metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis[N5,N7-bis­­(pyridin-2-yl)-6,7-di­hydro-5H-pyrrolo­[3,4-b]pyrazine-5,7-di­imine]­cobalt(III) perchlorate aceto­nitrile disolvate

aInstitute of Chemistry, University of Neuchâtel, Av de Bellevaux 51, CH-2000 Neuchâtel, Switzerland, and bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: helen.stoeckli-evans@unine.ch

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 2 May 2018; accepted 18 May 2018; online 25 May 2018)

In the title complex, [Co(C16H10N7)2]ClO4·2CH3CN, the cation possesses twofold rotational symmetry. The CoIII ion is located on a twofold rotation axis and is octa­hedrally coordinated to two tridentate `pincer' ligands. The Cl atom of the perchlorate anion is located on a fourfold rotoinversion axis. In the crystal, the cations are linked via C—H⋯O and C—H⋯N hydrogen bonds involving the perchlorate anion and the solvate aceto­nitrile mol­ecules. These inter­actions lead to the formation of a supra­molecular three-dimensional framework.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Symmetrically substituted isoindolines, such as 1,3-bis­(2-pyridyl­inimo)isoindoline (Schilf, 2004[Schilf, W. (2004). J. Mol. Struct. 691, 141-148.]), are ideal tridentate `pincer' ligands. For example, two isotypic cobalt(II) complexes of deprotonated 1,3-bis­(2-pyridyl­inimo)isoindoline have been synthesized and their inter­action with calf-thymus DNA studied (Selvi et al., 2005[Selvi, P. T., Stoeckli-Evans, H. & Palaniandavar, M. (2005). J. Inorg. Biochem. 99, 2110-2118.]). The same ligand has been used to form a neutral square-planar platinum(II) complex that has a bright-orange to red room temperature luminescence in fluid di­chloro­methane solutions (Wen et al., 2010[Wen, H.-M., Wu, Y.-H., Fan, Y., Zhang, L.-Y., Chen, C.-N. & Chen, Z.-N. (2010). Inorg. Chem. 49, 2210-2221.]).

The pyrazine analogue of 1,3-bis­(2-pyridyl­inimo)isoindoline, viz. (5Z,7Z)-N5,N7-di(pyridin-2-yl)-5H-pyrrolo­[3,4-b]pyrazine-5,7(6H)-di­imine (L) (Posel & Stoeckli-Evans, 2018[Posel, M. & Stoeckli-Evans, H. (2018). IUCrData, 3, x180682.]), was synthesized in order to study its coordination behaviour with transition metals (Posel, 1998[Posel, M. (1998). PhD thesis, University of Neuchâtel, Switzerland.]). Herein, we describe one such complex synthesized by the reaction of L with cobalt perchlorate.

The mol­ecular structure of the title complex cation is illus­trated in Fig. 1[link]. It possesses twofold rotational symmetry with the cobalt atom located on a twofold rotation axis. It is ligated by six N atoms from two deprotonated tridentate L ligands, hence it has an almost perfect octa­hedral coordination sphere. The Co—Nimine bond length (Co1—N5) is 1.885 (5) Å, shorter than the Co—Npyridine bond lengths (Co1—N4 and Co1—N7) of 1.983 (6) and 1.979 (5) Å. These bond lengths are very similar to those observed in the two isotypic bis­(1,3-bis­(2-pyridyl­imino)­isoindoline)cobalt(III) perchlorate methanol solvate complexes mentioned above (space groups C2 and P21/c), where the Co—Nimine bond lengths vary from ca 1.885 to 1.890 Å, and the Co—Npyridine bond lengths vary from ca 1.971 to 1.986 Å.

[Figure 1]
Figure 1
The mol­ecular structure of the cation of the title complex, with atom labelling and displacement ellipsoids drawn at the 50% probability level. Unlabelled atoms are related to labelled atoms by the twofold rotation symmetry operation −x + [{1\over 2}], y, −z + [{3\over 4}].

On coordination, the ligand mol­ecules are extremely twisted compared to the situation in the free ligand, which is relatively planar with an r.m.s. deviation of 0.061 Å for all 23 non-H atoms (Posel & Stoeckli-Evans, 2018[Posel, M. & Stoeckli-Evans, H. (2018). IUCrData, 3, x180682.]). In the complex cation, the pyridine rings (N4/C6–C10) and (N7/C12–C16) are inclined to the mean plane of the pyrrolo­pyrazine unit (N1/N2/N5/C1–C5/C11) by 28.3 (3) and 30.9 (3)°, respectively, and by 53.6 (3)° to each other. This arrangement is similar to that observed for the isotypic bis­(1,3-bis­(2-pyridyl­imino)­isoindoline)cobalt(III) perchlorate methanol solvate complexes mentioned above.

In the crystal, the cations are linked via C—H⋯Operchlorate and C—H⋯Naceto­nitrile hydrogen bonds, forming a supra­molecular three-dimensional framework (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯N8 0.93 2.61 3.372 (12) 139
C14—H14⋯O1i 0.93 2.55 3.256 (13) 133
C16—H16⋯O3ii 0.93 2.51 3.213 (19) 133
C18—H18C⋯O2 0.96 2.42 3.31 (3) 154
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, -z+{\script{1\over 4}}]; (ii) [y, x+{\script{1\over 2}}, z+{\script{1\over 4}}].
[Figure 2]
Figure 2
A view along the c axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines [see Table 1[link]; only the H atoms (grey balls) involved in hydrogen bonding have been included].

There are small cavities in the crystal structure, with a total potential solvent area volume of ca 72 Å3 (ca 1% of the unit-cell volume). They are represented in brown–yellow in Fig. 3[link]. There is no evidence of any residual electron density being present in these cavities on examination of the final difference-Fourier map (see Table 2[link]).

Table 2
Experimental details

Crystal data
Chemical formula [Co(C16H10N7)2]ClO4·2C2H3N
Mr 841.11
Crystal system, space group Tetragonal, I[\overline{4}]2d
Temperature (K) 293
a, c (Å) 19.9756 (17), 18.3409 (18)
V3) 7318.5 (14)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.61
Crystal size (mm) 0.61 × 0.57 × 0.51
 
Data collection
Diffractometer Stoe–Siemens AED2 4-circle
Absorption correction
No. of measured, independent and observed [I > 2σ(I)] reflections 3245, 3148, 2352
Rint 0.046
(sin θ/λ)max−1) 0.594
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.113, 0.98
No. of reflections 3148
No. of parameters 273
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.28, −0.30
Absolute structure Flack x determined using 815 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.05 (3)
Computer programs: STADI4 and X-RED (Stoe & Cie, 1997[Stoe & Cie (1997). STADI4 and X-RED. Stoe & Cie GmbH, Damstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).
[Figure 3]
Figure 3
A view along the c axis of the crystal packing of the title compound. The small cavities in the crystal structure are represented in yellow–brown (Mercury; Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Synthesis and crystallization

The title compound was synthesized by the reaction of (5Z,7Z)-N5,N7-di(pyridin-2-yl)-5H-pyrrolo­[3,4-b]pyrazine-5,7(6H)-di­imine (L) (Posel & Stoeckli-Evans, 2018[Posel, M. & Stoeckli-Evans, H. (2018). IUCrData, 3, x180682.]) with Co(ClO4)2.

In a round-bottomed flask were mixed 0.0646 g (0.00021 mol) of ligand L in 7 ml of dry methanol and 0.1 ml of tri­ethyl­amine. Then a solution of 0.0366 g (0.0001 mol) of Co(ClO4)2·6H2O in 3 ml of dry methanol was added. The mixture was stirred at room temperature for 48 h. The main product, a brown–black powder, was filtered off and dried in a vacuum desiccator over silica (yield ∼0.03 g, 36%; m.p. >623 K). This solid was then used for recrystallization from a mixture of aceto­nitrile/methanol (1/1, v/v), which gave a small amount of brown–black block-like crystals. Analysis for [(C16H10N7)2Co]·ClO4·2(CH3CN) (840.0931 g mol−1): calculated C 51.47, H 3.12, N 26.65%; found C 50.68, H 3.11, N 26.18%. IR (KBr pellet. cm−1): 2244, 1611, 1579, 1537, 1450, 1359, 1221, 1144, 1089, 782, 748, 650, 548, 437.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The Cl atom of the perchlorate anion is located on a fourfold rotoinversion axis, and two O atoms (O2 and O3) are partially disordered (occupancies of 0.5 each). The intensity data were measured at room temperature using a four-circle diffractometer. No absorption correction was applied as there were no suitable reflections for ψ scans.

Structural data


Computing details top

Data collection: STADI4 (Stoe & Cie, 1997); cell refinement: STADI4 (Stoe & Cie, 1997); data reduction: X-RED (Stoe & Cie, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Bis[N5,N7-bis(pyridin-2-yl)-6,7-dihydro-5H-pyrrolo[3,4-b]pyrazine-5,7-diimine]cobalt(III) perchlorate acetonitrile disolvate top
Crystal data top
[Co(C16H10N7)2]ClO4·2C2H3NDx = 1.527 Mg m3
Mr = 841.11Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I42dCell parameters from 18 reflections
a = 19.9756 (17) Åθ = 14.0–17.5°
c = 18.3409 (18) ŵ = 0.61 mm1
V = 7318.5 (14) Å3T = 293 K
Z = 8Block, brown–black
F(000) = 34400.61 × 0.57 × 0.51 mm
Data collection top
Stoe–Siemens AED2 4-circle
diffractometer
Rint = 0.046
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.0°
Plane graphite monochromatorh = 1616
ω/2θ scansk = 023
3245 measured reflectionsl = 021
3148 independent reflections2 standard reflections every 60 min
2352 reflections with I > 2σ(I) intensity decay: 2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0532P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.001
3148 reflectionsΔρmax = 0.28 e Å3
273 parametersΔρmin = 0.30 e Å3
0 restraintsAbsolute structure: Flack x determined using 815 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (3)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.2500000.32578 (6)0.3750000.0317 (3)
N10.4124 (3)0.3449 (3)0.1426 (3)0.0523 (16)
N20.4962 (3)0.2988 (3)0.2590 (3)0.0496 (16)
N30.4069 (3)0.2768 (3)0.3910 (3)0.0383 (13)
N40.2948 (3)0.2569 (3)0.4357 (3)0.0356 (12)
N50.3249 (3)0.3256 (3)0.3125 (2)0.0333 (12)
N60.2759 (3)0.3747 (3)0.2050 (3)0.0410 (14)
N70.2088 (3)0.3960 (3)0.3135 (3)0.0355 (13)
C10.4774 (4)0.3335 (4)0.1360 (4)0.059 (2)
H10.4967930.3400280.0904210.071*
C20.5184 (4)0.3124 (4)0.1922 (4)0.056 (2)
H20.5638720.3074310.1828860.067*
C30.4310 (3)0.3115 (3)0.2660 (4)0.0373 (16)
C40.3912 (3)0.3331 (3)0.2099 (3)0.0375 (16)
C50.3881 (3)0.3036 (3)0.3308 (3)0.0338 (16)
C60.3625 (3)0.2532 (4)0.4425 (3)0.0388 (15)
C70.3912 (4)0.2167 (4)0.5000 (4)0.061 (2)
H70.4374560.2168340.5058940.074*
C80.3531 (4)0.1815 (5)0.5469 (4)0.068 (3)
H80.3724970.1586730.5857430.082*
C90.2845 (4)0.1798 (4)0.5360 (4)0.059 (2)
H90.2570890.1540500.5658740.071*
C100.2578 (4)0.2170 (3)0.4802 (4)0.0450 (17)
H100.2118850.2147840.4724610.054*
C110.3235 (4)0.3455 (3)0.2405 (3)0.0355 (15)
C120.2207 (3)0.4021 (3)0.2399 (4)0.0361 (16)
C130.1813 (4)0.4438 (3)0.1971 (4)0.0410 (17)
H130.1879050.4453730.1469470.049*
C140.1324 (4)0.4828 (4)0.2286 (4)0.0503 (19)
H140.1045800.5092490.1999380.060*
C150.1255 (4)0.4820 (4)0.3025 (4)0.0489 (19)
H150.0960830.5113100.3253680.059*
C160.1623 (3)0.4377 (3)0.3429 (4)0.0406 (17)
H160.1551660.4360120.3929200.049*
N80.1199 (5)0.1258 (4)0.4430 (5)0.097 (3)
C170.0661 (6)0.1296 (5)0.4271 (5)0.072 (3)
C180.0026 (5)0.1357 (6)0.4052 (6)0.092 (3)
H18A0.0132820.1820720.3980600.138*
H18B0.0309700.1173740.4424380.138*
H18C0.0094400.1116910.3604760.138*
Cl10.0000000.0000000.21977 (17)0.0721 (9)
O10.0549 (4)0.0048 (9)0.1770 (6)0.185 (5)
O20.0216 (13)0.011 (2)0.2881 (8)0.175 (12)0.5
O30.0089 (16)0.0710 (8)0.2249 (8)0.179 (11)0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0355 (7)0.0326 (7)0.0270 (6)0.0000.0011 (6)0.000
N10.061 (4)0.058 (4)0.038 (4)0.008 (3)0.012 (3)0.003 (3)
N20.040 (3)0.056 (4)0.053 (4)0.004 (3)0.003 (3)0.000 (3)
N30.037 (3)0.041 (3)0.037 (3)0.001 (2)0.007 (3)0.007 (3)
N40.041 (3)0.035 (3)0.031 (3)0.002 (3)0.002 (2)0.002 (3)
N50.036 (3)0.037 (3)0.027 (3)0.004 (3)0.002 (3)0.000 (2)
N60.047 (3)0.044 (3)0.032 (3)0.010 (3)0.003 (3)0.002 (3)
N70.038 (3)0.033 (3)0.035 (3)0.001 (3)0.001 (3)0.002 (3)
C10.060 (5)0.073 (5)0.044 (5)0.008 (4)0.025 (4)0.000 (4)
C20.045 (5)0.069 (6)0.054 (5)0.002 (4)0.016 (4)0.005 (4)
C30.040 (4)0.032 (4)0.041 (4)0.003 (3)0.003 (3)0.002 (3)
C40.051 (4)0.033 (4)0.029 (4)0.004 (3)0.005 (3)0.003 (3)
C50.035 (4)0.031 (4)0.035 (4)0.001 (3)0.003 (3)0.003 (3)
C60.043 (4)0.036 (4)0.037 (4)0.000 (4)0.003 (3)0.004 (3)
C70.055 (5)0.073 (5)0.056 (5)0.004 (4)0.010 (4)0.022 (5)
C80.067 (6)0.089 (7)0.049 (5)0.009 (5)0.004 (4)0.039 (5)
C90.073 (6)0.049 (5)0.054 (5)0.006 (4)0.014 (4)0.023 (4)
C100.056 (5)0.033 (3)0.045 (4)0.000 (4)0.008 (4)0.008 (3)
C110.044 (4)0.036 (4)0.026 (3)0.003 (3)0.000 (3)0.004 (3)
C120.038 (4)0.035 (4)0.035 (4)0.003 (3)0.004 (3)0.001 (3)
C130.047 (4)0.040 (4)0.036 (4)0.002 (3)0.004 (3)0.011 (3)
C140.040 (4)0.050 (5)0.061 (5)0.005 (4)0.013 (4)0.019 (4)
C150.047 (5)0.036 (4)0.063 (5)0.008 (3)0.004 (4)0.008 (4)
C160.037 (4)0.040 (4)0.045 (4)0.005 (3)0.003 (3)0.000 (3)
N80.091 (6)0.081 (6)0.118 (8)0.002 (6)0.028 (6)0.002 (6)
C170.087 (8)0.063 (6)0.067 (6)0.002 (6)0.009 (6)0.015 (5)
C180.070 (7)0.111 (8)0.096 (8)0.010 (6)0.009 (6)0.027 (7)
Cl10.059 (2)0.108 (3)0.0493 (18)0.010 (2)0.0000.000
O10.067 (5)0.343 (17)0.146 (8)0.008 (8)0.010 (6)0.002 (10)
O20.19 (3)0.26 (3)0.075 (10)0.08 (2)0.008 (12)0.076 (19)
O30.40 (4)0.071 (11)0.066 (10)0.060 (16)0.005 (17)0.004 (9)
Geometric parameters (Å, º) top
Co1—N5i1.885 (5)C7—H70.9300
Co1—N51.885 (5)C8—C91.386 (11)
Co1—N71.979 (5)C8—H80.9300
Co1—N7i1.979 (5)C9—C101.372 (10)
Co1—N41.983 (6)C9—H90.9300
Co1—N4i1.983 (6)C10—H100.9300
N1—C11.325 (9)C12—C131.389 (9)
N1—C41.326 (8)C13—C141.375 (10)
N2—C21.331 (9)C13—H130.9300
N2—C31.332 (8)C14—C151.363 (11)
N3—C51.284 (8)C14—H140.9300
N3—C61.378 (8)C15—C161.368 (9)
N4—C101.359 (8)C15—H150.9300
N4—C61.361 (8)C16—H160.9300
N5—C51.378 (8)N8—C171.116 (11)
N5—C111.381 (7)C17—C181.436 (14)
N6—C111.291 (8)C18—H18A0.9600
N6—C121.387 (8)C18—H18B0.9600
N7—C161.357 (8)C18—H18C0.9600
N7—C121.377 (8)Cl1—O2ii1.343 (15)
C1—C21.383 (11)Cl1—O21.343 (15)
C1—H10.9300Cl1—O11.352 (9)
C2—H20.9300Cl1—O1ii1.352 (9)
C3—C41.371 (9)Cl1—O31.433 (16)
C3—C51.473 (9)Cl1—O3ii1.433 (16)
C4—C111.485 (9)O2—O2ii0.96 (4)
C6—C71.406 (10)O2—O31.69 (4)
C7—C81.346 (11)
N5i—Co1—N5179.7 (3)C9—C8—H8120.7
N5i—Co1—N791.0 (2)C10—C9—C8118.6 (8)
N5—Co1—N789.2 (2)C10—C9—H9120.7
N5i—Co1—N7i89.2 (2)C8—C9—H9120.7
N5—Co1—N7i91.0 (2)N4—C10—C9123.7 (7)
N7—Co1—N7i89.7 (3)N4—C10—H10118.1
N5i—Co1—N490.9 (2)C9—C10—H10118.1
N5—Co1—N488.9 (2)N6—C11—N5128.9 (6)
N7—Co1—N4177.8 (2)N6—C11—C4123.8 (6)
N7i—Co1—N489.1 (2)N5—C11—C4107.1 (6)
N5i—Co1—N4i88.9 (2)N7—C12—N6123.7 (6)
N5—Co1—N4i90.9 (2)N7—C12—C13120.6 (6)
N7—Co1—N4i89.1 (2)N6—C12—C13115.3 (6)
N7i—Co1—N4i177.8 (2)C14—C13—C12120.3 (7)
N4—Co1—N4i92.1 (3)C14—C13—H13119.8
C1—N1—C4111.6 (7)C12—C13—H13119.8
C2—N2—C3112.0 (6)C15—C14—C13118.9 (7)
C5—N3—C6122.9 (6)C15—C14—H14120.6
C10—N4—C6116.9 (6)C13—C14—H14120.6
C10—N4—Co1120.0 (5)C14—C15—C16119.4 (7)
C6—N4—Co1122.5 (5)C14—C15—H15120.3
C5—N5—C11110.1 (5)C16—C15—H15120.3
C5—N5—Co1125.5 (4)N7—C16—C15123.4 (7)
C11—N5—Co1124.4 (4)N7—C16—H16118.3
C11—N6—C12122.1 (5)C15—C16—H16118.3
C16—N7—C12116.9 (6)N8—C17—C18178.5 (14)
C16—N7—Co1119.6 (4)C17—C18—H18A109.5
C12—N7—Co1123.3 (5)C17—C18—H18B109.5
N1—C1—C2124.4 (7)H18A—C18—H18B109.5
N1—C1—H1117.8C17—C18—H18C109.5
C2—C1—H1117.8H18A—C18—H18C109.5
N2—C2—C1123.5 (7)H18B—C18—H18C109.5
N2—C2—H2118.2O2ii—Cl1—O242.0 (16)
C1—C2—H2118.2O2ii—Cl1—O1107.0 (12)
N2—C3—C4123.7 (6)O2—Cl1—O1142.4 (15)
N2—C3—C5128.7 (6)O2ii—Cl1—O1ii142.4 (15)
C4—C3—C5107.5 (6)O2—Cl1—O1ii107.0 (12)
N1—C4—C3124.7 (6)O1—Cl1—O1ii109.0 (9)
N1—C4—C11127.8 (6)O2ii—Cl1—O397.7 (19)
C3—C4—C11107.3 (5)O2—Cl1—O375.1 (18)
N3—C5—N5127.5 (6)O1—Cl1—O394.0 (14)
N3—C5—C3124.7 (6)O1ii—Cl1—O390.4 (13)
N5—C5—C3107.7 (5)O2ii—Cl1—O3ii75.1 (18)
N4—C6—N3124.0 (6)O2—Cl1—O3ii97.7 (19)
N4—C6—C7120.1 (6)O1—Cl1—O3ii90.4 (13)
N3—C6—C7115.4 (6)O1ii—Cl1—O3ii94.0 (14)
C8—C7—C6121.4 (8)O3—Cl1—O3ii172.5 (13)
C8—C7—H7119.3O2ii—O2—Cl169.0 (8)
C6—C7—H7119.3O2ii—O2—O3100 (4)
C7—C8—C9118.7 (8)Cl1—O2—O354.9 (13)
C7—C8—H8120.7Cl1—O3—O250.0 (10)
N7—Co1—N5—C5157.8 (5)C6—N4—C10—C97.6 (10)
N7i—Co1—N5—C568.1 (5)Co1—N4—C10—C9163.8 (5)
N4—Co1—N5—C521.0 (5)C8—C9—C10—N41.6 (12)
N4i—Co1—N5—C5113.1 (5)C12—N6—C11—N512.3 (10)
N7—Co1—N5—C1124.6 (5)C12—N6—C11—C4161.7 (6)
N7i—Co1—N5—C11114.3 (5)C5—N5—C11—N6172.9 (6)
N4—Co1—N5—C11156.6 (5)Co1—N5—C11—N69.2 (9)
N4i—Co1—N5—C1164.5 (5)C5—N5—C11—C41.9 (7)
C4—N1—C1—C20.6 (11)Co1—N5—C11—C4176.0 (4)
C3—N2—C2—C13.5 (11)N1—C4—C11—N64.7 (11)
N1—C1—C2—N22.7 (13)C3—C4—C11—N6170.5 (6)
C2—N2—C3—C42.8 (10)N1—C4—C11—N5179.9 (6)
C2—N2—C3—C5179.5 (7)C3—C4—C11—N54.6 (7)
C1—N1—C4—C30.2 (10)C16—N7—C12—N6165.1 (6)
C1—N1—C4—C11174.3 (7)Co1—N7—C12—N620.1 (9)
N2—C3—C4—N11.1 (11)C16—N7—C12—C137.1 (9)
C5—C3—C4—N1179.2 (6)Co1—N7—C12—C13167.8 (5)
N2—C3—C4—C11176.5 (6)C11—N6—C12—N75.7 (10)
C5—C3—C4—C115.4 (7)C11—N6—C12—C13166.8 (6)
C6—N3—C5—N513.9 (11)N7—C12—C13—C144.1 (10)
C6—N3—C5—C3161.2 (6)N6—C12—C13—C14168.6 (6)
C11—N5—C5—N3174.4 (6)C12—C13—C14—C152.9 (11)
Co1—N5—C5—N33.4 (10)C13—C14—C15—C166.7 (12)
C11—N5—C5—C31.4 (7)C12—N7—C16—C153.3 (10)
Co1—N5—C5—C3179.3 (4)Co1—N7—C16—C15171.8 (6)
N2—C3—C5—N36.4 (11)C14—C15—C16—N73.6 (11)
C4—C3—C5—N3171.6 (6)O1—Cl1—O2—O2ii43 (7)
N2—C3—C5—N5177.6 (6)O1ii—Cl1—O2—O2ii154 (5)
C4—C3—C5—N54.4 (7)O3—Cl1—O2—O2ii120 (6)
C10—N4—C6—N3163.4 (6)O3ii—Cl1—O2—O2ii57 (5)
Co1—N4—C6—N325.4 (10)O2ii—Cl1—O2—O3120 (6)
C10—N4—C6—C78.6 (10)O1—Cl1—O2—O377 (2)
Co1—N4—C6—C7162.6 (6)O1ii—Cl1—O2—O385.8 (18)
C5—N3—C6—N41.4 (11)O3ii—Cl1—O2—O3177.6 (4)
C5—N3—C6—C7170.9 (7)O2ii—Cl1—O3—O236 (3)
N4—C6—C7—C84.0 (13)O1—Cl1—O3—O2143.4 (14)
N3—C6—C7—C8168.7 (8)O1ii—Cl1—O3—O2107.5 (13)
C6—C7—C8—C92.2 (14)O2ii—O2—O3—Cl155 (4)
C7—C8—C9—C103.4 (14)
Symmetry codes: (i) x+1/2, y, z+3/4; (ii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···N80.932.613.372 (12)139
C14—H14···O1iii0.932.553.256 (13)133
C16—H16···O3iv0.932.513.213 (19)133
C18—H18C···O20.962.423.31 (3)154
Symmetry codes: (iii) x, y+1/2, z+1/4; (iv) y, x+1/2, z+1/4.
 

Funding information

We are grateful to the Swiss National Science Foundation and the University of Neuchâtel for financial support.

References

First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPosel, M. (1998). PhD thesis, University of Neuchâtel, Switzerland.  Google Scholar
First citationPosel, M. & Stoeckli-Evans, H. (2018). IUCrData, 3, x180682.  Google Scholar
First citationSchilf, W. (2004). J. Mol. Struct. 691, 141–148.  Web of Science CSD CrossRef CAS Google Scholar
First citationSelvi, P. T., Stoeckli-Evans, H. & Palaniandavar, M. (2005). J. Inorg. Biochem. 99, 2110–2118.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1997). STADI4 and X-RED. Stoe & Cie GmbH, Damstadt, Germany.  Google Scholar
First citationWen, H.-M., Wu, Y.-H., Fan, Y., Zhang, L.-Y., Chen, C.-N. & Chen, Z.-N. (2010). Inorg. Chem. 49, 2210–2221.  CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds