metal-organic compounds
Tetraethylammonium (acetonitrile)trichloridopalladate(II)
aDepartment of Chemistry, Wichita State University, 1845 Fairmount, Wichita, KS 67260-0051, USA, and bDivision of Science and Mathematics, Newman University, 3100 McCormick, Wichita, KS 67213, USA
*Correspondence e-mail: david.eichhorn@wichita.edu
A new square-planar palladium complex salt, (C8H20N)[PdCl3(C2H3N)], has been formed with one of the Cl atoms in tetrachloridopalladate(II) replaced by an acetonitrile coordinated through the N atom. This compound could be a useful precursor for synthesis of palladium complexes. The complex salt crystallizes in the monoclinic P21/c space group.
Keywords: crystal structure; palladium.
CCDC reference: 1843858
Structure description
In the title compound (Fig. 1), the palladium is square planar, with three chlorine atoms, and one acetonitrile coordinated through the nitrogen. Charge balance for the monoanionic complex is provided by a tetraethylammonium ion. A search of the Cambridge Structural Database reveals one other complex with a (nitrile)PdCl3 structure (Chitsaz et al., 2000) and ten complexes with the PdCl3 moiety coordinated by a N donor (Urankar et al., 2010; Maronna et al., 2011; Gómez-Villarraga et al., 2017; Savel'eva et al., 2009; Lee et al., 2005; von Arnim et al., 1991; Kelly et al., 1991; Makotchenko & Buidina, 2009; Kelly et al., 1995; Aragay et al., 2008). Structures have also been reported of [(CH3CN)2PdCl2] (Edwards et al., 1998; Ramirez de Arellano et al., 2006; Malecki, 2013; Malecki, 2017) and of [(CH3CN)3PdCl]+ (Demchuk et al., 2011). The title compound shows very similar Pd—N and Pd—Cl bond distances (Table 1) to all of the previously reported complexes.
|
Synthesis and crystallization
The title compound was synthesized by dissolving 0.498 g of 3-ethyl-4-cyanopyrazole in 30 ml of acetonitrile, with some impurities left to settle. The solution was decanted, and added to a solution of 0.15 g of tetraethylammonium tetrachloridopalladate(II) in 50 ml of acetonitrile. The solvent was removed, and the precipitate was redissolved in acetonitrile. Diethyl ether was allowed to diffuse into the acetonitrile solution, and crystals appeared overnight.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1843858
https://doi.org/10.1107/S2414314618007502/bt4069sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314618007502/bt4069Isup2.hkl
Data collection: APEX2 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SIR2004 (Burla et al., 2007); program(s) used to refine structure: SHELXL (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).(C8H20N)[PdCl3(C2H3N)] | F(000) = 776 |
Mr = 384.05 | Dx = 1.595 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.286 (2) Å | Cell parameters from 8735 reflections |
b = 17.379 (5) Å | θ = 3.2–26.2° |
c = 12.950 (3) Å | µ = 1.64 mm−1 |
β = 102.769 (13)° | T = 150 K |
V = 1599.3 (8) Å3 | Irregular, reddish brown |
Z = 4 | 0.63 × 0.57 × 0.31 mm |
Bruker APEXII CCD diffractometer | 3516 independent reflections |
Radiation source: sealed X-ray tube | 2804 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.054 |
Detector resolution: 5.6 pixels mm-1 | θmax = 27.2°, θmin = 3.7° |
φ and ω scans | h = −9→9 |
Absorption correction: numerical (SADABS; Bruker, 2012) | k = −22→22 |
Tmin = 0.589, Tmax = 0.746 | l = −16→16 |
54175 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.033 | H-atom parameters constrained |
wR(F2) = 0.092 | w = 1/[σ2(Fo2) + (0.0519P)2 + 0.4406P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
3516 reflections | Δρmax = 0.91 e Å−3 |
150 parameters | Δρmin = −0.61 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Pd1 | 0.25580 (3) | 0.43656 (2) | 0.67953 (2) | 0.03879 (10) | |
Cl1 | 0.32497 (12) | 0.30742 (5) | 0.70147 (6) | 0.0518 (2) | |
Cl2 | 0.19617 (13) | 0.44208 (4) | 0.84354 (7) | 0.0518 (2) | |
Cl3 | 0.19872 (15) | 0.56612 (5) | 0.65811 (9) | 0.0645 (3) | |
N1 | 0.2950 (4) | 0.43234 (17) | 0.5297 (2) | 0.0567 (8) | |
C1 | 0.2887 (7) | 0.4325 (3) | 0.3309 (3) | 0.0967 (19) | |
H1A | 0.1600 | 0.4424 | 0.2911 | 0.145* | |
H1B | 0.3308 | 0.3824 | 0.3100 | 0.145* | |
H1C | 0.3725 | 0.4729 | 0.3154 | 0.145* | |
C2 | 0.2927 (5) | 0.4320 (2) | 0.4438 (3) | 0.0649 (10) | |
N2 | 0.2491 (3) | 0.80441 (13) | 0.48732 (17) | 0.0363 (5) | |
C3 | 0.5222 (5) | 0.8575 (2) | 0.4139 (3) | 0.0559 (8) | |
H3A | 0.4597 | 0.8401 | 0.3428 | 0.084* | |
H3B | 0.6589 | 0.8538 | 0.4223 | 0.084* | |
H3C | 0.4874 | 0.9110 | 0.4235 | 0.084* | |
C4 | 0.4611 (4) | 0.80727 (18) | 0.4959 (2) | 0.0450 (7) | |
H4A | 0.5222 | 0.8264 | 0.5672 | 0.054* | |
H4B | 0.5069 | 0.7543 | 0.4894 | 0.054* | |
C5 | 0.0118 (4) | 0.74911 (19) | 0.5853 (3) | 0.0529 (8) | |
H5A | −0.0551 | 0.7241 | 0.5200 | 0.079* | |
H5B | −0.0451 | 0.7994 | 0.5920 | 0.079* | |
H5C | 0.0030 | 0.7170 | 0.6462 | 0.079* | |
C6 | 0.2159 (4) | 0.75965 (17) | 0.5818 (2) | 0.0441 (7) | |
H6A | 0.2744 | 0.7082 | 0.5818 | 0.053* | |
H6B | 0.2806 | 0.7865 | 0.6472 | 0.053* | |
C7 | 0.2554 (5) | 0.93366 (18) | 0.5807 (3) | 0.0600 (9) | |
H7A | 0.1960 | 0.9846 | 0.5739 | 0.090* | |
H7B | 0.3905 | 0.9393 | 0.5844 | 0.090* | |
H7C | 0.2362 | 0.9087 | 0.6454 | 0.090* | |
C8 | 0.1677 (4) | 0.88483 (17) | 0.4855 (3) | 0.0499 (8) | |
H8A | 0.0308 | 0.8807 | 0.4815 | 0.060* | |
H8B | 0.1846 | 0.9114 | 0.4206 | 0.060* | |
C9 | 0.1992 (5) | 0.6812 (2) | 0.3746 (3) | 0.0612 (9) | |
H9A | 0.1275 | 0.6610 | 0.3070 | 0.092* | |
H9B | 0.1670 | 0.6521 | 0.4330 | 0.092* | |
H9C | 0.3341 | 0.6760 | 0.3774 | 0.092* | |
C10 | 0.1512 (5) | 0.7654 (2) | 0.3845 (2) | 0.0532 (8) | |
H10A | 0.0135 | 0.7698 | 0.3775 | 0.064* | |
H10B | 0.1834 | 0.7938 | 0.3247 | 0.064* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pd1 | 0.03429 (15) | 0.03990 (17) | 0.04187 (15) | −0.00227 (9) | 0.00774 (10) | −0.00026 (9) |
Cl1 | 0.0536 (4) | 0.0426 (4) | 0.0575 (4) | 0.0055 (4) | 0.0087 (3) | −0.0088 (3) |
Cl2 | 0.0653 (5) | 0.0451 (5) | 0.0501 (4) | 0.0020 (4) | 0.0238 (4) | −0.0034 (3) |
Cl3 | 0.0693 (6) | 0.0423 (5) | 0.0804 (6) | 0.0015 (4) | 0.0132 (5) | 0.0140 (4) |
N1 | 0.0544 (18) | 0.070 (2) | 0.0474 (16) | −0.0053 (14) | 0.0142 (13) | −0.0013 (13) |
C1 | 0.074 (3) | 0.167 (6) | 0.054 (2) | −0.021 (3) | 0.024 (2) | 0.003 (2) |
C2 | 0.053 (2) | 0.095 (3) | 0.048 (2) | −0.0111 (18) | 0.0134 (16) | 0.0024 (17) |
N2 | 0.0383 (12) | 0.0328 (13) | 0.0364 (11) | −0.0015 (10) | 0.0056 (9) | 0.0030 (9) |
C3 | 0.055 (2) | 0.056 (2) | 0.0615 (19) | −0.0063 (16) | 0.0226 (16) | −0.0014 (16) |
C4 | 0.0394 (16) | 0.0444 (18) | 0.0496 (16) | −0.0019 (13) | 0.0061 (13) | −0.0002 (13) |
C5 | 0.058 (2) | 0.048 (2) | 0.0550 (17) | −0.0044 (15) | 0.0195 (15) | 0.0043 (14) |
C6 | 0.0541 (18) | 0.0394 (17) | 0.0382 (14) | −0.0017 (14) | 0.0085 (13) | 0.0057 (12) |
C7 | 0.069 (2) | 0.0399 (19) | 0.077 (2) | −0.0035 (16) | 0.030 (2) | −0.0095 (16) |
C8 | 0.0473 (17) | 0.0362 (17) | 0.0653 (19) | 0.0015 (14) | 0.0107 (14) | 0.0114 (14) |
C9 | 0.059 (2) | 0.064 (2) | 0.064 (2) | −0.0167 (18) | 0.0215 (17) | −0.0266 (17) |
C10 | 0.0543 (19) | 0.063 (2) | 0.0388 (15) | −0.0153 (17) | 0.0036 (13) | −0.0013 (14) |
Pd1—Cl1 | 2.3040 (11) | C5—H5A | 0.9800 |
Pd1—Cl2 | 2.2621 (10) | C5—H5B | 0.9800 |
Pd1—Cl3 | 2.2953 (11) | C5—H5C | 0.9800 |
Pd1—N1 | 2.024 (3) | C5—C6 | 1.509 (4) |
N1—C2 | 1.108 (5) | C6—H6A | 0.9900 |
C1—H1A | 0.9800 | C6—H6B | 0.9900 |
C1—H1B | 0.9800 | C7—H7A | 0.9800 |
C1—H1C | 0.9800 | C7—H7B | 0.9800 |
C1—C2 | 1.457 (5) | C7—H7C | 0.9800 |
N2—C4 | 1.524 (4) | C7—C8 | 1.517 (5) |
N2—C6 | 1.514 (3) | C8—H8A | 0.9900 |
N2—C8 | 1.516 (4) | C8—H8B | 0.9900 |
N2—C10 | 1.524 (4) | C9—H9A | 0.9800 |
C3—H3A | 0.9800 | C9—H9B | 0.9800 |
C3—H3B | 0.9800 | C9—H9C | 0.9800 |
C3—H3C | 0.9800 | C9—C10 | 1.517 (5) |
C3—C4 | 1.515 (4) | C10—H10A | 0.9900 |
C4—H4A | 0.9900 | C10—H10B | 0.9900 |
C4—H4B | 0.9900 | ||
Cl2—Pd1—Cl1 | 90.44 (3) | H5B—C5—H5C | 109.5 |
Cl2—Pd1—Cl3 | 90.26 (3) | C6—C5—H5A | 109.5 |
N1—Pd1—Cl1 | 90.55 (9) | C6—C5—H5B | 109.5 |
N1—Pd1—Cl3 | 88.84 (9) | C6—C5—H5C | 109.5 |
Cl3—Pd1—Cl1 | 177.84 (3) | N2—C6—H6A | 108.5 |
N1—Pd1—Cl2 | 177.08 (8) | N2—C6—H6B | 108.5 |
C2—N1—Pd1 | 171.1 (3) | C5—C6—N2 | 114.9 (2) |
H1A—C1—H1B | 109.5 | C5—C6—H6A | 108.5 |
H1A—C1—H1C | 109.5 | C5—C6—H6B | 108.5 |
H1B—C1—H1C | 109.5 | H6A—C6—H6B | 107.5 |
C2—C1—H1A | 109.5 | H7A—C7—H7B | 109.5 |
C2—C1—H1B | 109.5 | H7A—C7—H7C | 109.5 |
C2—C1—H1C | 109.5 | H7B—C7—H7C | 109.5 |
N1—C2—C1 | 179.3 (5) | C8—C7—H7A | 109.5 |
C6—N2—C4 | 107.4 (2) | C8—C7—H7B | 109.5 |
C6—N2—C8 | 110.8 (2) | C8—C7—H7C | 109.5 |
C6—N2—C10 | 110.5 (2) | N2—C8—C7 | 114.2 (3) |
C8—N2—C4 | 111.0 (2) | N2—C8—H8A | 108.7 |
C8—N2—C10 | 106.9 (2) | N2—C8—H8B | 108.7 |
C10—N2—C4 | 110.5 (2) | C7—C8—H8A | 108.7 |
H3A—C3—H3B | 109.5 | C7—C8—H8B | 108.7 |
H3A—C3—H3C | 109.5 | H8A—C8—H8B | 107.6 |
H3B—C3—H3C | 109.5 | H9A—C9—H9B | 109.5 |
C4—C3—H3A | 109.5 | H9A—C9—H9C | 109.5 |
C4—C3—H3B | 109.5 | H9B—C9—H9C | 109.5 |
C4—C3—H3C | 109.5 | C10—C9—H9A | 109.5 |
N2—C4—H4A | 108.6 | C10—C9—H9B | 109.5 |
N2—C4—H4B | 108.6 | C10—C9—H9C | 109.5 |
C3—C4—N2 | 114.7 (2) | N2—C10—H10A | 108.4 |
C3—C4—H4A | 108.6 | N2—C10—H10B | 108.4 |
C3—C4—H4B | 108.6 | C9—C10—N2 | 115.6 (3) |
H4A—C4—H4B | 107.6 | C9—C10—H10A | 108.4 |
H5A—C5—H5B | 109.5 | C9—C10—H10B | 108.4 |
H5A—C5—H5C | 109.5 | H10A—C10—H10B | 107.4 |
C4—N2—C6—C5 | −178.5 (3) | C8—N2—C4—C3 | −52.5 (3) |
C4—N2—C8—C7 | −57.2 (3) | C8—N2—C6—C5 | 60.2 (3) |
C4—N2—C10—C9 | 64.6 (3) | C8—N2—C10—C9 | −174.6 (3) |
C6—N2—C4—C3 | −173.7 (3) | C10—N2—C4—C3 | 65.8 (3) |
C6—N2—C8—C7 | 61.9 (3) | C10—N2—C6—C5 | −58.0 (3) |
C6—N2—C10—C9 | −54.0 (3) | C10—N2—C8—C7 | −177.7 (3) |
Acknowledgements
AO acknowledges Newman University for providing sabbatical support.
Funding information
Funding for this research was provided by: Newman University; Wichita State University.
References
Aragay, G., Pons, J., García-Antón, J., Solans, X., Font-Bardia, M. & Ros, J. (2008). J. Organomet. Chem. 693, 3396–3404. CrossRef Google Scholar
Arnim, H. von, Massa, W., Zinn, A. & Dehnicke, K. (1991). Z. Naturforsch. Teil B, 46, 992–998. Google Scholar
Bruker (2012). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613. Web of Science CrossRef CAS IUCr Journals Google Scholar
Chitsaz, S., Neumüller, B. & Dehnicke, K. (2000). Z. Anorg. Allg. Chem. 626, 634–638. CrossRef Google Scholar
Demchuk, O. M., Kielar, K. & Pietrusiewicz, K. M. (2011). Pure Appl. Chem. 83, 633–644. CrossRef Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Edwards, P. G., Paisey, S. J. & Albers, T. (1998). Private communication (refcode: FEQCOT). CCDC, Cambridge, England. Google Scholar
Gómez-Villarraga, F., De Tovar, J., Guerrero, M., Nolis, P., Parella, T., Lecante, P., Romero, N., Escriche, L., Bofill, R., Ros, J., Sala, X., Philippot, K. & García-Antón, J. (2017). Dalton Trans. 46, 11768–11778. Google Scholar
Kelly, P. F. & Slawin, A. M. Z. (1995). Angew. Chem. Int. Ed. Engl. 34, 1758–1759. CSD CrossRef CAS Web of Science Google Scholar
Kelly, P. F., Slawin, A. M. Z., Williams, D. J. & Woollins, J. D. (1991). Polyhedron, 10, 2337–2340. CrossRef Google Scholar
Lee, H. M., Chiu, P. L., Hu, C.-H., Lai, C. L. & Chou, Y.-C. J. (2005). J. Organomet. Chem. 690, 403–414. CrossRef Google Scholar
Makotchenko, E. V. & Buidina, I. A. (2009). Russ. J. Coord. Chem. 35, 212–216. CrossRef Google Scholar
Malecki, J. G. (2013). Private communication (refcode: FEQCOT02). CCDC, Cambridge, England. Google Scholar
Malecki, J. G. (2017). Private communication (refcode: FEQCOT03). CCDC, Cambridge, England. Google Scholar
Maronna, A., Bindewald, E., Kaifer, E., Wadepohl, H. & Himmel, H. J. (2011). Eur. J. Inorg. Chem. pp. 1302–1314. CrossRef Google Scholar
Ramirez de Arellano, R., Asensio, G., Medio-Simon, M., Rodriguez, N. & Mancha, G. (2006). Private communication (refcode: FEQCOT01). CCDC, Cambridge, England. Google Scholar
Savel'eva, Z. A., Glinskaya, L. A., Popov, S. A., Klevtsova, R. F., Tkachev, A. V. & Larionov, S. V. (2009). Russ. J. Coord. Chem. 35, 668–673. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Urankar, D., Pevec, A., Turel, I. & Košmrlj, J. (2010). Cryst. Growth Des. 10, 4920–4927. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.