organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(1S,4R)-1,11,11-Tri­methyl-1,2,3,4-tetra­hydro-1,4-methano­phenazine N5-oxide

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry & Biochemistry, Central Connecticut State University, New Britain, CT 06053, USA
*Correspondence e-mail: crundwellg@mail.ccsu.edu

Edited by M. Zeller, Purdue University, USA (Received 23 March 2018; accepted 3 April 2018; online 17 April 2018)

The title compound, C16H18N2O, was synthesized via reaction of (1S,4R)-1,2,3,4-tetra­hydro-1,11,11-trimethyl-1,4-methano­phenazine with 3-chloro­perbenzoic acid in di­chloro­methane. The absolute configuration for the product was assigned based on the stereochemistry of the camphorquinone reactant.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In the mol­ecule (Fig. 1[link]), all bond lengths and angles are within expected values. The conformation of the product was assigned based upon the stereochemistry of the camphorquinone reactant. No classical hydrogen bonds are present.

[Figure 1]
Figure 1
A view of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Glisic et al. (2016[Glisic, B. D., Hoffmann, M., Warzajtis, B., Gencic, M. S., Blagojevic, P. D., Radulovic, N. S., Rychlewska, U. & Djuran, M. I. (2016). Polyhedron, 105, 137-149.]) crystallized several chiral 1,2,3,4-tetra­hydro-1,11,11-trimethyl-1,4-methano­phenazine ligands with Au+3. Steel & Fitchett (2000[Steel, P. J. & Fitchett, C. M. (2000). New J. Chem. 24, 945-947.], 2006[Steel, P. J. & Fitchett, C. M. (2006). Dalton Trans. pp. 4886-4888.]) illustrate the use of stereochemically active quinoxalines in extended metal–ligand networks.

Synthesis and crystallization

(1S,4R)-1,2,3,4-Tetra­hydro-1,11,11-trimethyl-1,4-methano­phenazine was synthesized by the condensation reaction of a diketone with a di­amine in acid. To a 50 mL round-bottom flask were added (1S)-(+)-camphorquinone (3.1 g, 18.5 mmol), o-phenyl­enedi­amine (2.0 g, 18.5 mmol), and 20 ml of glacial acetic acid. This solution was then heated to boiling and held at reflux for 16 h. The resulting brown-colored solution was poured over 550 ml of cold water, neutralized with sodium carbonate, and isolated via vacuum filtration, which produced a light-brown solid. A hot gravity filtration with petroleum ether and activated charcoal, after evaporation of the petroleum ether, yielded 3.3 g of (1S,4R)-1,2,3,4-tetra­hydro-1,11,11-trimethyl-1,4-methano­phenazine (75%).

(1S,4R)-1,2,3,4-Tetra­hydro-1,11,11-trimethyl-1,4-methano­phenazine (3.3 g, 13.8 mmol) and 3-chloro­perbenzoic acid (4.8 g, 27.6 mmol) were dissolved in di­chloro­methane and stirred at room temperature for 24 h. Several spots were observed during TLC, suggesting the other possible oxide was also formed. The product was isolated via column chromatography (SiO2, 50% di­chloro­methane/50% ethyl acetate, Rf = 0.5) to yield 1.77 g of the title compound (50%), m.p. 433.2 K. ATR–IR (cm−1): 2971, 1496, 780; 1H NMR (300 MHz, CDCl3): δ 8.653 (dd, 1H, J = 8.3 Hz, 1.5 Hz), 8.113 (dd, 1H, J = 7.7 Hz, 1.7 Hz), 7.763 (dt, 1H, J = 7.6 Hz, 1.8 Hz), 7.701 (dt, 1H, J = 7.6 Hz, 1.8 Hz), 3.674 (d, 1H, J = 4.17 Hz), 2.310 (m, 1H), 2.087 (m, 1H), 1.498 (m, 2H), 1.459 (s, 3H), 1.142 (s, 3H), 0.756 (s, 3H); 13C NMR (300 MHz, CDCl3): δ 168.06, 144.26, 130.15, 129.30, 128.40, 118.71, 77.23, 76.51, 55.00, 54.71, 47.92, 32.37, 23.78, 20.32, 18.40, 10.14; UV/Vis (CH2Cl2; λmax) 315 nm.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. Reflections affected by the beam stop were omitted from the refinement.

Table 1
Experimental details

Crystal data
Chemical formula C16H18N2O
Mr 254.32
Crystal system, space group Orthorhombic, P212121
Temperature (K) 298
a, b, c (Å) 10.6779 (3), 10.7120 (3), 11.5207 (3)
V3) 1317.76 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.34 × 0.28 × 0.15
 
Data collection
Diffractometer Oxford Diffraction Xcalibur Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.801, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 33091, 4925, 4043
Rint 0.040
(sin θ/λ)max−1) 0.779
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.132, 0.93
No. of reflections 4925
No. of parameters 175
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.14
Absolute structure Flack x determined using 1516 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013)
Absolute structure parameter 0.1 (4)
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and OLEX2 (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]).

Structural data


Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: OLEX2 (Bourhis et al., 2015).

(1S,4R)-1,11,11-Trimethyl-1,2,3,4-tetrahydro-1,4-methanophenazine N5-oxide top
Crystal data top
C16H18N2ODx = 1.282 Mg m3
Mr = 254.32Melting point: 433.2 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
a = 10.6779 (3) ÅCell parameters from 9304 reflections
b = 10.7120 (3) Åθ = 5.1–31.4°
c = 11.5207 (3) ŵ = 0.08 mm1
V = 1317.76 (6) Å3T = 298 K
Z = 4Plate, yellow
F(000) = 5440.34 × 0.28 × 0.15 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
4925 independent reflections
Radiation source: Enhance (Mo) X-ray Source4043 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 16.1790 pixels mm-1θmax = 33.6°, θmin = 5.2°
ω scansh = 1615
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1616
Tmin = 0.801, Tmax = 1.000l = 1717
33091 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.044 w = 1/[σ2(Fo2) + (0.0978P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.132(Δ/σ)max < 0.001
S = 0.93Δρmax = 0.24 e Å3
4925 reflectionsΔρmin = 0.14 e Å3
175 parametersAbsolute structure: Flack x determined using 1516 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.1 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. H atoms were included in calculated positions with C—H distances of 0.93 Å, 0.96 Å, 0.97 Å, and 0.98 Å based upon type of carbon and were included in the refinement in riding motion approximation with Uiso = 1.2 Ueq for CH and CH2 and 1.5 Ueq for CH3 groups, respectively. of the carrier atom.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.39348 (13)0.85071 (12)0.83151 (13)0.0297 (3)
C20.20009 (13)0.95167 (14)0.82727 (14)0.0332 (3)
C30.07772 (15)0.96131 (18)0.78408 (17)0.0435 (4)
H30.04790.90390.73020.052*
C40.00214 (16)1.0572 (2)0.82275 (19)0.0510 (4)
H40.07821.06600.79260.061*
C50.04485 (18)1.14087 (18)0.9064 (2)0.0499 (4)
H50.00861.20270.93390.060*
C60.16511 (17)1.13333 (16)0.94883 (18)0.0439 (4)
H60.19261.19011.00440.053*
C70.24709 (14)1.03897 (13)0.90783 (14)0.0343 (3)
C80.43617 (13)0.94590 (12)0.90722 (13)0.0301 (3)
C90.56940 (13)0.91155 (13)0.93723 (14)0.0312 (3)
C100.55122 (17)0.79711 (15)1.01944 (15)0.0401 (3)
H10A0.62990.77361.05550.048*
H10B0.49060.81581.07970.048*
C110.50284 (17)0.69165 (14)0.93913 (15)0.0400 (3)
H11A0.42110.66240.96370.048*
H11B0.56060.62170.93770.048*
C120.49567 (13)0.75654 (13)0.81835 (12)0.0308 (3)
H120.48980.70120.75080.037*
C130.61140 (13)0.84520 (13)0.82243 (13)0.0316 (3)
C140.61709 (19)0.93181 (18)0.71758 (16)0.0450 (4)
H14A0.64000.88470.65000.068*
H14B0.67830.99580.73110.068*
H14C0.53650.96950.70570.068*
C150.73576 (16)0.77619 (18)0.8335 (2)0.0483 (4)
H15A0.73030.71620.89530.073*
H15B0.80120.83490.85030.073*
H15C0.75400.73400.76200.073*
C160.64970 (16)1.01615 (17)0.98404 (18)0.0445 (4)
H16A0.65611.08110.92690.067*
H16B0.73180.98481.00160.067*
H16C0.61231.04911.05340.067*
N10.27666 (11)0.85118 (11)0.79122 (11)0.0314 (3)
N20.36923 (12)1.03772 (12)0.94822 (12)0.0356 (3)
O10.23308 (12)0.76566 (11)0.72480 (12)0.0454 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0288 (6)0.0278 (6)0.0326 (6)0.0004 (5)0.0027 (5)0.0014 (5)
C20.0283 (6)0.0345 (7)0.0368 (7)0.0008 (5)0.0002 (5)0.0076 (6)
C30.0321 (7)0.0500 (9)0.0484 (9)0.0001 (7)0.0059 (6)0.0099 (8)
C40.0306 (7)0.0597 (11)0.0628 (11)0.0084 (7)0.0004 (7)0.0196 (9)
C50.0402 (8)0.0477 (10)0.0619 (11)0.0136 (8)0.0118 (8)0.0140 (8)
C60.0418 (8)0.0401 (9)0.0498 (9)0.0100 (7)0.0081 (7)0.0017 (7)
C70.0329 (6)0.0318 (6)0.0382 (7)0.0030 (6)0.0032 (6)0.0030 (5)
C80.0287 (6)0.0277 (6)0.0341 (6)0.0005 (5)0.0021 (5)0.0030 (5)
C90.0280 (6)0.0299 (6)0.0356 (7)0.0004 (5)0.0046 (5)0.0040 (5)
C100.0475 (8)0.0399 (7)0.0330 (7)0.0005 (7)0.0067 (6)0.0036 (6)
C110.0495 (9)0.0295 (6)0.0409 (8)0.0024 (6)0.0027 (7)0.0049 (6)
C120.0331 (6)0.0254 (6)0.0341 (6)0.0002 (5)0.0021 (5)0.0032 (5)
C130.0295 (6)0.0298 (6)0.0355 (6)0.0002 (5)0.0003 (5)0.0022 (5)
C140.0498 (9)0.0449 (8)0.0404 (8)0.0058 (7)0.0075 (7)0.0051 (7)
C150.0342 (7)0.0510 (10)0.0598 (11)0.0100 (7)0.0009 (7)0.0119 (8)
C160.0372 (7)0.0410 (8)0.0553 (10)0.0044 (6)0.0104 (7)0.0125 (7)
N10.0298 (5)0.0319 (6)0.0324 (6)0.0039 (4)0.0026 (4)0.0014 (5)
N20.0346 (6)0.0318 (6)0.0404 (6)0.0032 (5)0.0012 (5)0.0060 (5)
O10.0430 (6)0.0453 (6)0.0480 (6)0.0082 (5)0.0101 (5)0.0100 (6)
Geometric parameters (Å, º) top
C1—N11.3310 (17)C10—C111.549 (2)
C1—C81.4172 (19)C10—H10A0.9700
C1—C121.4937 (19)C10—H10B0.9700
C2—C31.402 (2)C11—C121.557 (2)
C2—C71.410 (2)C11—H11A0.9700
C2—N11.4142 (19)C11—H11B0.9700
C3—C41.380 (3)C12—C131.559 (2)
C3—H30.9300C12—H120.9800
C4—C51.393 (3)C13—C141.524 (2)
C4—H40.9300C13—C151.525 (2)
C5—C61.376 (3)C14—H14A0.9600
C5—H50.9300C14—H14B0.9600
C6—C71.418 (2)C14—H14C0.9600
C6—H60.9300C15—H15A0.9600
C7—N21.385 (2)C15—H15B0.9600
C8—N21.3045 (18)C15—H15C0.9600
C8—C91.5095 (19)C16—H16A0.9600
C9—C161.510 (2)C16—H16B0.9600
C9—C101.561 (2)C16—H16C0.9600
C9—C131.567 (2)N1—O11.2811 (15)
N1—C1—C8120.89 (12)C12—C11—H11A111.2
N1—C1—C12130.68 (13)C10—C11—H11B111.2
C8—C1—C12108.26 (11)C12—C11—H11B111.2
C3—C2—C7121.10 (15)H11A—C11—H11B109.1
C3—C2—N1119.38 (15)C1—C12—C11104.29 (12)
C7—C2—N1119.50 (12)C1—C12—C1399.47 (11)
C4—C3—C2119.03 (18)C11—C12—C13101.89 (12)
C4—C3—H3120.5C1—C12—H12116.3
C2—C3—H3120.5C11—C12—H12116.3
C3—C4—C5120.72 (16)C13—C12—H12116.3
C3—C4—H4119.6C14—C13—C15109.07 (14)
C5—C4—H4119.6C14—C13—C12112.23 (12)
C6—C5—C4120.90 (17)C15—C13—C12113.41 (12)
C6—C5—H5119.6C14—C13—C9113.84 (12)
C4—C5—H5119.6C15—C13—C9113.47 (13)
C5—C6—C7119.96 (18)C12—C13—C994.29 (11)
C5—C6—H6120.0C13—C14—H14A109.5
C7—C6—H6120.0C13—C14—H14B109.5
N2—C7—C2123.37 (13)H14A—C14—H14B109.5
N2—C7—C6118.45 (15)C13—C14—H14C109.5
C2—C7—C6118.18 (15)H14A—C14—H14C109.5
N2—C8—C1126.10 (13)H14B—C14—H14C109.5
N2—C8—C9128.12 (13)C13—C15—H15A109.5
C1—C8—C9105.59 (11)C13—C15—H15B109.5
C8—C9—C16115.85 (12)H15A—C15—H15B109.5
C8—C9—C10102.30 (12)C13—C15—H15C109.5
C16—C9—C10115.88 (14)H15A—C15—H15C109.5
C8—C9—C13100.78 (11)H15B—C15—H15C109.5
C16—C9—C13118.38 (13)C9—C16—H16A109.5
C10—C9—C13101.04 (11)C9—C16—H16B109.5
C11—C10—C9104.58 (12)H16A—C16—H16B109.5
C11—C10—H10A110.8C9—C16—H16C109.5
C9—C10—H10A110.8H16A—C16—H16C109.5
C11—C10—H10B110.8H16B—C16—H16C109.5
C9—C10—H10B110.8O1—N1—C1123.09 (12)
H10A—C10—H10B108.9O1—N1—C2120.65 (12)
C10—C11—C12102.98 (12)C1—N1—C2116.25 (12)
C10—C11—H11A111.2C8—N2—C7113.68 (13)
C7—C2—C3—C40.9 (2)C10—C11—C12—C167.26 (15)
N1—C2—C3—C4177.78 (15)C10—C11—C12—C1335.86 (15)
C2—C3—C4—C52.2 (3)C1—C12—C13—C1466.52 (15)
C3—C4—C5—C62.8 (3)C11—C12—C13—C14173.42 (13)
C4—C5—C6—C70.3 (3)C1—C12—C13—C15169.31 (15)
C3—C2—C7—N2176.30 (15)C11—C12—C13—C1562.41 (16)
N1—C2—C7—N25.0 (2)C1—C12—C13—C951.42 (12)
C3—C2—C7—C63.2 (2)C11—C12—C13—C955.48 (13)
N1—C2—C7—C6175.42 (14)C8—C9—C13—C1465.83 (15)
C5—C6—C7—N2176.95 (16)C16—C9—C13—C1461.56 (18)
C5—C6—C7—C22.6 (2)C10—C9—C13—C14170.79 (13)
N1—C1—C8—N22.7 (2)C8—C9—C13—C15168.62 (13)
C12—C1—C8—N2173.03 (15)C16—C9—C13—C1563.99 (18)
N1—C1—C8—C9177.97 (13)C10—C9—C13—C1563.66 (15)
C12—C1—C8—C92.21 (16)C8—C9—C13—C1250.78 (12)
N2—C8—C9—C1624.0 (2)C16—C9—C13—C12178.17 (13)
C1—C8—C9—C16160.86 (15)C10—C9—C13—C1254.18 (12)
N2—C8—C9—C10102.99 (17)C8—C1—N1—O1178.35 (13)
C1—C8—C9—C1072.13 (14)C12—C1—N1—O13.7 (2)
N2—C8—C9—C13153.07 (15)C8—C1—N1—C20.7 (2)
C1—C8—C9—C1331.82 (14)C12—C1—N1—C2175.35 (14)
C8—C9—C10—C1169.77 (15)C3—C2—N1—O13.8 (2)
C16—C9—C10—C11163.24 (14)C7—C2—N1—O1174.85 (13)
C13—C9—C10—C1133.97 (15)C3—C2—N1—C1177.13 (14)
C9—C10—C11—C120.94 (17)C7—C2—N1—C14.19 (19)
N1—C1—C12—C11105.67 (18)C1—C8—N2—C72.1 (2)
C8—C1—C12—C1169.52 (14)C9—C8—N2—C7176.23 (14)
N1—C1—C12—C13149.38 (16)C2—C7—N2—C81.8 (2)
C8—C1—C12—C1335.42 (14)C6—C7—N2—C8178.64 (14)
 

Funding information

This research was funded by a CCSU–AAUP research grant.

References

First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGlisic, B. D., Hoffmann, M., Warzajtis, B., Gencic, M. S., Blagojevic, P. D., Radulovic, N. S., Rychlewska, U. & Djuran, M. I. (2016). Polyhedron, 105, 137–149.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSteel, P. J. & Fitchett, C. M. (2000). New J. Chem. 24, 945–947.  Google Scholar
First citationSteel, P. J. & Fitchett, C. M. (2006). Dalton Trans. pp. 4886–4888.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds