organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ethyl 2-(3-oxo-1,2,3,4-tetra­hydro­quinoxalin-2-yl)acetate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique, Centre de Recherche des Sciences des Médicaments, URAC 21, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bLaboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco, and cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: ab.nadeem2018@gmail.com

Edited by O. Blacque, University of Zürich, Switzerland (Received 3 April 2018; accepted 17 April 2018; online 19 April 2018)

In the title compound, C12H14N2O3, the conformation of the ester substituent is partially determined by an intra­molecular N—H⋯O hydrogen bond. The crystal packing consists of layers parallel to ([\overline{1}]12) held together by N—H⋯O and C—H⋯O hydrogen bonds. The CH/NH portion of the heterocyclic ring is disordered over two sites in a 0.930 (5):0.070 (5) ratio with the disorder also extending to the O atom involved in the intramolecular N—H⋯O hydrogen bond.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Quinoxaline derivatives exhibit a variety of biological activities including anti­cancer (Lindsley et al., 2005[Lindsley, C. W., Zhao, Z., Leister, W. H., Robinson, R. G., Barnett, S. F., Defeo-Jones, D., Jones, R. E., Hartman, G. D., Huff, J. R., Huber, H. E. & Duggan, M. E. (2005). Bioorg. Med. Chem. Lett. 15, 761-764.]; Carta et al., 2006[Carta, A., Loriga, M., Piras, S., Paglietti, G., La Colla, P., Busonera, B., Collu, G. & Loddo, R. (2006). Med. Chem. 2, 113-122.]), anti­diabetic (Gupta et al., 2005[Gupta, D., Ghosh, N. N. & Chandra, R. (2005). Bioorg. Med. Chem. Lett. 15, 1019-1022.]), anti­microbial (Singh et al., 2010[Singh, D. P., Deivedi, S. K., Hashim, S. R. & Singhal, R. G. (2010). Pharmaceuticals. 3, 2416-2425.]), anti-inflammatory (El-Sabbagh et al., 2009[El-Sabbagh, O. I., El-Sadek, M. E., Lashine, S. M., Yassin, S. H. & El-Nabtity, S. M. (2009). Med. Chem. Res. 18, 782-797.]) and anti-malarial (Guillon et al., 2004[Guillon, J., Grellier, P., Labaied, M., Sonnet, P., Léger, J. M., Déprez-Poulain, R., Forfar-Bares, I., Dallemagne, P., Lemaître, N., Péhourcq, F., Rochette, J., Sergheraert, C. & Jarry, C. (2004). J. Med. Chem. 47, 1997-2009.]). Moreover, they are used as fungicides, insecticides and herbicides (Sakata et al., 1988[Sakata, G., Makino, K. & Kurasawa, Y. (1988). Heterocycles, 27(10), 2481-2515.]). The numerous applications of quinoxalines has prompted researchers to develop efficient methods to synthesize new derivatives likely to present inter­esting activities (Ramli et al., 2018[Ramli, Y., El Bakri, Y., El Ghayati, L., Essassi, E. M. & Mague, J. T. (2018). IUCrData, 3, x180390.]). We report in this work the synthesis and crystal structure of the title compound (Fig. 1[link]).

[Figure 1]
Figure 1
The title mol­ecule with labeling scheme and 50% probability ellipsoids. The intra­molecular hydrogen bond is depicted by a dashed line. Only the major component of the disorder is shown.

A puckering analysis of the heterocyclic ring yielded the parameters Q = 0.421 (3) Å, θ = 119.1 (4)° and φ = 34.3 (4)° for the major component. The orientation of the ester substituent is partially determined by the intra­molecular N2—H2A⋯O2 hydrogen bond. In the crystal, pairs of N1—H1A⋯O1 hydrogen bonds form inversion dimers, which are linked into chains by inversion-related C11—H11B⋯O2 hydrogen bonds. The chains are formed into layers parallel to ([\overline{1}]12) by C3—H3⋯O3 hydrogen bonds (Table 1[link] and Fig. 2[link]). The layers are linked to one another by C8—H8⋯O1 and C9—H9A⋯O2 hydrogen bonds (Table 1[link] and Figs. 3[link] and 4[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.87 (3) 1.99 (4) 2.866 (3) 177 (3)
N2—H2A⋯O2 0.91 2.14 2.816 (3) 130
C3—H3⋯O3ii 0.95 (3) 2.59 (3) 3.508 (3) 165 (2)
C8—H8⋯O1iii 1.00 2.55 3.443 (4) 148
C9—H9A⋯O2iv 0.99 2.52 3.367 (4) 144
C11—H11B⋯O2v 0.97 (2) 2.58 (3) 3.199 (3) 121.9 (18)
Symmetry codes: (i) -x, -y+1, -z; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x-1, y, z; (v) -x+1, -y, -z+1.
[Figure 2]
Figure 2
Plan view of a portion of one layer with N—H⋯O and C—H⋯O hydrogen bonds shown, respectively, by blue and black dashed lines.
[Figure 3]
Figure 3
Elevation view of the stacked layers with hydrogen bonds shown as in Fig. 2[link].
[Figure 4]
Figure 4
Packing projected onto (122) with hydrogen bonds shown as in Fig. 2[link].

Synthesis and crystallization

A mixture of ethyl-2-(3-oxo-3,4-di­hydro­quinoxalin-2-yl)acetate (1 g) with Pd/C catalyst in ethanol was stirred for 10 h in presence of hydrogen. The reaction mixture was filtered and the solvent was removed under pressure. The residue obtained was recrystallized from ethanol to afford the title mol­ecule as yellow crystals.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C8/N2 portion of the heterocyclic ring is disordered over two sites in a 0.930 (5):0.070 (5) ratio with the disorder also extending to O2. The two components were refined subject to restraints that their geometries be comparable and the affected hydrogen atoms were included as riding contributions in idealized positions. The two noticeable residual peaks in the final difference map are attributed to errors resulting from neglect of the other minor components of the crystal.

Table 2
Experimental details

Crystal data
Chemical formula C12H14N2O3
Mr 234.25
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 4.8082 (18), 8.260 (3), 14.413 (6)
α, β, γ (°) 84.072 (7), 81.473 (5), 85.140 (5)
V3) 561.7 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.19 × 0.14 × 0.13
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (TWINABS; Sheldrick, 2009[Sheldrick, G. M. (2009). TWINABS, University of Göttingen, Göttingen, Germany.])
Tmin, Tmax 0.98, 0.99
No. of measured, independent and observed [I > 2σ(I)] reflections 9489, 9489, 4504
Rint 0.028
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.213, 1.03
No. of reflections 9489
No. of parameters 205
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.16, −0.82
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Ethyl 2-(3-oxo-1,2,3,4-tetrahydroquinoxalin-2-yl)acetate top
Crystal data top
C12H14N2O3Z = 2
Mr = 234.25F(000) = 248
Triclinic, P1Dx = 1.385 Mg m3
a = 4.8082 (18) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.260 (3) ÅCell parameters from 2025 reflections
c = 14.413 (6) Åθ = 2.8–28.2°
α = 84.072 (7)°µ = 0.10 mm1
β = 81.473 (5)°T = 100 K
γ = 85.140 (5)°Block, yellow
V = 561.7 (4) Å30.19 × 0.14 × 0.13 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
9489 independent reflections
Radiation source: fine-focus sealed tube4504 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 8.3333 pixels mm-1θmax = 28.3°, θmin = 1.4°
ω scansh = 66
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2009)
k = 1010
Tmin = 0.98, Tmax = 0.99l = 1919
9489 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: mixed
wR(F2) = 0.213H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.1018P)2]
where P = (Fo2 + 2Fc2)/3
9489 reflections(Δ/σ)max < 0.001
205 parametersΔρmax = 1.16 e Å3
4 restraintsΔρmin = 0.82 e Å3
Special details top

Experimental. The diffraction data were collected in three sets of 363 frames (0.5° width in ω) at φ = 0, 120 and 240°. A scan time of 60 sec/frame was used. Analysis of 564 reflections having I/σ(I) > 12 and chosen from the full data set with CELL_NOW (Sheldrick, 2008) showed the crystal to belong to the triclinic system and to consist of one major component and several minor components rotated from the former by ca. 7° about non-special axes. After several trials, it was decided to treat the crystal as having one major and one minor component rotsted from the first by 7.3° about the real axis 1, -0.42, 0. The raw data were processed using the multi-component version of SAINT under control of the two-component orientation file generated by CELL_NOW.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Refined as a 2-component twin. The heterocyclic ring is disordered over two conformations in a 93:7 ratio which also affects the position of O2. The two components were refined subject to restraints that their geometries be comparable and the affected hydrogen atoms were included as riding contributions in idealized positions. The two noticeable residual peaks in the final difference map are attributed to errors resulting from neglect of the other minor components of the crystal.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.0170 (4)0.3173 (2)0.08301 (11)0.0292 (5)
O20.4815 (5)0.1288 (3)0.36066 (16)0.0296 (6)0.930 (5)
O2A0.370 (7)0.165 (3)0.3836 (18)0.0296 (6)0.070 (5)
O30.1574 (3)0.0537 (2)0.36597 (11)0.0265 (5)
N10.2161 (4)0.5434 (3)0.08754 (15)0.0246 (5)
H1A0.151 (6)0.589 (3)0.037 (2)0.042 (8)*
N20.3448 (6)0.4290 (3)0.26056 (15)0.0257 (7)0.930 (5)
H2A0.4341120.3805950.3087270.031*0.930 (5)
N2A0.455 (6)0.4000 (8)0.236 (3)0.0257 (7)0.070 (5)
H2AA0.5296000.3867390.2904850.031*0.070 (5)
C10.4714 (5)0.5695 (3)0.21646 (17)0.0253 (6)
C20.6484 (6)0.6542 (3)0.25833 (18)0.0277 (6)
H20.707 (6)0.607 (3)0.3173 (19)0.029 (7)*
C30.7476 (6)0.8000 (3)0.21482 (19)0.0300 (6)
H30.867 (6)0.855 (3)0.2458 (19)0.032 (7)*
C40.6712 (6)0.8619 (3)0.12873 (19)0.0297 (6)
H40.743 (6)0.962 (3)0.1001 (18)0.033 (7)*
C50.4964 (6)0.7775 (3)0.08525 (19)0.0280 (6)
H50.445 (6)0.816 (3)0.026 (2)0.036 (8)*
C60.3965 (5)0.6312 (3)0.12848 (17)0.0234 (6)
C70.1471 (5)0.3917 (3)0.11900 (16)0.0245 (6)
C80.3030 (7)0.3082 (3)0.19800 (18)0.0240 (7)0.930 (5)
H80.4921950.2631760.1692240.029*0.930 (5)
C90.1434 (5)0.1686 (3)0.25015 (17)0.0257 (6)0.930 (5)
H9A0.0491920.2110360.2748070.031*0.930 (5)
H9B0.1257120.0884600.2051560.031*0.930 (5)
C8A0.181 (6)0.3479 (12)0.224 (3)0.0240 (7)0.070 (5)
H8A0.0314270.4122890.2628720.029*0.070 (5)
C9A0.1434 (5)0.1686 (3)0.25015 (17)0.0257 (6)0.070 (5)
H9A10.0615790.1552810.2649190.031*0.070 (5)
H9A20.2133380.1103270.1936410.031*0.070 (5)
C100.2804 (5)0.0826 (3)0.33062 (17)0.0245 (6)
C110.2761 (6)0.1435 (3)0.44557 (18)0.0275 (6)
H11A0.480 (6)0.166 (3)0.4238 (17)0.028 (7)*
H11B0.251 (5)0.072 (3)0.4957 (17)0.021 (6)*
C120.1264 (7)0.2975 (4)0.4700 (2)0.0343 (7)
H12A0.205 (6)0.360 (3)0.523 (2)0.042 (8)*
H12B0.153 (6)0.359 (3)0.416 (2)0.041 (8)*
H12C0.079 (7)0.271 (3)0.491 (2)0.048 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0317 (10)0.0317 (11)0.0274 (10)0.0096 (8)0.0131 (8)0.0007 (7)
O20.0261 (12)0.0338 (12)0.0317 (12)0.0077 (10)0.0134 (10)0.0021 (9)
O2A0.0261 (12)0.0338 (12)0.0317 (12)0.0077 (10)0.0134 (10)0.0021 (9)
O30.0274 (10)0.0273 (10)0.0264 (9)0.0055 (8)0.0115 (7)0.0038 (7)
N10.0268 (12)0.0270 (12)0.0218 (11)0.0045 (9)0.0103 (9)0.0010 (9)
N20.0304 (16)0.0263 (12)0.0222 (13)0.0056 (11)0.0102 (10)0.0010 (9)
N2A0.0304 (16)0.0263 (12)0.0222 (13)0.0056 (11)0.0102 (10)0.0010 (9)
C10.0261 (13)0.0239 (14)0.0269 (13)0.0022 (10)0.0076 (10)0.0019 (10)
C20.0296 (14)0.0290 (15)0.0275 (13)0.0040 (11)0.0112 (11)0.0040 (11)
C30.0277 (14)0.0302 (15)0.0356 (15)0.0040 (11)0.0102 (11)0.0096 (11)
C40.0299 (14)0.0237 (14)0.0360 (15)0.0065 (11)0.0049 (11)0.0011 (11)
C50.0293 (14)0.0283 (15)0.0273 (13)0.0037 (11)0.0081 (11)0.0005 (11)
C60.0207 (13)0.0240 (13)0.0268 (13)0.0026 (10)0.0063 (10)0.0033 (10)
C70.0234 (13)0.0286 (14)0.0228 (12)0.0043 (10)0.0064 (10)0.0020 (10)
C80.0243 (16)0.0261 (15)0.0237 (14)0.0057 (12)0.0087 (11)0.0018 (11)
C90.0259 (13)0.0265 (14)0.0266 (13)0.0056 (11)0.0103 (10)0.0008 (10)
C8A0.0243 (16)0.0261 (15)0.0237 (14)0.0057 (12)0.0087 (11)0.0018 (11)
C9A0.0259 (13)0.0265 (14)0.0266 (13)0.0056 (11)0.0103 (10)0.0008 (10)
C100.0232 (13)0.0264 (14)0.0249 (12)0.0031 (10)0.0056 (10)0.0028 (10)
C110.0284 (15)0.0296 (15)0.0259 (13)0.0018 (11)0.0121 (11)0.0016 (11)
C120.0349 (17)0.0338 (17)0.0353 (16)0.0065 (13)0.0124 (13)0.0051 (13)
Geometric parameters (Å, º) top
O1—C71.240 (3)C4—H40.95 (3)
O2—C101.221 (3)C5—C61.391 (3)
O2A—C101.221 (5)C5—H50.94 (3)
O3—C101.335 (3)C7—C81.529 (4)
O3—C111.463 (3)C7—C8A1.54 (4)
N1—C71.339 (3)C8—C91.511 (3)
N1—C61.405 (3)C8—H81.0000
N1—H1A0.87 (3)C9—C101.503 (3)
N2—C11.405 (3)C9—H9A0.9900
N2—C81.457 (3)C9—H9B0.9900
N2—H2A0.9101C8A—C9A1.511 (5)
N2A—C11.405 (5)C8A—H8A1.0000
N2A—C8A1.457 (5)C9A—C101.503 (3)
N2A—H2AA0.900C9A—H9A10.9900
C1—C21.385 (3)C9A—H9A20.9900
C1—C61.403 (3)C11—C121.499 (4)
C2—C31.387 (4)C11—H11A0.99 (3)
C2—H20.97 (3)C11—H11B0.97 (2)
C3—C41.382 (4)C12—H12A0.98 (3)
C3—H30.95 (3)C12—H12B0.96 (3)
C4—C51.389 (4)C12—H12C1.00 (3)
C10—O3—C11115.31 (18)C9—C8—H8108.4
C7—N1—C6124.1 (2)C7—C8—H8108.4
C7—N1—H1A117.8 (19)C10—C9—C8113.8 (2)
C6—N1—H1A118.0 (19)C10—C9—H9A108.8
C1—N2—C8115.6 (2)C8—C9—H9A108.8
C1—N2—H2A112.6C10—C9—H9B108.8
C8—N2—H2A110.1C8—C9—H9B108.8
C1—N2A—C8A112.4 (11)H9A—C9—H9B107.7
C1—N2A—H2AA98.5N2A—C8A—C9A114.8 (11)
C8A—N2A—H2AA125.0N2A—C8A—C7107 (3)
C2—C1—C6119.3 (2)C9A—C8A—C7110 (2)
C2—C1—N2123.2 (2)N2A—C8A—H8A108.4
C6—C1—N2117.3 (2)C9A—C8A—H8A108.4
C2—C1—N2A121.8 (13)C7—C8A—H8A108.4
C6—C1—N2A113.8 (15)C10—C9A—C8A119.1 (12)
C1—C2—C3120.6 (2)C10—C9A—H9A1107.5
C1—C2—H2118.3 (15)C8A—C9A—H9A1107.5
C3—C2—H2121.0 (15)C10—C9A—H9A2107.5
C4—C3—C2120.1 (2)C8A—C9A—H9A2107.5
C4—C3—H3121.5 (16)H9A1—C9A—H9A2107.0
C2—C3—H3118.4 (16)O2—C10—O3123.0 (2)
C3—C4—C5120.0 (2)O2A—C10—O3119.3 (15)
C3—C4—H4118.4 (17)O2A—C10—C9A118.3 (15)
C5—C4—H4121.5 (16)O3—C10—C9A111.9 (2)
C4—C5—C6120.1 (2)O2—C10—C9125.1 (2)
C4—C5—H5121.4 (17)O3—C10—C9111.9 (2)
C6—C5—H5118.4 (17)O3—C11—C12107.2 (2)
C5—C6—C1119.8 (2)O3—C11—H11A106.5 (14)
C5—C6—N1121.9 (2)C12—C11—H11A111.7 (14)
C1—C6—N1118.3 (2)O3—C11—H11B106.9 (15)
O1—C7—N1123.1 (2)C12—C11—H11B114.0 (14)
O1—C7—C8121.0 (2)H11A—C11—H11B110 (2)
N1—C7—C8115.7 (2)C11—C12—H12A108.3 (17)
O1—C7—C8A119.4 (6)C11—C12—H12B109.2 (17)
N1—C7—C8A112.8 (5)H12A—C12—H12B111 (2)
N2—C8—C9111.9 (2)C11—C12—H12C110.0 (16)
N2—C8—C7109.1 (2)H12A—C12—H12C107 (2)
C9—C8—C7110.6 (2)H12B—C12—H12C111 (3)
N2—C8—H8108.4
C8—N2—C1—C2147.1 (3)C1—N2—C8—C752.3 (4)
C8—N2—C1—C637.4 (4)O1—C7—C8—N2148.2 (2)
C8A—N2A—C1—C2153 (3)N1—C7—C8—N236.6 (3)
C8A—N2A—C1—C653 (3)O1—C7—C8—C924.7 (3)
C6—C1—C2—C31.1 (4)N1—C7—C8—C9160.1 (2)
N2—C1—C2—C3174.4 (2)N2—C8—C9—C1056.8 (3)
N2A—C1—C2—C3154.5 (17)C7—C8—C9—C10178.6 (2)
C1—C2—C3—C40.3 (4)C1—N2A—C8A—C9A176 (2)
C2—C3—C4—C50.5 (4)C1—N2A—C8A—C762 (3)
C3—C4—C5—C60.4 (4)O1—C7—C8A—N2A157.1 (11)
C4—C5—C6—C10.4 (4)N1—C7—C8A—N2A46.4 (19)
C4—C5—C6—N1179.1 (2)O1—C7—C8A—C9A32 (2)
C2—C1—C6—C51.1 (4)N1—C7—C8A—C9A171.4 (12)
N2—C1—C6—C5174.6 (2)N2A—C8A—C9A—C1034 (4)
N2A—C1—C6—C5156.6 (13)C7—C8A—C9A—C10154.6 (10)
C2—C1—C6—N1179.8 (2)C11—O3—C10—O21.4 (4)
N2—C1—C6—N14.1 (3)C11—O3—C10—O2A35 (2)
N2A—C1—C6—N124.7 (14)C11—O3—C10—C9A179.2 (2)
C7—N1—C6—C5169.9 (2)C11—O3—C10—C9179.2 (2)
C7—N1—C6—C111.4 (4)C8A—C9A—C10—O2A14 (2)
C6—N1—C7—O1178.5 (2)C8A—C9A—C10—O3159.0 (17)
C6—N1—C7—C86.4 (3)C8—C9—C10—O28.6 (4)
C6—N1—C7—C8A23.1 (14)C8—C9—C10—O3170.8 (2)
C1—N2—C8—C9175.0 (2)C10—O3—C11—C12175.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.87 (3)1.99 (4)2.866 (3)177 (3)
N2—H2A···O20.912.142.816 (3)130
C3—H3···O3ii0.95 (3)2.59 (3)3.508 (3)165 (2)
C8—H8···O1iii1.002.553.443 (4)148
C9—H9A···O2iv0.992.523.367 (4)144
C11—H11B···O2v0.97 (2)2.58 (3)3.199 (3)121.9 (18)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x1, y, z; (v) x+1, y, z+1.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarta, A., Loriga, M., Piras, S., Paglietti, G., La Colla, P., Busonera, B., Collu, G. & Loddo, R. (2006). Med. Chem. 2, 113–122.  CrossRef PubMed CAS Google Scholar
First citationEl-Sabbagh, O. I., El-Sadek, M. E., Lashine, S. M., Yassin, S. H. & El-Nabtity, S. M. (2009). Med. Chem. Res. 18, 782–797.  CAS Google Scholar
First citationGuillon, J., Grellier, P., Labaied, M., Sonnet, P., Léger, J. M., Déprez-Poulain, R., Forfar-Bares, I., Dallemagne, P., Lemaître, N., Péhourcq, F., Rochette, J., Sergheraert, C. & Jarry, C. (2004). J. Med. Chem. 47, 1997–2009.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGupta, D., Ghosh, N. N. & Chandra, R. (2005). Bioorg. Med. Chem. Lett. 15, 1019–1022.  CAS Google Scholar
First citationLindsley, C. W., Zhao, Z., Leister, W. H., Robinson, R. G., Barnett, S. F., Defeo-Jones, D., Jones, R. E., Hartman, G. D., Huff, J. R., Huber, H. E. & Duggan, M. E. (2005). Bioorg. Med. Chem. Lett. 15, 761–764.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRamli, Y., El Bakri, Y., El Ghayati, L., Essassi, E. M. & Mague, J. T. (2018). IUCrData, 3, x180390.  Google Scholar
First citationSakata, G., Makino, K. & Kurasawa, Y. (1988). Heterocycles, 27(10), 2481–2515.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2009). TWINABS, University of Göttingen, Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, D. P., Deivedi, S. K., Hashim, S. R. & Singhal, R. G. (2010). Pharmaceuticals. 3, 2416–2425.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds