 93.192 (9)° | T = 200 K |
V = 1520.9 (10) Å3 | Block, colorless |
Z = 4 | 0.40 × 0.40 × 0.40 mm |
Bruker Smart X2S benchtop diffractometer | 2772 independent reflections |
Radiation source: sealed microfocus tube | 2240 reflections with I > 2σ(I) |
Detector resolution: 8.3330 pixels mm-1 | Rint = 0.071 |
ω scans | θmax = 25.4°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | h = −7→9 |
Tmin = 0.48, Tmax = 0.97 | k = −17→16 |
12641 measured reflections | l = −15→15 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.057 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.164 | w = 1/[σ2(Fo2) + (0.0729P)2 + 0.612P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
2772 reflections | Δρmax = 0.23 e Å−3 |
188 parameters | Δρmin = −0.23 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. All hydrogen atoms were observed in difference fourier maps. The H atoms were refined using a riding model with a C— H distance of 0.98 Å for the methyl carbon atoms and 0.95 Å for the phenyl carbon atoms. The methyl C—H hydrogen atom isotropic displacement parameters were set using the and hydrogen-atom isotropic displacement parameters were set using the approximation Uiso(H) = 1.2Ueq(C). The hydrogen atoms bonded to the oxygen and nitrogen atoms were refined freely, including isotropic displacement parameters. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.51102 (17) | 0.44641 (14) | 0.35313 (15) | 0.0727 (6) | |
H1O | 0.511 (4) | 0.502 (2) | 0.285 (3) | 0.106 (11)* | |
O2 | 0.3436 (2) | 0.36584 (14) | 0.44266 (17) | 0.0824 (6) | |
O3 | 0.50277 (17) | 0.55055 (13) | 0.20842 (16) | 0.0687 (5) | |
O4 | 0.3243 (2) | 0.61102 (16) | 0.09499 (18) | 0.0947 (8) | |
N1 | 0.51945 (19) | 0.22605 (11) | 0.53843 (13) | 0.0386 (4) | |
H1A | 0.559 (3) | 0.1865 (17) | 0.4879 (19) | 0.059 (7)* | |
H1B | 0.473 (3) | 0.2747 (18) | 0.4978 (19) | 0.061 (7)* | |
C1 | 0.6655 (3) | 0.26303 (15) | 0.60386 (16) | 0.0482 (5) | |
H1 | 0.6257 | 0.3097 | 0.6536 | 0.058* | |
C2 | 0.7504 (3) | 0.1897 (2) | 0.6693 (2) | 0.0899 (11) | |
H2A | 0.7802 | 0.1405 | 0.6221 | 0.135* | |
H2B | 0.6764 | 0.167 | 0.7219 | 0.135* | |
H2C | 0.8498 | 0.2139 | 0.7061 | 0.135* | |
C3 | 0.7788 (3) | 0.30729 (17) | 0.5290 (2) | 0.0621 (6) | |
H3A | 0.8208 | 0.2621 | 0.4807 | 0.093* | |
H3B | 0.8708 | 0.3351 | 0.5703 | 0.093* | |
H3C | 0.7186 | 0.3535 | 0.4872 | 0.093* | |
C4 | 0.3859 (2) | 0.18111 (14) | 0.59641 (17) | 0.0466 (5) | |
H4 | 0.4352 | 0.1302 | 0.6392 | 0.056* | |
C5 | 0.2623 (3) | 0.1430 (2) | 0.5132 (2) | 0.0690 (7) | |
H5A | 0.215 | 0.192 | 0.4694 | 0.104* | |
H5B | 0.1747 | 0.112 | 0.5491 | 0.104* | |
H5C | 0.3174 | 0.1003 | 0.4677 | 0.104* | |
C6 | 0.3086 (3) | 0.24578 (19) | 0.6716 (2) | 0.0703 (7) | |
H6A | 0.3903 | 0.2641 | 0.7275 | 0.105* | |
H6B | 0.2163 | 0.2163 | 0.7042 | 0.105* | |
H6C | 0.2688 | 0.2989 | 0.6318 | 0.105* | |
C7 | 0.3676 (3) | 0.42528 (14) | 0.37800 (17) | 0.0478 (5) | |
C8 | 0.3558 (2) | 0.56711 (13) | 0.17568 (18) | 0.0456 (5) | |
C9 | 0.2187 (2) | 0.47323 (12) | 0.32552 (14) | 0.0349 (4) | |
C10 | 0.2140 (2) | 0.53271 (12) | 0.23738 (15) | 0.0352 (4) | |
C11 | 0.0605 (2) | 0.56684 (14) | 0.20079 (17) | 0.0471 (5) | |
H11 | 0.0551 | 0.6057 | 0.1406 | 0.057* | |
C12 | −0.0817 (2) | 0.54627 (16) | 0.24843 (19) | 0.0546 (6) | |
H12 | −0.1833 | 0.5709 | 0.2218 | 0.066* | |
C13 | −0.0761 (2) | 0.48961 (17) | 0.33524 (19) | 0.0541 (6) | |
H13 | −0.1735 | 0.4755 | 0.3698 | 0.065* | |
C14 | 0.0725 (2) | 0.45341 (14) | 0.37176 (17) | 0.0454 (5) | |
H14 | 0.0747 | 0.4134 | 0.4308 | 0.054* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0296 (8) | 0.1033 (14) | 0.0849 (12) | 0.0125 (8) | 0.0015 (8) | 0.0280 (11) |
O2 | 0.0646 (11) | 0.0819 (13) | 0.1007 (14) | 0.0197 (9) | 0.0037 (10) | 0.0501 (11) |
O3 | 0.0295 (8) | 0.0905 (13) | 0.0870 (12) | −0.0079 (7) | 0.0117 (8) | 0.0212 (10) |
O4 | 0.0614 (11) | 0.1140 (17) | 0.1107 (15) | 0.0077 (11) | 0.0236 (11) | 0.0737 (14) |
N1 | 0.0379 (8) | 0.0378 (9) | 0.0399 (8) | 0.0039 (7) | 0.0005 (7) | −0.0007 (7) |
C1 | 0.0480 (11) | 0.0489 (12) | 0.0470 (11) | −0.0057 (9) | −0.0030 (9) | −0.0059 (9) |
C2 | 0.0626 (16) | 0.112 (2) | 0.092 (2) | −0.0162 (16) | −0.0300 (15) | 0.0447 (19) |
C3 | 0.0529 (13) | 0.0613 (15) | 0.0722 (15) | −0.0143 (11) | 0.0049 (11) | 0.0017 (12) |
C4 | 0.0450 (11) | 0.0441 (11) | 0.0507 (11) | 0.0002 (9) | 0.0035 (9) | 0.0058 (9) |
C5 | 0.0527 (13) | 0.0793 (18) | 0.0743 (16) | −0.0156 (12) | −0.0026 (12) | −0.0062 (14) |
C6 | 0.0672 (15) | 0.0786 (18) | 0.0678 (15) | −0.0016 (13) | 0.0272 (13) | −0.0030 (14) |
C7 | 0.0423 (11) | 0.0489 (12) | 0.0521 (11) | 0.0105 (9) | 0.0005 (9) | 0.0048 (10) |
C8 | 0.0378 (10) | 0.0399 (10) | 0.0600 (12) | −0.0010 (8) | 0.0118 (9) | 0.0041 (10) |
C9 | 0.0291 (9) | 0.0332 (9) | 0.0423 (10) | 0.0006 (7) | 0.0000 (7) | −0.0015 (7) |
C10 | 0.0283 (9) | 0.0327 (9) | 0.0445 (10) | −0.0001 (7) | 0.0032 (7) | −0.0004 (7) |
C11 | 0.0368 (10) | 0.0512 (12) | 0.0528 (11) | 0.0052 (9) | −0.0028 (9) | 0.0123 (10) |
C12 | 0.0288 (10) | 0.0684 (15) | 0.0657 (14) | 0.0047 (9) | −0.0054 (9) | 0.0041 (11) |
C13 | 0.0262 (9) | 0.0707 (15) | 0.0663 (13) | −0.0078 (9) | 0.0099 (9) | 0.0026 (12) |
C14 | 0.0381 (10) | 0.0492 (11) | 0.0493 (11) | −0.0041 (8) | 0.0062 (8) | 0.0070 (9) |
O1—C7 | 1.267 (3) | C4—C5 | 1.520 (3) |
O1—H1O | 1.19 (4) | C4—H4 | 1.0 |
O2—C7 | 1.223 (3) | C5—H5A | 0.98 |
O3—C8 | 1.270 (3) | C5—H5B | 0.98 |
O3—H1O | 1.20 (4) | C5—H5C | 0.98 |
O4—C8 | 1.220 (3) | C6—H6A | 0.98 |
N1—C4 | 1.501 (3) | C6—H6B | 0.98 |
N1—C1 | 1.513 (2) | C6—H6C | 0.98 |
N1—H1A | 0.94 (3) | C7—C9 | 1.526 (3) |
N1—H1B | 0.95 (3) | C8—C10 | 1.517 (3) |
C1—C3 | 1.506 (3) | C9—C14 | 1.387 (3) |
C1—C2 | 1.510 (3) | C9—C10 | 1.415 (3) |
C1—H1 | 1.0 | C10—C11 | 1.405 (3) |
C2—H2A | 0.98 | C11—C12 | 1.369 (3) |
C2—H2B | 0.98 | C11—H11 | 0.95 |
C2—H2C | 0.98 | C12—C13 | 1.376 (3) |
C3—H3A | 0.98 | C12—H12 | 0.95 |
C3—H3B | 0.98 | C13—C14 | 1.382 (3) |
C3—H3C | 0.98 | C13—H13 | 0.95 |
C4—C6 | 1.510 (3) | C14—H14 | 0.95 |
C7—O1—H1O | 112.8 (17) | H5A—C5—H5B | 109.5 |
C8—O3—H1O | 112.7 (17) | C4—C5—H5C | 109.5 |
C4—N1—C1 | 118.04 (15) | H5A—C5—H5C | 109.5 |
C4—N1—H1A | 109.7 (15) | H5B—C5—H5C | 109.5 |
C1—N1—H1A | 107.7 (15) | C4—C6—H6A | 109.5 |
C4—N1—H1B | 108.6 (15) | C4—C6—H6B | 109.5 |
C1—N1—H1B | 107.0 (14) | H6A—C6—H6B | 109.5 |
H1A—N1—H1B | 105.0 (19) | C4—C6—H6C | 109.5 |
C3—C1—C2 | 112.1 (2) | H6A—C6—H6C | 109.5 |
C3—C1—N1 | 108.24 (17) | H6B—C6—H6C | 109.5 |
C2—C1—N1 | 110.86 (19) | O2—C7—O1 | 121.79 (19) |
C3—C1—H1 | 108.5 | O2—C7—C9 | 118.10 (19) |
C2—C1—H1 | 108.5 | O1—C7—C9 | 120.10 (19) |
N1—C1—H1 | 108.5 | O4—C8—O3 | 121.6 (2) |
C1—C2—H2A | 109.5 | O4—C8—C10 | 118.17 (18) |
C1—C2—H2B | 109.5 | O3—C8—C10 | 120.20 (19) |
H2A—C2—H2B | 109.5 | C14—C9—C10 | 118.24 (16) |
C1—C2—H2C | 109.5 | C14—C9—C7 | 113.74 (17) |
H2A—C2—H2C | 109.5 | C10—C9—C7 | 128.02 (17) |
H2B—C2—H2C | 109.5 | C11—C10—C9 | 117.81 (17) |
C1—C3—H3A | 109.5 | C11—C10—C8 | 113.78 (17) |
C1—C3—H3B | 109.5 | C9—C10—C8 | 128.41 (16) |
H3A—C3—H3B | 109.5 | C12—C11—C10 | 122.57 (19) |
C1—C3—H3C | 109.5 | C12—C11—H11 | 118.7 |
H3A—C3—H3C | 109.5 | C10—C11—H11 | 118.7 |
H3B—C3—H3C | 109.5 | C11—C12—C13 | 119.40 (18) |
N1—C4—C6 | 111.06 (18) | C11—C12—H12 | 120.3 |
N1—C4—C5 | 107.78 (17) | C13—C12—H12 | 120.3 |
C6—C4—C5 | 112.4 (2) | C12—C13—C14 | 119.42 (19) |
N1—C4—H4 | 108.5 | C12—C13—H13 | 120.3 |
C6—C4—H4 | 108.5 | C14—C13—H13 | 120.3 |
C5—C4—H4 | 108.5 | C13—C14—C9 | 122.54 (19) |
C4—C5—H5A | 109.5 | C13—C14—H14 | 118.7 |
C4—C5—H5B | 109.5 | C9—C14—H14 | 118.7 |
C4—N1—C1—C3 | −178.07 (18) | O4—C8—C10—C11 | −8.3 (3) |
C4—N1—C1—C2 | 58.6 (3) | O3—C8—C10—C11 | 171.3 (2) |
C1—N1—C4—C6 | 61.3 (2) | O4—C8—C10—C9 | 172.6 (2) |
C1—N1—C4—C5 | −175.11 (19) | O3—C8—C10—C9 | −7.7 (3) |
O2—C7—C9—C14 | 10.5 (3) | C9—C10—C11—C12 | 1.5 (3) |
O1—C7—C9—C14 | −170.6 (2) | C8—C10—C11—C12 | −177.7 (2) |
O2—C7—C9—C10 | −168.8 (2) | C10—C11—C12—C13 | −0.4 (4) |
O1—C7—C9—C10 | 10.1 (3) | C11—C12—C13—C14 | −1.0 (4) |
C14—C9—C10—C11 | −1.1 (3) | C12—C13—C14—C9 | 1.3 (3) |
C7—C9—C10—C11 | 178.11 (19) | C10—C9—C14—C13 | −0.2 (3) |
C14—C9—C10—C8 | 177.85 (19) | C7—C9—C14—C13 | −179.6 (2) |
C7—C9—C10—C8 | −2.9 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O···O3 | 1.19 (4) | 1.20 (4) | 2.385 (3) | 173 (3) |
N1—H1A···O4i | 0.94 (3) | 1.83 (3) | 2.756 (3) | 169 (2) |
N1—H1B···O2 | 0.95 (3) | 1.83 (3) | 2.763 (2) | 166 (2) |
C3—H3C···O1 | 0.98 | 2.70 | 3.659 (3) | 166 |
C3—H3A···O4i | 0.98 | 2.69 | 3.392 (4) | 129 |
C6—H6C···O2 | 0.98 | 2.68 | 3.408 (4) | 132 |
C12—H12···O3ii | 0.95 | 2.58 | 3.401 (2) | 145 |
C13—H13···O1ii | 0.95 | 2.61 | 3.449 (3) | 148 |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) x−1, y, z. |
Funding information
The authors acknowledge the Cheikh Anta Diop University, Dakar, Senegal, for their support and the US Department of Education via a Congressionally directed grant (grant No. P116Z100020) for the X-ray diffractometer.
References
Askarinejad, A., Torabi, A. A. & Morsali, A. (2006). Z. Naturforsch. B: Chem. Sci. 61, 565–569. Google Scholar
Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Diop, M. B., Diop, L., Plasseraud, L. & Maris, T. (2016). Acta Cryst. E72, 355–357. Web of Science CSD CrossRef IUCr Journals Google Scholar
Döring, C. & Jones, P. G. (2016). Z. Anorg. Allg. Chem. 642, 930–936. Google Scholar
Edwards, S. H., Kahwa, I. A. & Mague, J. T. (2001). Acta Cryst. E57, o20–o21. Web of Science CSD CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lin, Z., Hu, K., Jin, S., Ding, A., Wang, Y., Dong, L., Gao, X. & Wang, D. (2017). J. Mol. Struct. 1146, 577–591. CrossRef Google Scholar
Lin, F., Jin, S., Tong, K., He, H. & Yu, Y. Q. (2011). Acta Cryst. E67, o2592. CrossRef IUCr Journals Google Scholar
Liu, M.-L. (2012). Acta Cryst. E68, o228. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ma, C, Wang. W, Zhang. X, Chen. C, Liu. Q, Zhu. H, Liao. D & Li. L. (2004). Eur. J. Inorg. Chem. pp. 3522–3532. Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Pereira Silva, P. S., Ramos Silva, M., Matos Beja, A. & Paixão, J. A. (2006). Acta Cryst. E62, o1067–o1069. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sarr, B., Diop, C. A. K., Sidibé, M. & Rousselin, Y. (2018). Acta Cryst. E74, 502–504. CrossRef IUCr Journals Google Scholar
Shahid, M., Tahir, M. N., Salim, M. & Munawar, M. A. (2015). Acta Cryst. E71, o446. CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yu, C.-H. (2012). Acta Cryst. E68, o2295. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.