inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Al13Fe3

CROSSMARK_Color_square_no_text.svg

aState Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People's Republic of China
*Correspondence e-mail: chzfan@ysu.edu.cn

Edited by M. Weil, Vienna University of Technology, Austria (Received 21 March 2018; accepted 16 April 2018; online 19 April 2018)

A new trigonal phase with composition Al13Fe3 (trideca­aluminium triiron) was obtained in the binary Fe–Al diagram by high-pressure sinter­ing (HPS) of a stoichiometric Al3Fe mixture. The refined crystal structure agrees with the descriptions of an unresolved rhombohedral phase reported 30 years ago [Chandrasekaran et al. (1988). Scr. Metall. 22, 797–802]. The structure was refined as an inversion twin with a ratio of 0.506 (18):0.494 (18) for the two twin components.

3D view (loading...)
[Scheme 3D1]

Structure description

Investigations on the crystal structure of a phase with composition Al3Fe can be traced back to as early as one century ago (Groth, 1906[Groth, P. (1906). Chemische Krystallographie, Erster Teil, pp. 47-48. Leipzig: Verlag Wilhelm Engelmann.]). Similar efforts continued in the following half century (Osawa, 1933[Osawa, A. (1933). Sci. Rep. Tohoku Univ. 22, 803-823.]; Bachmetew, 1934[Bachmetew, E. (1934). Z. Kristallogr. 89, 575-586.]; Phragmén, 1950[Phragmén, G. (1950). J. Inst. Met. 77, 489-551.]). However, an accurate composition and crystal structure analysis of this phase has been generally accepted to result in a compound with formula λ-Al13Fe4 (Black, 1955a[Black, P. J. (1955a). Acta Cryst. 8, 43-48.],b[Black, P. J. (1955b). Acta Cryst. 8, 175-182.]; Armbrüster et al., 2012[Armbrüster, M., Kovnir, K., Friedrich, M., Teschner, D., Wowsnick, G., Hahne, M., Gille, P., Szentmiklósi, L., Feuerbacher, M., Heggen, M., Girgsdies, F., Rosenthal, D., Schlögl, R. & Grin, Y. (2012). Nat. Mater. 11, 690-693.]). A new mineral named hollisterite (Al3Fe with the λ-Al13Fe4 structure) was discovered very recently during investigation of one fragment of a recovered Khatyrka CV3 carbonaceous chondrite (Ma et al., 2017[Ma, C., Lin, C., Bindi, L. & Steinhardt, P. J. (2017). Am. Mineral. 102, 690-693.]) while searching for samples to explain the origin of a quasicrystal mineral (Bindi & Steinhardt, 2018[Bindi, L. & Steinhardt, P. J. (2018). Rocks Miner. 93, 50-59.]). In the present work, a trigonal phase with composition Al13Fe3 was uncovered to be coexistent with the λ-Al13Fe4 phase in the products while simulating the formation of hollisterite under high-pressure and high-temperature conditions (HPHT) by the HPS approach.

There are 96 atoms (78 aluminium plus 18 iron) in the unit cell of the Al13Fe3 structure. The projection of the structure along [001] is shown in Fig. 1[link], using coordination polyhedra around Al4 atoms for visualization. It is found that there are 18 Al atoms in the unit cell, each of which is coordinated in form of a distorted icosa­hedron that is formed by two, three, four and three atoms of Fe1, Al2, Al3 and Al6, respectively. All the above mentioned atoms occupy the 18b Wyckoff sites while the Al5 atom occupies the 6a Wyckoff site.

[Figure 1]
Figure 1
Projection of the new Al13Fe3 phase along the [001] direction showing Al4 atoms with their coordination polyhedra.

Fig. 2[link] shows the environments of the Fe1 and Al5 atoms. Each Fe1 atom is surrounded by ten aluminium atoms including two Al2, two Al3, two Al4, one Al5 and three Al6 atoms, while each Al5 atom is surrounded by three Fe1 atoms, three Al2 and three Al6 atoms.

[Figure 2]
Figure 2
Environments of Fe1 (left) and Al5 (right) atoms. Displacement ellipsoids are given at the 99% probability level. [Symmetry codes: (i) [{1\over 3}] − x + y, −[{1\over 3}] + y, [{1\over 6}] + z; (ii) [{1\over 3}] − x + y, [{2\over 3}] − x, −[{1\over 3}] + z; (iii) 1 − y, 1 − x, −[{1\over 2}] + z; (iv) x, x − y, [{1\over 2}] + z; (v) x, x − y, −[{1\over 2}] + z; (vi) 1 − y, x − y, z; (vii) [{2\over 3}] − y, [{1\over 3}] + x − y, [{1\over 3}] + z; (viii) −[{1\over 3}] + x, [{1\over 3}] + x − y, −[{1\over 6}] + z; (ix) 1 − y, 1 − x, [{1\over 2}] + z; (x) 1 − x + y, 1 − x, z; (xi) [{2\over 3}] − x + y, [{1\over 3}] + y, −[{1\over 6}] + z; (xii) [{1\over 3}] + x, [{2\over 3}] + x − y, [{1\over 6}] + z.]

It should be noted that the present Al13Fe3 phase agrees with the descriptions of an unresolved rhombohedral phase reported 30 years ago (Chandrasekaran et al., 1988[Chandrasekaran, M., Lin, Y. P., Vincent, R. & Staniek, G. (1988). Scr. Metall. 22, 797-802.]).

Synthesis and crystallization

Pure aluminium powder (indicated purity 99.8%) and pure iron powder (indicated purity 99.8%) were mixed according to an atomic ratio of 3:1. The detailed description and the assembled crucible sketch map of the employed HPS process can be found elsewhere (Liu & Fan, 2018[Liu, C. & Fan, C. (2018). IUCrData, 3, x180363.]). In the current work, the sample was pressurized up to 5 GPa and heated to 1493 K for 30 min, cooled to 1343 K and held at this temperature for one h, and then cooled down rapidly to room temperature. A brick-shaped fragment with dimensions 0.09 × 0.06 × 0.03 mm3 was selected and mounted on a thin glass fiber for single-crystal X-ray diffraction measurements.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The crystal was refined as an inversion twin with a ratio of 0.506 (18): 0.494 (18) for the two twin components. Although the ADDSYM function in PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) suggested a change from the present space group R3c to centrosymmetric R[\overline{3}]c, the reliability factors were significantly higher for the centrosymmetric case. Hence the non-centrosymmetric space group was used for the present model.

Table 1
Experimental details

Crystal data
Chemical formula Al13Fe3
Mr 518.29
Crystal system, space group Trigonal, R3c:H
Temperature (K) 293
a, c (Å) 14.5784 (9), 7.7020 (5)
V3) 1417.6 (2)
Z 6
Radiation type Mo Kα
μ (mm−1) 5.69
Crystal size (mm) 0.09 × 0.06 × 0.03
 
Data collection
Diffractometer Bruker D8 Venture Photon 100 COMS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.590, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 20029, 1017, 954
Rint 0.031
(sin θ/λ)max−1) 0.735
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.039, 1.12
No. of reflections 1017
No. of parameters 50
No. of restraints 1
Δρmax, Δρmin (e Å−3) 0.45, −0.82
Absolute structure Refined as an inversion twin.
Absolute structure parameter 0.494 (18)
Computer programs: APEX3 and SAINT (Bruker, 2015[Bruker (2015). APEX3 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA, 2008.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2017[Brandenburg, K. & Putz, H. (2017). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.])..

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2017); software used to prepare material for publication: publCIF (Westrip, 2010)..

Tridecaaluminium triiron top
Crystal data top
Al13Fe3Dx = 3.642 Mg m3
Mr = 518.29Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3c:HCell parameters from 21502 reflections
a = 14.5784 (9) Åθ = 2.8–31.5°
c = 7.7020 (5) ŵ = 5.69 mm1
V = 1417.6 (2) Å3T = 293 K
Z = 6Grain, metallic
F(000) = 7410.09 × 0.06 × 0.03 mm
Data collection top
Bruker D8 Venture Photon 100 COMS
diffractometer
954 reflections with I > 2σ(I)
phi and ω scansRint = 0.031
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 31.5°, θmin = 2.8°
Tmin = 0.590, Tmax = 0.746h = 2121
20029 measured reflectionsk = 2021
1017 independent reflectionsl = 1111
Refinement top
Refinement on F21 restraint
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0208P)2 + 1.1916P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.020(Δ/σ)max < 0.001
wR(F2) = 0.039Δρmax = 0.45 e Å3
S = 1.12Δρmin = 0.81 e Å3
1017 reflectionsAbsolute structure: Refined as an inversion twin.
50 parametersAbsolute structure parameter: 0.494 (18)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe010.49239 (3)0.33140 (5)0.49860 (8)0.00526 (10)
Al020.48081 (7)0.18100 (8)0.33067 (12)0.0153 (2)
Al030.35885 (7)0.36146 (7)0.65909 (13)0.00896 (16)
Al040.50297 (11)0.49974 (10)0.4148 (3)0.01602 (18)
Al050.6666670.3333330.4775 (3)0.0134 (3)
Al060.63864 (9)0.47463 (10)0.66904 (10)0.0152 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe010.00493 (19)0.00516 (14)0.00559 (16)0.00245 (16)0.00091 (16)0.00119 (11)
Al020.0279 (6)0.0094 (4)0.0099 (4)0.0103 (5)0.0025 (5)0.0030 (4)
Al030.0149 (5)0.0144 (5)0.0049 (4)0.0128 (3)0.0002 (4)0.0011 (5)
Al040.0114 (3)0.0066 (3)0.0311 (5)0.0053 (3)0.0047 (3)0.0037 (3)
Al050.0071 (3)0.0071 (3)0.0259 (10)0.00355 (16)0.0000.000
Al060.0129 (5)0.0135 (5)0.0096 (5)0.0006 (4)0.0016 (4)0.0056 (4)
Geometric parameters (Å, º) top
Fe01—Al042.4667 (16)Al02—Al04ii2.832 (2)
Fe01—Al04i2.4697 (15)Al02—Al04i2.8522 (19)
Fe01—Al022.4776 (13)Al03—Al03ii2.6558 (3)
Fe01—Al062.4854 (12)Al03—Al03vii2.6558 (4)
Fe01—Al03ii2.5115 (12)Al03—Al04vii2.7230 (19)
Fe01—Al032.5226 (12)Al03—Al04i2.7254 (18)
Fe01—Al052.5319 (4)Al03—Al06viii2.7454 (18)
Fe01—Al06iii2.5797 (11)Al03—Al042.790 (2)
Fe01—Al02iv2.5893 (13)Al03—Al04ix2.821 (2)
Al02—Al06iii2.6790 (17)Al04—Al06iii2.901 (2)
Al02—Al03v2.7043 (17)Al04—Al062.933 (2)
Al02—Al06vi2.7269 (11)Al04—Al06viii2.9428 (19)
Al02—Al06v2.7341 (18)Al05—Al06x2.7253 (16)
Al02—Al052.7450 (13)Al05—Al06vi2.7253 (16)
Al02—Al04vi2.820 (2)Al05—Al062.7254 (16)
Al04—Fe01—Al04i126.125 (12)Fe01xi—Al04—Al02x108.89 (6)
Al04—Fe01—Al02133.36 (8)Al03ii—Al04—Al02x112.86 (6)
Al04i—Fe01—Al0270.41 (5)Al03xi—Al04—Al02x67.36 (4)
Al04—Fe01—Al0672.65 (5)Al03—Al04—Al02x126.10 (6)
Al04i—Fe01—Al06133.11 (7)Fe01—Al04—Al03iii125.60 (8)
Al02—Fe01—Al06132.02 (4)Fe01xi—Al04—Al03iii56.20 (4)
Al04—Fe01—Al03ii66.31 (4)Al03ii—Al04—Al03iii120.99 (10)
Al04i—Fe01—Al03ii68.99 (6)Al03xi—Al04—Al03iii57.19 (3)
Al02—Fe01—Al03ii86.95 (4)Al03—Al04—Al03iii176.46 (8)
Al06—Fe01—Al03ii137.21 (4)Al02x—Al04—Al03iii57.29 (4)
Al04—Fe01—Al0367.99 (5)Fe01—Al04—Al02vii121.54 (9)
Al04i—Fe01—Al0366.17 (4)Fe01xi—Al04—Al02vii57.99 (5)
Al02—Fe01—Al03133.83 (4)Al03ii—Al04—Al02vii122.36 (7)
Al06—Fe01—Al0390.44 (4)Al03xi—Al04—Al02vii58.20 (5)
Al03ii—Fe01—Al0363.682 (17)Al03—Al04—Al02vii75.26 (6)
Al04—Fe01—Al05114.14 (4)Al02x—Al04—Al02vii121.54 (6)
Al04i—Fe01—Al05119.65 (4)Al03iii—Al04—Al02vii103.99 (5)
Al02—Fe01—Al0566.44 (4)Fe01—Al04—Al02xi123.48 (7)
Al06—Fe01—Al0565.80 (4)Fe01xi—Al04—Al02xi54.92 (4)
Al03ii—Fe01—Al05143.61 (5)Al03ii—Al04—Al02xi66.93 (5)
Al03—Fe01—Al05152.47 (5)Al03xi—Al04—Al02xi111.09 (6)
Al04—Fe01—Al06iii70.15 (6)Al03—Al04—Al02xi102.12 (5)
Al04i—Fe01—Al06iii115.20 (7)Al02x—Al04—Al02xi123.32 (8)
Al02—Fe01—Al06iii63.94 (4)Al03iii—Al04—Al02xi74.46 (6)
Al06—Fe01—Al06iii111.62 (3)Al02vii—Al04—Al02xi95.95 (6)
Al03ii—Fe01—Al06iii65.25 (4)Fe01—Al04—Al06iii56.75 (5)
Al03—Fe01—Al06iii123.20 (4)Fe01xi—Al04—Al06iii123.79 (9)
Al05—Fe01—Al06iii80.44 (6)Al03ii—Al04—Al06iii58.33 (5)
Al04—Fe01—Al02iv113.68 (7)Al03xi—Al04—Al06iii121.20 (7)
Al04i—Fe01—Al02iv68.04 (6)Al03—Al04—Al06iii104.09 (5)
Al02—Fe01—Al02iv112.87 (3)Al02x—Al04—Al06iii57.08 (5)
Al06—Fe01—Al02iv65.16 (4)Al03iii—Al04—Al06iii76.79 (6)
Al03ii—Fe01—Al02iv121.68 (4)Al02vii—Al04—Al06iii177.80 (8)
Al03—Fe01—Al02iv63.86 (4)Al02xi—Al04—Al06iii86.24 (6)
Al05—Fe01—Al02iv92.36 (6)Fe01—Al04—Al0653.97 (5)
Al06iii—Fe01—Al02iv172.79 (4)Fe01xi—Al04—Al06127.63 (7)
Fe01—Al02—Fe01v129.49 (5)Al03ii—Al04—Al06110.62 (6)
Fe01—Al02—Al06iii59.88 (4)Al03xi—Al04—Al0671.35 (5)
Fe01v—Al02—Al06iii69.76 (3)Al03—Al04—Al0676.75 (6)
Fe01—Al02—Al03v148.34 (5)Al02x—Al04—Al0656.54 (4)
Fe01v—Al02—Al03v56.87 (3)Al03iii—Al04—Al06106.71 (5)
Al06iii—Al02—Al03v117.46 (5)Al02vii—Al04—Al0686.01 (6)
Fe01—Al02—Al06vi70.58 (4)Al02xi—Al04—Al06177.44 (7)
Fe01v—Al02—Al06vi154.40 (4)Al06iii—Al04—Al0691.80 (6)
Al06iii—Al02—Al06vi125.55 (5)Fe01—Al04—Al06viii110.76 (6)
Al03v—Al02—Al06vi116.47 (6)Fe01xi—Al04—Al06viii67.01 (4)
Fe01—Al02—Al06v129.03 (5)Al03ii—Al04—Al06viii71.23 (5)
Fe01v—Al02—Al06v55.58 (3)Al03xi—Al04—Al06viii108.48 (6)
Al06iii—Al02—Al06v94.31 (6)Al03—Al04—Al06viii57.15 (5)
Al03v—Al02—Al06v81.63 (4)Al02x—Al04—Al06viii175.59 (6)
Al06vi—Al02—Al06v100.22 (3)Al03iii—Al04—Al06viii119.52 (6)
Fe01—Al02—Al0557.73 (3)Al02vii—Al04—Al06viii55.24 (4)
Fe01v—Al02—Al05113.86 (6)Al02xi—Al04—Al06viii56.11 (4)
Al06iii—Al02—Al0574.96 (5)Al06iii—Al04—Al06viii126.25 (7)
Al03v—Al02—Al05153.71 (5)Al06—Al04—Al06viii124.25 (8)
Al06vi—Al02—Al0559.74 (5)Fe01vi—Al05—Fe01x119.592 (12)
Al06v—Al02—Al0574.09 (5)Fe01vi—Al05—Fe01119.591 (12)
Fe01—Al02—Al04vi134.41 (5)Fe01x—Al05—Fe01119.593 (12)
Fe01v—Al02—Al04vi94.65 (5)Fe01vi—Al05—Al06x69.84 (4)
Al06iii—Al02—Al04vi157.26 (5)Fe01x—Al05—Al06x56.28 (3)
Al03v—Al02—Al04vi61.38 (5)Fe01—Al05—Al06x142.70 (10)
Al06vi—Al02—Al04vi63.83 (5)Fe01vi—Al05—Al06vi56.28 (3)
Al06v—Al02—Al04vi62.96 (5)Fe01x—Al05—Al06vi142.70 (10)
Al05—Al02—Al04vi97.86 (5)Fe01—Al05—Al06vi69.84 (4)
Fe01—Al02—Al04ii98.01 (5)Al06x—Al05—Al06vi93.47 (6)
Fe01v—Al02—Al04ii53.97 (4)Fe01vi—Al05—Al06142.70 (10)
Al06iii—Al02—Al04ii64.48 (4)Fe01x—Al05—Al0669.84 (4)
Al03v—Al02—Al04ii58.92 (4)Fe01—Al05—Al0656.28 (3)
Al06vi—Al02—Al04ii148.11 (6)Al06x—Al05—Al0693.47 (6)
Al06v—Al02—Al04ii109.50 (4)Al06vi—Al05—Al0693.47 (6)
Al05—Al02—Al04ii139.40 (6)Fe01vi—Al05—Al0273.73 (3)
Al04vi—Al02—Al04ii120.25 (6)Fe01x—Al05—Al02157.09 (9)
Fe01—Al02—Al04i54.67 (4)Fe01—Al05—Al0255.83 (3)
Fe01v—Al02—Al04i138.74 (6)Al06x—Al05—Al02142.93 (3)
Al06iii—Al02—Al04i100.82 (5)Al06vi—Al05—Al0259.80 (3)
Al03v—Al02—Al04i99.00 (5)Al06—Al05—Al02111.97 (2)
Al06vi—Al02—Al04i63.62 (5)Fe01vi—Al05—Al02vi55.83 (3)
Al06v—Al02—Al04i162.42 (6)Fe01x—Al05—Al02vi73.73 (3)
Al05—Al02—Al04i101.15 (6)Fe01—Al05—Al02vi157.09 (9)
Al04vi—Al02—Al04i101.74 (6)Al06x—Al05—Al02vi59.80 (3)
Al04ii—Al02—Al04i85.30 (5)Al06vi—Al05—Al02vi111.97 (2)
Fe01vii—Al03—Fe01143.98 (3)Al06—Al05—Al02vi142.93 (3)
Fe01vii—Al03—Al03ii133.94 (6)Al02—Al05—Al02vi104.21 (6)
Fe01—Al03—Al03ii57.96 (4)Fe01vi—Al05—Al02x157.09 (9)
Fe01vii—Al03—Al03vii58.36 (4)Fe01x—Al05—Al02x55.83 (3)
Fe01—Al03—Al03vii129.21 (6)Fe01—Al05—Al02x73.73 (3)
Al03ii—Al03—Al03vii154.39 (4)Al06x—Al05—Al02x111.97 (2)
Fe01vii—Al03—Al02iv111.32 (4)Al06vi—Al05—Al02x142.93 (3)
Fe01—Al03—Al02iv59.27 (4)Al06—Al05—Al02x59.80 (3)
Al03ii—Al03—Al02iv112.41 (7)Al02—Al05—Al02x104.21 (6)
Al03vii—Al03—Al02iv70.04 (4)Al02vi—Al05—Al02x104.21 (6)
Fe01vii—Al03—Al04vii56.05 (5)Fe01—Al06—Fe01ix132.10 (5)
Fe01—Al03—Al04vii158.60 (6)Fe01—Al06—Al02ix140.79 (6)
Al03ii—Al03—Al04vii103.57 (8)Fe01ix—Al06—Al02ix56.18 (3)
Al03vii—Al03—Al04vii62.47 (6)Fe01—Al06—Al0557.92 (3)
Al02iv—Al03—Al04vii129.43 (7)Fe01ix—Al06—Al05126.73 (6)
Fe01vii—Al03—Al04i155.79 (6)Al02ix—Al06—Al0586.27 (5)
Fe01—Al03—Al04i55.99 (5)Fe01—Al06—Al02x74.77 (3)
Al03ii—Al03—Al04i63.22 (7)Fe01ix—Al06—Al02x153.01 (4)
Al03vii—Al03—Al04i99.06 (7)Al02ix—Al06—Al02x102.72 (3)
Al02iv—Al03—Al04i62.88 (6)Al05—Al06—Al02x60.46 (5)
Al04vii—Al03—Al04i107.73 (2)Fe01—Al06—Al02iv59.25 (4)
Fe01vii—Al03—Al06viii58.57 (4)Fe01ix—Al06—Al02iv73.19 (3)
Fe01—Al03—Al06viii115.62 (4)Al02ix—Al06—Al02iv106.32 (5)
Al03ii—Al03—Al06viii75.42 (4)Al05—Al06—Al02iv85.20 (6)
Al03vii—Al03—Al06viii112.38 (7)Al02x—Al06—Al02iv132.89 (4)
Al02iv—Al03—Al06viii157.83 (4)Fe01—Al06—Al03xii140.38 (5)
Al04vii—Al03—Al06viii64.09 (6)Fe01ix—Al06—Al03xii56.18 (3)
Al04i—Al03—Al06viii134.87 (8)Al02ix—Al06—Al03xii78.51 (3)
Fe01vii—Al03—Al0498.30 (5)Al05—Al06—Al03xii157.46 (5)
Fe01—Al03—Al0455.06 (4)Al02x—Al06—Al03xii106.64 (6)
Al03ii—Al03—Al0459.94 (6)Al02iv—Al06—Al03xii114.89 (4)
Al03vii—Al03—Al04145.67 (7)Fe01—Al06—Al04ix94.96 (5)
Al02iv—Al03—Al04100.78 (5)Fe01ix—Al06—Al04ix53.10 (4)
Al04vii—Al03—Al04128.21 (7)Al02ix—Al06—Al04ix108.84 (4)
Al04i—Al03—Al04105.86 (8)Al05—Al06—Al04ix144.45 (6)
Al06viii—Al03—Al0464.23 (5)Al02x—Al06—Al04ix139.57 (6)
Fe01vii—Al03—Al04ix54.81 (4)Al02iv—Al06—Al04ix59.96 (4)
Fe01—Al03—Al04ix96.12 (5)Al03xii—Al06—Al04ix57.58 (4)
Al03ii—Al03—Al04ix145.22 (7)Fe01—Al06—Al0453.38 (3)
Al03vii—Al03—Al04ix59.59 (5)Fe01ix—Al06—Al04134.06 (6)
Al02iv—Al03—Al04ix61.33 (5)Al02ix—Al06—Al04157.10 (6)
Al04vii—Al03—Al04ix105.06 (8)Al05—Al06—Al0495.64 (6)
Al04i—Al03—Al04ix124.15 (7)Al02x—Al06—Al0459.63 (5)
Al06viii—Al03—Al04ix99.98 (5)Al02iv—Al06—Al0496.58 (4)
Al04—Al03—Al04ix86.68 (2)Al03xii—Al06—Al0492.20 (6)
Fe01—Al04—Fe01xi177.68 (6)Al04ix—Al06—Al0482.61 (5)
Fe01—Al04—Al03ii57.63 (4)Fe01—Al06—Al04xii134.86 (5)
Fe01xi—Al04—Al03ii120.42 (7)Fe01ix—Al06—Al04xii93.02 (5)
Fe01—Al04—Al03xi124.13 (7)Al02ix—Al06—Al04xii60.28 (4)
Fe01xi—Al04—Al03xi57.85 (4)Al05—Al06—Al04xii99.36 (5)
Al03ii—Al04—Al03xi177.86 (11)Al02x—Al06—Al04xii60.26 (5)
Fe01—Al04—Al0356.96 (4)Al02iv—Al06—Al04xii165.19 (5)
Fe01xi—Al04—Al03121.17 (7)Al03xii—Al06—Al04xii58.62 (5)
Al03ii—Al04—Al0357.58 (3)Al04ix—Al06—Al04xii116.13 (6)
Al03xi—Al04—Al03124.16 (10)Al04—Al06—Al04xii96.98 (5)
Fe01—Al04—Al02x73.36 (4)
Symmetry codes: (i) x+y+1/3, y1/3, z+1/6; (ii) x+y+1/3, x+2/3, z1/3; (iii) y+1, x+1, z1/2; (iv) x, xy, z+1/2; (v) x, xy, z1/2; (vi) y+1, xy, z; (vii) y+2/3, xy+1/3, z+1/3; (viii) x1/3, xy+1/3, z1/6; (ix) y+1, x+1, z+1/2; (x) x+y+1, x+1, z; (xi) x+y+2/3, y+1/3, z1/6; (xii) x+1/3, xy+2/3, z+1/6.
 

Acknowledgements

We greatly acknowledge financial support from the Hebei Province Youth Top-notch Talent Program (2013–2018).

References

First citationArmbrüster, M., Kovnir, K., Friedrich, M., Teschner, D., Wowsnick, G., Hahne, M., Gille, P., Szentmiklósi, L., Feuerbacher, M., Heggen, M., Girgsdies, F., Rosenthal, D., Schlögl, R. & Grin, Y. (2012). Nat. Mater. 11, 690–693.  Google Scholar
First citationBachmetew, E. (1934). Z. Kristallogr. 89, 575–586.  Google Scholar
First citationBindi, L. & Steinhardt, P. J. (2018). Rocks Miner. 93, 50–59.  Google Scholar
First citationBlack, P. J. (1955a). Acta Cryst. 8, 43–48.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBlack, P. J. (1955b). Acta Cryst. 8, 175–182.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2017). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2015). APEX3 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA, 2008.  Google Scholar
First citationChandrasekaran, M., Lin, Y. P., Vincent, R. & Staniek, G. (1988). Scr. Metall. 22, 797–802.  CAS Google Scholar
First citationGroth, P. (1906). Chemische Krystallographie, Erster Teil, pp. 47–48. Leipzig: Verlag Wilhelm Engelmann.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLiu, C. & Fan, C. (2018). IUCrData, 3, x180363.  Google Scholar
First citationMa, C., Lin, C., Bindi, L. & Steinhardt, P. J. (2017). Am. Mineral. 102, 690–693.  Google Scholar
First citationOsawa, A. (1933). Sci. Rep. Tohoku Univ. 22, 803–823.  Google Scholar
First citationPhragmén, G. (1950). J. Inst. Met. 77, 489–551.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds