organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Diiso­propyl­ammonium hydrogen phthalate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bDepartment of Chemistry, SUNY-College at Geneseo, Geneseo, NY 14454, USA
*Correspondence e-mail: dlibasse@gmail.com

Edited by A. J. Lough, University of Toronto, Canada (Received 16 April 2018; accepted 8 May 2018; online 15 May 2018)

In the crystal of the title molecular salt, C6H16N+·C8H5O4, the cation and anions are linked into [010] chains by N—H⋯O hydrogen bonds. The chains are connected to their neighbours through weak C—H⋯O hydrogen bonds, leading to a layered supra­molecular architecture. The hydrogen phthalate anion exhibits an intra­molecular O—H⋯O hydrogen bond in which the H atom is approximately equidistant to the two O atoms.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Various ammonium hydrogen phthalate and phthalate salts have been synthesized by several groups (Edwards et al., 2001[Edwards, S. H., Kahwa, I. A. & Mague, J. T. (2001). Acta Cryst. E57, o20-o21.]; Pereira Silva et al., 2006[Pereira Silva, P. S., Ramos Silva, M., Matos Beja, A. & Paixão, J. A. (2006). Acta Cryst. E62, o1067-o1069.]; Yu, 2012[Yu, C.-H. (2012). Acta Cryst. E68, o2295.]; Liu 2012[Liu, M.-L. (2012). Acta Cryst. E68, o228.]; Shahid et al. 2015[Shahid, M., Tahir, M. N., Salim, M. & Munawar, M. A. (2015). Acta Cryst. E71, o446.]; Lin et al. 2011[Lin, F., Jin, S., Tong, K., He, H. & Yu, Y. Q. (2011). Acta Cryst. E67, o2592.]). These salts can react with metallic halides leading to complexes (Ma et al., 2004[Ma, C, Wang. W, Zhang. X, Chen. C, Liu. Q, Zhu. H, Liao. D & Li. L. (2004). Eur. J. Inorg. Chem. pp. 3522-3532.]; Askarinejad et al., 2006[Askarinejad, A., Torabi, A. A. & Morsali, A. (2006). Z. Naturforsch. B: Chem. Sci. 61, 565-569.]; Döring & Jones, 2016[Döring, C. & Jones, P. G. (2016). Z. Anorg. Allg. Chem. 642, 930-936.]). For several years, our group has been involved in the study of the inter­actions of similar salts with organotin(IV) and halotin(IV) compounds (Diop et al., 2016[Diop, M. B., Diop, L., Plasseraud, L. & Maris, T. (2016). Acta Cryst. E72, 355-357.]; Sarr et al., 2018[Sarr, B., Diop, C. A. K., Sidibé, M. & Rousselin, Y. (2018). Acta Cryst. E74, 502-504.]). As part of our ongoing studies in this area, we now describe the synthesis and structure of the title molecular salt.

The title compound crystallizes in the monoclinic P21/c space group with the asymmetric unit comprising of one diiso­propyl­ammonium cation and one hydrogen phthalate anion (Fig. 1[link]). The C—C and C—N bonds within the cation are similar to those previously observed for compounds containing the iPr2NH2+ cation (Sarr et al., 2018[Sarr, B., Diop, C. A. K., Sidibé, M. & Rousselin, Y. (2018). Acta Cryst. E74, 502-504.]; Lin et al., 2017[Lin, Z., Hu, K., Jin, S., Ding, A., Wang, Y., Dong, L., Gao, X. & Wang, D. (2017). J. Mol. Struct. 1146, 577-591.]). The C—C and C—O bonds of the hydrogen phthalate anion are close to the published values for salts containing this anion (Liu et al., 2012[Liu, M.-L. (2012). Acta Cryst. E68, o228.]; Shahid et al., 2015[Shahid, M., Tahir, M. N., Salim, M. & Munawar, M. A. (2015). Acta Cryst. E71, o446.]). In the extended structure, the monomeric acidic inner (O1—H1⋯O3) hydrogen-bonded anions [PhCO2H(COO)] are connected to the cations via hydrogen bonds (N1—H1A⋯O4i, N1—H1B⋯O2; Table 1[link], Fig. 2[link]), giving rise to zigzag chains of alternating cations and anions parallel to [010]. Weak inter­molecular hydrogen bonds (C3—H3C⋯O1, C13—H13⋯O1, C12—H12⋯O3, C3—H3A⋯O4 and C6—H6⋯O2), which can be described as phthalate/phthalate and phthalate/cation inter­actions, occur leading to a supra­molecular pleated sheet architecture.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O3 1.19 (4) 1.20 (4) 2.385 (3) 173 (3)
N1—H1A⋯O4i 0.94 (3) 1.83 (3) 2.756 (3) 169 (2)
N1—H1B⋯O2 0.95 (3) 1.83 (3) 2.763 (2) 166 (2)
C3—H3C⋯O1 0.98 2.70 3.659 (3) 166
C3—H3A⋯O4i 0.98 2.69 3.392 (4) 129
C6—H6C⋯O2 0.98 2.68 3.408 (4) 132
C12—H12⋯O3ii 0.95 2.58 3.401 (2) 145
C13—H13⋯O1ii 0.95 2.61 3.449 (3) 148
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x-1, y, z.
[Figure 1]
Figure 1
View of the title compound showing the atom-labelling scheme. Anisotropic displacement parameters of non-H atoms are drawn at the 50% probability level.
[Figure 2]
Figure 2
Partial packing diagram showing the hydrogen-bonding inter­actions. Only H atoms involved in the inter­molecular inter­actions are shown. Symmetry identifiers: (a) −x + 1, y + [{1\over 2}], −z + [{1\over 2}]; (b) x + 1, y, z; (c) −x + 1, y − [{1\over 2}], −z + [{1\over 2}].

A search of the Cambridge Structural Database (CSD Version 5.39, updates Nov 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) yielded 67 hits for diiso­propyl­ammonium salts while 101 hits were obtained in a search for the phthalate anion.

Synthesis and crystallization

All the chemicals were purchased from Aldrich (Germany) and used without further purification. Diiso­propyl­ammonium hydrogen phthalate [iPr2NH2·Ph(CO2H)(CO2)] was obtained from the partial neutralization of phthalic acid (Ph(COH)2); 5 g, 3 mmol) by diiso­propyl­amine (iPr2NH; 3.05 g, 3 mmol) in ethanol (50 ml). The clear mixture was stirred for two h. Crystals suitable for X-ray diffraction analysis were obtained after a week of slow solvent evaporation at room temperature (300 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C6H16N+·C8H5O4
Mr 267.32
Crystal system, space group Monoclinic, P21/c
Temperature (K) 200
a, b, c (Å) 8.160 (3), 14.876 (5), 12.549 (5)
β (°) 93.192 (9)
V3) 1520.9 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.40 × 0.40 × 0.40
 
Data collection
Diffractometer Bruker Smart X2S benchtop
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.48, 0.97
No. of measured, independent and observed [I > 2σ(I)] reflections 12641, 2772, 2240
Rint 0.071
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.164, 1.07
No. of reflections 2772
No. of parameters 188
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.23, −0.23
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Diisopropylammonium hydrogen phthalate top
Crystal data top
C6H16N+·C8H5O4F(000) = 576
Mr = 267.32Dx = 1.167 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.160 (3) ÅCell parameters from 5881 reflections
b = 14.876 (5) Åθ = 2.5–25.3°
c = 12.549 (5) ŵ = 0.09 mm1
β = 93.192 (9)°T = 200 K
V = 1520.9 (10) Å3Block, colorless
Z = 40.40 × 0.40 × 0.40 mm
Data collection top
Bruker Smart X2S benchtop
diffractometer
2772 independent reflections
Radiation source: sealed microfocus tube2240 reflections with I > 2σ(I)
Detector resolution: 8.3330 pixels mm-1Rint = 0.071
ω scansθmax = 25.4°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
h = 79
Tmin = 0.48, Tmax = 0.97k = 1716
12641 measured reflectionsl = 1515
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.057H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.164 w = 1/[σ2(Fo2) + (0.0729P)2 + 0.612P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2772 reflectionsΔρmax = 0.23 e Å3
188 parametersΔρmin = 0.23 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All hydrogen atoms were observed in difference fourier maps. The H atoms were refined using a riding model with a C— H distance of 0.98 Å for the methyl carbon atoms and 0.95 Å for the phenyl carbon atoms. The methyl C—H hydrogen atom isotropic displacement parameters were set using the and hydrogen-atom isotropic displacement parameters were set using the approximation Uiso(H) = 1.2Ueq(C). The hydrogen atoms bonded to the oxygen and nitrogen atoms were refined freely, including isotropic displacement parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.51102 (17)0.44641 (14)0.35313 (15)0.0727 (6)
H1O0.511 (4)0.502 (2)0.285 (3)0.106 (11)*
O20.3436 (2)0.36584 (14)0.44266 (17)0.0824 (6)
O30.50277 (17)0.55055 (13)0.20842 (16)0.0687 (5)
O40.3243 (2)0.61102 (16)0.09499 (18)0.0947 (8)
N10.51945 (19)0.22605 (11)0.53843 (13)0.0386 (4)
H1A0.559 (3)0.1865 (17)0.4879 (19)0.059 (7)*
H1B0.473 (3)0.2747 (18)0.4978 (19)0.061 (7)*
C10.6655 (3)0.26303 (15)0.60386 (16)0.0482 (5)
H10.62570.30970.65360.058*
C20.7504 (3)0.1897 (2)0.6693 (2)0.0899 (11)
H2A0.78020.14050.62210.135*
H2B0.67640.1670.72190.135*
H2C0.84980.21390.70610.135*
C30.7788 (3)0.30729 (17)0.5290 (2)0.0621 (6)
H3A0.82080.26210.48070.093*
H3B0.87080.33510.57030.093*
H3C0.71860.35350.48720.093*
C40.3859 (2)0.18111 (14)0.59641 (17)0.0466 (5)
H40.43520.13020.63920.056*
C50.2623 (3)0.1430 (2)0.5132 (2)0.0690 (7)
H5A0.2150.1920.46940.104*
H5B0.17470.1120.54910.104*
H5C0.31740.10030.46770.104*
C60.3086 (3)0.24578 (19)0.6716 (2)0.0703 (7)
H6A0.39030.26410.72750.105*
H6B0.21630.21630.70420.105*
H6C0.26880.29890.63180.105*
C70.3676 (3)0.42528 (14)0.37800 (17)0.0478 (5)
C80.3558 (2)0.56711 (13)0.17568 (18)0.0456 (5)
C90.2187 (2)0.47323 (12)0.32552 (14)0.0349 (4)
C100.2140 (2)0.53271 (12)0.23738 (15)0.0352 (4)
C110.0605 (2)0.56684 (14)0.20079 (17)0.0471 (5)
H110.05510.60570.14060.057*
C120.0817 (2)0.54627 (16)0.24843 (19)0.0546 (6)
H120.18330.57090.22180.066*
C130.0761 (2)0.48961 (17)0.33524 (19)0.0541 (6)
H130.17350.47550.36980.065*
C140.0725 (2)0.45341 (14)0.37176 (17)0.0454 (5)
H140.07470.41340.43080.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0296 (8)0.1033 (14)0.0849 (12)0.0125 (8)0.0015 (8)0.0280 (11)
O20.0646 (11)0.0819 (13)0.1007 (14)0.0197 (9)0.0037 (10)0.0501 (11)
O30.0295 (8)0.0905 (13)0.0870 (12)0.0079 (7)0.0117 (8)0.0212 (10)
O40.0614 (11)0.1140 (17)0.1107 (15)0.0077 (11)0.0236 (11)0.0737 (14)
N10.0379 (8)0.0378 (9)0.0399 (8)0.0039 (7)0.0005 (7)0.0007 (7)
C10.0480 (11)0.0489 (12)0.0470 (11)0.0057 (9)0.0030 (9)0.0059 (9)
C20.0626 (16)0.112 (2)0.092 (2)0.0162 (16)0.0300 (15)0.0447 (19)
C30.0529 (13)0.0613 (15)0.0722 (15)0.0143 (11)0.0049 (11)0.0017 (12)
C40.0450 (11)0.0441 (11)0.0507 (11)0.0002 (9)0.0035 (9)0.0058 (9)
C50.0527 (13)0.0793 (18)0.0743 (16)0.0156 (12)0.0026 (12)0.0062 (14)
C60.0672 (15)0.0786 (18)0.0678 (15)0.0016 (13)0.0272 (13)0.0030 (14)
C70.0423 (11)0.0489 (12)0.0521 (11)0.0105 (9)0.0005 (9)0.0048 (10)
C80.0378 (10)0.0399 (10)0.0600 (12)0.0010 (8)0.0118 (9)0.0041 (10)
C90.0291 (9)0.0332 (9)0.0423 (10)0.0006 (7)0.0000 (7)0.0015 (7)
C100.0283 (9)0.0327 (9)0.0445 (10)0.0001 (7)0.0032 (7)0.0004 (7)
C110.0368 (10)0.0512 (12)0.0528 (11)0.0052 (9)0.0028 (9)0.0123 (10)
C120.0288 (10)0.0684 (15)0.0657 (14)0.0047 (9)0.0054 (9)0.0041 (11)
C130.0262 (9)0.0707 (15)0.0663 (13)0.0078 (9)0.0099 (9)0.0026 (12)
C140.0381 (10)0.0492 (11)0.0493 (11)0.0041 (8)0.0062 (8)0.0070 (9)
Geometric parameters (Å, º) top
O1—C71.267 (3)C4—C51.520 (3)
O1—H1O1.19 (4)C4—H41.0
O2—C71.223 (3)C5—H5A0.98
O3—C81.270 (3)C5—H5B0.98
O3—H1O1.20 (4)C5—H5C0.98
O4—C81.220 (3)C6—H6A0.98
N1—C41.501 (3)C6—H6B0.98
N1—C11.513 (2)C6—H6C0.98
N1—H1A0.94 (3)C7—C91.526 (3)
N1—H1B0.95 (3)C8—C101.517 (3)
C1—C31.506 (3)C9—C141.387 (3)
C1—C21.510 (3)C9—C101.415 (3)
C1—H11.0C10—C111.405 (3)
C2—H2A0.98C11—C121.369 (3)
C2—H2B0.98C11—H110.95
C2—H2C0.98C12—C131.376 (3)
C3—H3A0.98C12—H120.95
C3—H3B0.98C13—C141.382 (3)
C3—H3C0.98C13—H130.95
C4—C61.510 (3)C14—H140.95
C7—O1—H1O112.8 (17)H5A—C5—H5B109.5
C8—O3—H1O112.7 (17)C4—C5—H5C109.5
C4—N1—C1118.04 (15)H5A—C5—H5C109.5
C4—N1—H1A109.7 (15)H5B—C5—H5C109.5
C1—N1—H1A107.7 (15)C4—C6—H6A109.5
C4—N1—H1B108.6 (15)C4—C6—H6B109.5
C1—N1—H1B107.0 (14)H6A—C6—H6B109.5
H1A—N1—H1B105.0 (19)C4—C6—H6C109.5
C3—C1—C2112.1 (2)H6A—C6—H6C109.5
C3—C1—N1108.24 (17)H6B—C6—H6C109.5
C2—C1—N1110.86 (19)O2—C7—O1121.79 (19)
C3—C1—H1108.5O2—C7—C9118.10 (19)
C2—C1—H1108.5O1—C7—C9120.10 (19)
N1—C1—H1108.5O4—C8—O3121.6 (2)
C1—C2—H2A109.5O4—C8—C10118.17 (18)
C1—C2—H2B109.5O3—C8—C10120.20 (19)
H2A—C2—H2B109.5C14—C9—C10118.24 (16)
C1—C2—H2C109.5C14—C9—C7113.74 (17)
H2A—C2—H2C109.5C10—C9—C7128.02 (17)
H2B—C2—H2C109.5C11—C10—C9117.81 (17)
C1—C3—H3A109.5C11—C10—C8113.78 (17)
C1—C3—H3B109.5C9—C10—C8128.41 (16)
H3A—C3—H3B109.5C12—C11—C10122.57 (19)
C1—C3—H3C109.5C12—C11—H11118.7
H3A—C3—H3C109.5C10—C11—H11118.7
H3B—C3—H3C109.5C11—C12—C13119.40 (18)
N1—C4—C6111.06 (18)C11—C12—H12120.3
N1—C4—C5107.78 (17)C13—C12—H12120.3
C6—C4—C5112.4 (2)C12—C13—C14119.42 (19)
N1—C4—H4108.5C12—C13—H13120.3
C6—C4—H4108.5C14—C13—H13120.3
C5—C4—H4108.5C13—C14—C9122.54 (19)
C4—C5—H5A109.5C13—C14—H14118.7
C4—C5—H5B109.5C9—C14—H14118.7
C4—N1—C1—C3178.07 (18)O4—C8—C10—C118.3 (3)
C4—N1—C1—C258.6 (3)O3—C8—C10—C11171.3 (2)
C1—N1—C4—C661.3 (2)O4—C8—C10—C9172.6 (2)
C1—N1—C4—C5175.11 (19)O3—C8—C10—C97.7 (3)
O2—C7—C9—C1410.5 (3)C9—C10—C11—C121.5 (3)
O1—C7—C9—C14170.6 (2)C8—C10—C11—C12177.7 (2)
O2—C7—C9—C10168.8 (2)C10—C11—C12—C130.4 (4)
O1—C7—C9—C1010.1 (3)C11—C12—C13—C141.0 (4)
C14—C9—C10—C111.1 (3)C12—C13—C14—C91.3 (3)
C7—C9—C10—C11178.11 (19)C10—C9—C14—C130.2 (3)
C14—C9—C10—C8177.85 (19)C7—C9—C14—C13179.6 (2)
C7—C9—C10—C82.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O31.19 (4)1.20 (4)2.385 (3)173 (3)
N1—H1A···O4i0.94 (3)1.83 (3)2.756 (3)169 (2)
N1—H1B···O20.95 (3)1.83 (3)2.763 (2)166 (2)
C3—H3C···O10.982.703.659 (3)166
C3—H3A···O4i0.982.693.392 (4)129
C6—H6C···O20.982.683.408 (4)132
C12—H12···O3ii0.952.583.401 (2)145
C13—H13···O1ii0.952.613.449 (3)148
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x1, y, z.
 

Funding information

The authors acknowledge the Cheikh Anta Diop University, Dakar, Senegal, for their support and the US Department of Education via a Congressionally directed grant (grant No. P116Z100020) for the X-ray diffractometer.

References

First citationAskarinejad, A., Torabi, A. A. & Morsali, A. (2006). Z. Naturforsch. B: Chem. Sci. 61, 565–569.  Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDiop, M. B., Diop, L., Plasseraud, L. & Maris, T. (2016). Acta Cryst. E72, 355–357.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDöring, C. & Jones, P. G. (2016). Z. Anorg. Allg. Chem. 642, 930–936.  Google Scholar
First citationEdwards, S. H., Kahwa, I. A. & Mague, J. T. (2001). Acta Cryst. E57, o20–o21.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLin, Z., Hu, K., Jin, S., Ding, A., Wang, Y., Dong, L., Gao, X. & Wang, D. (2017). J. Mol. Struct. 1146, 577–591.  CrossRef Google Scholar
First citationLin, F., Jin, S., Tong, K., He, H. & Yu, Y. Q. (2011). Acta Cryst. E67, o2592.  CrossRef IUCr Journals Google Scholar
First citationLiu, M.-L. (2012). Acta Cryst. E68, o228.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, C, Wang. W, Zhang. X, Chen. C, Liu. Q, Zhu. H, Liao. D & Li. L. (2004). Eur. J. Inorg. Chem. pp. 3522–3532.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPereira Silva, P. S., Ramos Silva, M., Matos Beja, A. & Paixão, J. A. (2006). Acta Cryst. E62, o1067–o1069.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSarr, B., Diop, C. A. K., Sidibé, M. & Rousselin, Y. (2018). Acta Cryst. E74, 502–504.  CrossRef IUCr Journals Google Scholar
First citationShahid, M., Tahir, M. N., Salim, M. & Munawar, M. A. (2015). Acta Cryst. E71, o446.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, C.-H. (2012). Acta Cryst. E68, o2295.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds