metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Tetra­ethyl­ammonium (aceto­nitrile)­tri­chlorido­palladate(II)

aDepartment of Chemistry, Wichita State University, 1845 Fairmount, Wichita, KS 67260-0051, USA, and bDivision of Science and Mathematics, Newman University, 3100 McCormick, Wichita, KS 67213, USA
*Correspondence e-mail: david.eichhorn@wichita.edu

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 17 May 2018; accepted 17 May 2018; online 31 May 2018)

A new square-planar palladium complex salt, (C8H20N)[PdCl3(C2H3N)], has been formed with one of the Cl atoms in tetra­chlorido­palladate(II) replaced by an aceto­nitrile coordinated through the N atom. This compound could be a useful precursor for synthesis of palladium complexes. The complex salt crystallizes in the monoclinic P21/c space group.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In the title compound (Fig. 1[link]), the palladium is square planar, with three chlorine atoms, and one aceto­nitrile coordinated through the nitro­gen. Charge balance for the monoanionic complex is provided by a tetra­ethyl­ammonium ion. A search of the Cambridge Structural Database reveals one other complex with a (nitrile)PdCl3 structure (Chitsaz et al., 2000[Chitsaz, S., Neumüller, B. & Dehnicke, K. (2000). Z. Anorg. Allg. Chem. 626, 634-638.]) and ten complexes with the PdCl3 moiety coordinated by a N donor (Urankar et al., 2010[Urankar, D., Pevec, A., Turel, I. & Košmrlj, J. (2010). Cryst. Growth Des. 10, 4920-4927.]; Maronna et al., 2011[Maronna, A., Bindewald, E., Kaifer, E., Wadepohl, H. & Himmel, H. J. (2011). Eur. J. Inorg. Chem. pp. 1302-1314.]; Gómez-Villarraga et al., 2017[Gómez-Villarraga, F., De Tovar, J., Guerrero, M., Nolis, P., Parella, T., Lecante, P., Romero, N., Escriche, L., Bofill, R., Ros, J., Sala, X., Philippot, K. & García-Antón, J. (2017). Dalton Trans. 46, 11768-11778.]; Savel'eva et al., 2009[Savel'eva, Z. A., Glinskaya, L. A., Popov, S. A., Klevtsova, R. F., Tkachev, A. V. & Larionov, S. V. (2009). Russ. J. Coord. Chem. 35, 668-673.]; Lee et al., 2005[Lee, H. M., Chiu, P. L., Hu, C.-H., Lai, C. L. & Chou, Y.-C. J. (2005). J. Organomet. Chem. 690, 403-414.]; von Arnim et al., 1991[Arnim, H. von, Massa, W., Zinn, A. & Dehnicke, K. (1991). Z. Naturforsch. Teil B, 46, 992-998.]; Kelly et al., 1991[Kelly, P. F., Slawin, A. M. Z., Williams, D. J. & Woollins, J. D. (1991). Polyhedron, 10, 2337-2340.]; Makotchenko & Buidina, 2009[Makotchenko, E. V. & Buidina, I. A. (2009). Russ. J. Coord. Chem. 35, 212-216.]; Kelly et al., 1995[Kelly, P. F. & Slawin, A. M. Z. (1995). Angew. Chem. Int. Ed. Engl. 34, 1758-1759.]; Aragay et al., 2008[Aragay, G., Pons, J., García-Antón, J., Solans, X., Font-Bardia, M. & Ros, J. (2008). J. Organomet. Chem. 693, 3396-3404.]). Structures have also been reported of [(CH3CN)2PdCl2] (Edwards et al., 1998[Edwards, P. G., Paisey, S. J. & Albers, T. (1998). Private communication (refcode: FEQCOT). CCDC, Cambridge, England.]; Ramirez de Arellano et al., 2006[Ramirez de Arellano, R., Asensio, G., Medio-Simon, M., Rodriguez, N. & Mancha, G. (2006). Private communication (refcode: FEQCOT01). CCDC, Cambridge, England.]; Malecki, 2013[Malecki, J. G. (2013). Private communication (refcode: FEQCOT02). CCDC, Cambridge, England.]; Malecki, 2017[Malecki, J. G. (2017). Private communication (refcode: FEQCOT03). CCDC, Cambridge, England.]) and of [(CH3CN)3PdCl]+ (Demchuk et al., 2011[Demchuk, O. M., Kielar, K. & Pietrusiewicz, K. M. (2011). Pure Appl. Chem. 83, 633-644.]). The title compound shows very similar Pd—N and Pd—Cl bond distances (Table 1[link]) to all of the previously reported complexes.

Table 1
Selected geometric parameters (Å, °)

Pd1—Cl1 2.3040 (11) Pd1—N1 2.024 (3)
Pd1—Cl2 2.2621 (10) N1—C2 1.108 (5)
Pd1—Cl3 2.2953 (11)    
       
Cl2—Pd1—Cl1 90.44 (3) Cl3—Pd1—Cl1 177.84 (3)
Cl2—Pd1—Cl3 90.26 (3) N1—Pd1—Cl2 177.08 (8)
N1—Pd1—Cl1 90.55 (9) C2—N1—Pd1 171.1 (3)
N1—Pd1—Cl3 88.84 (9)    
[Figure 1]
Figure 1
The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms drawn as spheres of arbitrary radii.

Synthesis and crystallization

The title compound was synthesized by dissolving 0.498 g of 3-ethyl-4-cyano­pyrazole in 30 ml of aceto­nitrile, with some impurities left to settle. The solution was deca­nted, and added to a solution of 0.15 g of tetra­ethyl­ammonium tetra­chlorido­palladate(II) in 50 ml of aceto­nitrile. The solvent was removed, and the precipitate was redissolved in aceto­nitrile. Diethyl ether was allowed to diffuse into the aceto­nitrile solution, and crystals appeared overnight.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula (C8H20N)[PdCl3(C2H3N)]
Mr 384.05
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 7.286 (2), 17.379 (5), 12.950 (3)
β (°) 102.769 (13)
V3) 1599.3 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.64
Crystal size (mm) 0.63 × 0.57 × 0.31
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Numerical (SADABS; Bruker, 2012[Bruker (2012). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.589, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 54175, 3516, 2804
Rint 0.054
(sin θ/λ)max−1) 0.642
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.092, 1.06
No. of reflections 3516
No. of parameters 150
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.91, −0.61
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR2004 (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]), SHELXL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SIR2004 (Burla et al., 2007); program(s) used to refine structure: SHELXL (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Tetraethylammonium (acetonitrile)trichloridopalladate(II) top
Crystal data top
(C8H20N)[PdCl3(C2H3N)]F(000) = 776
Mr = 384.05Dx = 1.595 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.286 (2) ÅCell parameters from 8735 reflections
b = 17.379 (5) Åθ = 3.2–26.2°
c = 12.950 (3) ŵ = 1.64 mm1
β = 102.769 (13)°T = 150 K
V = 1599.3 (8) Å3Irregular, reddish brown
Z = 40.63 × 0.57 × 0.31 mm
Data collection top
Bruker APEXII CCD
diffractometer
3516 independent reflections
Radiation source: sealed X-ray tube2804 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
Detector resolution: 5.6 pixels mm-1θmax = 27.2°, θmin = 3.7°
φ and ω scansh = 99
Absorption correction: numerical
(SADABS; Bruker, 2012)
k = 2222
Tmin = 0.589, Tmax = 0.746l = 1616
54175 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0519P)2 + 0.4406P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3516 reflectionsΔρmax = 0.91 e Å3
150 parametersΔρmin = 0.61 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.25580 (3)0.43656 (2)0.67953 (2)0.03879 (10)
Cl10.32497 (12)0.30742 (5)0.70147 (6)0.0518 (2)
Cl20.19617 (13)0.44208 (4)0.84354 (7)0.0518 (2)
Cl30.19872 (15)0.56612 (5)0.65811 (9)0.0645 (3)
N10.2950 (4)0.43234 (17)0.5297 (2)0.0567 (8)
C10.2887 (7)0.4325 (3)0.3309 (3)0.0967 (19)
H1A0.16000.44240.29110.145*
H1B0.33080.38240.31000.145*
H1C0.37250.47290.31540.145*
C20.2927 (5)0.4320 (2)0.4438 (3)0.0649 (10)
N20.2491 (3)0.80441 (13)0.48732 (17)0.0363 (5)
C30.5222 (5)0.8575 (2)0.4139 (3)0.0559 (8)
H3A0.45970.84010.34280.084*
H3B0.65890.85380.42230.084*
H3C0.48740.91100.42350.084*
C40.4611 (4)0.80727 (18)0.4959 (2)0.0450 (7)
H4A0.52220.82640.56720.054*
H4B0.50690.75430.48940.054*
C50.0118 (4)0.74911 (19)0.5853 (3)0.0529 (8)
H5A0.05510.72410.52000.079*
H5B0.04510.79940.59200.079*
H5C0.00300.71700.64620.079*
C60.2159 (4)0.75965 (17)0.5818 (2)0.0441 (7)
H6A0.27440.70820.58180.053*
H6B0.28060.78650.64720.053*
C70.2554 (5)0.93366 (18)0.5807 (3)0.0600 (9)
H7A0.19600.98460.57390.090*
H7B0.39050.93930.58440.090*
H7C0.23620.90870.64540.090*
C80.1677 (4)0.88483 (17)0.4855 (3)0.0499 (8)
H8A0.03080.88070.48150.060*
H8B0.18460.91140.42060.060*
C90.1992 (5)0.6812 (2)0.3746 (3)0.0612 (9)
H9A0.12750.66100.30700.092*
H9B0.16700.65210.43300.092*
H9C0.33410.67600.37740.092*
C100.1512 (5)0.7654 (2)0.3845 (2)0.0532 (8)
H10A0.01350.76980.37750.064*
H10B0.18340.79380.32470.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.03429 (15)0.03990 (17)0.04187 (15)0.00227 (9)0.00774 (10)0.00026 (9)
Cl10.0536 (4)0.0426 (4)0.0575 (4)0.0055 (4)0.0087 (3)0.0088 (3)
Cl20.0653 (5)0.0451 (5)0.0501 (4)0.0020 (4)0.0238 (4)0.0034 (3)
Cl30.0693 (6)0.0423 (5)0.0804 (6)0.0015 (4)0.0132 (5)0.0140 (4)
N10.0544 (18)0.070 (2)0.0474 (16)0.0053 (14)0.0142 (13)0.0013 (13)
C10.074 (3)0.167 (6)0.054 (2)0.021 (3)0.024 (2)0.003 (2)
C20.053 (2)0.095 (3)0.048 (2)0.0111 (18)0.0134 (16)0.0024 (17)
N20.0383 (12)0.0328 (13)0.0364 (11)0.0015 (10)0.0056 (9)0.0030 (9)
C30.055 (2)0.056 (2)0.0615 (19)0.0063 (16)0.0226 (16)0.0014 (16)
C40.0394 (16)0.0444 (18)0.0496 (16)0.0019 (13)0.0061 (13)0.0002 (13)
C50.058 (2)0.048 (2)0.0550 (17)0.0044 (15)0.0195 (15)0.0043 (14)
C60.0541 (18)0.0394 (17)0.0382 (14)0.0017 (14)0.0085 (13)0.0057 (12)
C70.069 (2)0.0399 (19)0.077 (2)0.0035 (16)0.030 (2)0.0095 (16)
C80.0473 (17)0.0362 (17)0.0653 (19)0.0015 (14)0.0107 (14)0.0114 (14)
C90.059 (2)0.064 (2)0.064 (2)0.0167 (18)0.0215 (17)0.0266 (17)
C100.0543 (19)0.063 (2)0.0388 (15)0.0153 (17)0.0036 (13)0.0013 (14)
Geometric parameters (Å, º) top
Pd1—Cl12.3040 (11)C5—H5A0.9800
Pd1—Cl22.2621 (10)C5—H5B0.9800
Pd1—Cl32.2953 (11)C5—H5C0.9800
Pd1—N12.024 (3)C5—C61.509 (4)
N1—C21.108 (5)C6—H6A0.9900
C1—H1A0.9800C6—H6B0.9900
C1—H1B0.9800C7—H7A0.9800
C1—H1C0.9800C7—H7B0.9800
C1—C21.457 (5)C7—H7C0.9800
N2—C41.524 (4)C7—C81.517 (5)
N2—C61.514 (3)C8—H8A0.9900
N2—C81.516 (4)C8—H8B0.9900
N2—C101.524 (4)C9—H9A0.9800
C3—H3A0.9800C9—H9B0.9800
C3—H3B0.9800C9—H9C0.9800
C3—H3C0.9800C9—C101.517 (5)
C3—C41.515 (4)C10—H10A0.9900
C4—H4A0.9900C10—H10B0.9900
C4—H4B0.9900
Cl2—Pd1—Cl190.44 (3)H5B—C5—H5C109.5
Cl2—Pd1—Cl390.26 (3)C6—C5—H5A109.5
N1—Pd1—Cl190.55 (9)C6—C5—H5B109.5
N1—Pd1—Cl388.84 (9)C6—C5—H5C109.5
Cl3—Pd1—Cl1177.84 (3)N2—C6—H6A108.5
N1—Pd1—Cl2177.08 (8)N2—C6—H6B108.5
C2—N1—Pd1171.1 (3)C5—C6—N2114.9 (2)
H1A—C1—H1B109.5C5—C6—H6A108.5
H1A—C1—H1C109.5C5—C6—H6B108.5
H1B—C1—H1C109.5H6A—C6—H6B107.5
C2—C1—H1A109.5H7A—C7—H7B109.5
C2—C1—H1B109.5H7A—C7—H7C109.5
C2—C1—H1C109.5H7B—C7—H7C109.5
N1—C2—C1179.3 (5)C8—C7—H7A109.5
C6—N2—C4107.4 (2)C8—C7—H7B109.5
C6—N2—C8110.8 (2)C8—C7—H7C109.5
C6—N2—C10110.5 (2)N2—C8—C7114.2 (3)
C8—N2—C4111.0 (2)N2—C8—H8A108.7
C8—N2—C10106.9 (2)N2—C8—H8B108.7
C10—N2—C4110.5 (2)C7—C8—H8A108.7
H3A—C3—H3B109.5C7—C8—H8B108.7
H3A—C3—H3C109.5H8A—C8—H8B107.6
H3B—C3—H3C109.5H9A—C9—H9B109.5
C4—C3—H3A109.5H9A—C9—H9C109.5
C4—C3—H3B109.5H9B—C9—H9C109.5
C4—C3—H3C109.5C10—C9—H9A109.5
N2—C4—H4A108.6C10—C9—H9B109.5
N2—C4—H4B108.6C10—C9—H9C109.5
C3—C4—N2114.7 (2)N2—C10—H10A108.4
C3—C4—H4A108.6N2—C10—H10B108.4
C3—C4—H4B108.6C9—C10—N2115.6 (3)
H4A—C4—H4B107.6C9—C10—H10A108.4
H5A—C5—H5B109.5C9—C10—H10B108.4
H5A—C5—H5C109.5H10A—C10—H10B107.4
C4—N2—C6—C5178.5 (3)C8—N2—C4—C352.5 (3)
C4—N2—C8—C757.2 (3)C8—N2—C6—C560.2 (3)
C4—N2—C10—C964.6 (3)C8—N2—C10—C9174.6 (3)
C6—N2—C4—C3173.7 (3)C10—N2—C4—C365.8 (3)
C6—N2—C8—C761.9 (3)C10—N2—C6—C558.0 (3)
C6—N2—C10—C954.0 (3)C10—N2—C8—C7177.7 (3)
 

Acknowledgements

AO acknowledges Newman University for providing sabbatical support.

Funding information

Funding for this research was provided by: Newman University; Wichita State University.

References

First citationAragay, G., Pons, J., García-Antón, J., Solans, X., Font-Bardia, M. & Ros, J. (2008). J. Organomet. Chem. 693, 3396–3404.  CrossRef Google Scholar
First citationArnim, H. von, Massa, W., Zinn, A. & Dehnicke, K. (1991). Z. Naturforsch. Teil B, 46, 992–998.  Google Scholar
First citationBruker (2012). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChitsaz, S., Neumüller, B. & Dehnicke, K. (2000). Z. Anorg. Allg. Chem. 626, 634–638.  CrossRef Google Scholar
First citationDemchuk, O. M., Kielar, K. & Pietrusiewicz, K. M. (2011). Pure Appl. Chem. 83, 633–644.  CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEdwards, P. G., Paisey, S. J. & Albers, T. (1998). Private communication (refcode: FEQCOT). CCDC, Cambridge, England.  Google Scholar
First citationGómez-Villarraga, F., De Tovar, J., Guerrero, M., Nolis, P., Parella, T., Lecante, P., Romero, N., Escriche, L., Bofill, R., Ros, J., Sala, X., Philippot, K. & García-Antón, J. (2017). Dalton Trans. 46, 11768–11778.  Google Scholar
First citationKelly, P. F. & Slawin, A. M. Z. (1995). Angew. Chem. Int. Ed. Engl. 34, 1758–1759.  CSD CrossRef CAS Web of Science Google Scholar
First citationKelly, P. F., Slawin, A. M. Z., Williams, D. J. & Woollins, J. D. (1991). Polyhedron, 10, 2337–2340.  CrossRef Google Scholar
First citationLee, H. M., Chiu, P. L., Hu, C.-H., Lai, C. L. & Chou, Y.-C. J. (2005). J. Organomet. Chem. 690, 403–414.  CrossRef Google Scholar
First citationMakotchenko, E. V. & Buidina, I. A. (2009). Russ. J. Coord. Chem. 35, 212–216.  CrossRef Google Scholar
First citationMalecki, J. G. (2013). Private communication (refcode: FEQCOT02). CCDC, Cambridge, England.  Google Scholar
First citationMalecki, J. G. (2017). Private communication (refcode: FEQCOT03). CCDC, Cambridge, England.  Google Scholar
First citationMaronna, A., Bindewald, E., Kaifer, E., Wadepohl, H. & Himmel, H. J. (2011). Eur. J. Inorg. Chem. pp. 1302–1314.  CrossRef Google Scholar
First citationRamirez de Arellano, R., Asensio, G., Medio-Simon, M., Rodriguez, N. & Mancha, G. (2006). Private communication (refcode: FEQCOT01). CCDC, Cambridge, England.  Google Scholar
First citationSavel'eva, Z. A., Glinskaya, L. A., Popov, S. A., Klevtsova, R. F., Tkachev, A. V. & Larionov, S. V. (2009). Russ. J. Coord. Chem. 35, 668–673.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUrankar, D., Pevec, A., Turel, I. & Košmrlj, J. (2010). Cryst. Growth Des. 10, 4920–4927.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds