inorganic compounds
Al13Fe3
aState Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People's Republic of China
*Correspondence e-mail: chzfan@ysu.edu.cn
A new trigonal phase with composition Al13Fe3 (tridecaaluminium triiron) was obtained in the binary Fe–Al diagram by high-pressure sintering (HPS) of a stoichiometric Al3Fe mixture. The refined agrees with the descriptions of an unresolved rhombohedral phase reported 30 years ago [Chandrasekaran et al. (1988). Scr. Metall. 22, 797–802]. The structure was refined as an with a ratio of 0.506 (18):0.494 (18) for the two twin components.
Keywords: crystal structure; intermetallics; crystal structure; X-ray diffraction.
CCDC reference: 1837556
Structure description
Investigations on the 3Fe can be traced back to as early as one century ago (Groth, 1906). Similar efforts continued in the following half century (Osawa, 1933; Bachmetew, 1934; Phragmén, 1950). However, an accurate composition and analysis of this phase has been generally accepted to result in a compound with formula λ-Al13Fe4 (Black, 1955a,b; Armbrüster et al., 2012). A new mineral named hollisterite (Al3Fe with the λ-Al13Fe4 structure) was discovered very recently during investigation of one fragment of a recovered Khatyrka CV3 carbonaceous chondrite (Ma et al., 2017) while searching for samples to explain the origin of a mineral (Bindi & Steinhardt, 2018). In the present work, a trigonal phase with composition Al13Fe3 was uncovered to be coexistent with the λ-Al13Fe4 phase in the products while simulating the formation of hollisterite under high-pressure and high-temperature conditions (HPHT) by the HPS approach.
of a phase with composition AlThere are 96 atoms (78 aluminium plus 18 iron) in the 13Fe3 structure. The projection of the structure along [001] is shown in Fig. 1, using coordination polyhedra around Al4 atoms for visualization. It is found that there are 18 Al atoms in the each of which is coordinated in form of a distorted icosahedron that is formed by two, three, four and three atoms of Fe1, Al2, Al3 and Al6, respectively. All the above mentioned atoms occupy the 18b Wyckoff sites while the Al5 atom occupies the 6a Wyckoff site.
of the AlFig. 2 shows the environments of the Fe1 and Al5 atoms. Each Fe1 atom is surrounded by ten aluminium atoms including two Al2, two Al3, two Al4, one Al5 and three Al6 atoms, while each Al5 atom is surrounded by three Fe1 atoms, three Al2 and three Al6 atoms.
It should be noted that the present Al13Fe3 phase agrees with the descriptions of an unresolved rhombohedral phase reported 30 years ago (Chandrasekaran et al., 1988).
Synthesis and crystallization
Pure aluminium powder (indicated purity 99.8%) and pure iron powder (indicated purity 99.8%) were mixed according to an atomic ratio of 3:1. The detailed description and the assembled crucible sketch map of the employed HPS process can be found elsewhere (Liu & Fan, 2018). In the current work, the sample was pressurized up to 5 GPa and heated to 1493 K for 30 min, cooled to 1343 K and held at this temperature for one h, and then cooled down rapidly to room temperature. A brick-shaped fragment with dimensions 0.09 × 0.06 × 0.03 mm3 was selected and mounted on a thin glass fiber for single-crystal X-ray diffraction measurements.
Refinement
Crystal data, data collection and structure . The crystal was refined as an with a ratio of 0.506 (18): 0.494 (18) for the two twin components. Although the ADDSYM function in PLATON (Spek, 2009) suggested a change from the present R3c to centrosymmetric Rc, the reliability factors were significantly higher for the centrosymmetric case. Hence the non-centrosymmetric was used for the present model.
details are summarized in Table 1Structural data
CCDC reference: 1837556
https://doi.org/10.1107/S241431461800593X/wm4075sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S241431461800593X/wm4075Isup2.hkl
Data collection: APEX3 (Bruker, 2015); cell
SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2017); software used to prepare material for publication: publCIF (Westrip, 2010)..Al13Fe3 | Dx = 3.642 Mg m−3 |
Mr = 518.29 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, R3c:H | Cell parameters from 21502 reflections |
a = 14.5784 (9) Å | θ = 2.8–31.5° |
c = 7.7020 (5) Å | µ = 5.69 mm−1 |
V = 1417.6 (2) Å3 | T = 293 K |
Z = 6 | Grain, metallic |
F(000) = 741 | 0.09 × 0.06 × 0.03 mm |
Bruker D8 Venture Photon 100 COMS diffractometer | 954 reflections with I > 2σ(I) |
phi and ω scans | Rint = 0.031 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 31.5°, θmin = 2.8° |
Tmin = 0.590, Tmax = 0.746 | h = −21→21 |
20029 measured reflections | k = −20→21 |
1017 independent reflections | l = −11→11 |
Refinement on F2 | 1 restraint |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0208P)2 + 1.1916P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.020 | (Δ/σ)max < 0.001 |
wR(F2) = 0.039 | Δρmax = 0.45 e Å−3 |
S = 1.12 | Δρmin = −0.81 e Å−3 |
1017 reflections | Absolute structure: Refined as an inversion twin. |
50 parameters | Absolute structure parameter: 0.494 (18) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin. |
x | y | z | Uiso*/Ueq | ||
Fe01 | 0.49239 (3) | 0.33140 (5) | 0.49860 (8) | 0.00526 (10) | |
Al02 | 0.48081 (7) | 0.18100 (8) | 0.33067 (12) | 0.0153 (2) | |
Al03 | 0.35885 (7) | 0.36146 (7) | 0.65909 (13) | 0.00896 (16) | |
Al04 | 0.50297 (11) | 0.49974 (10) | 0.4148 (3) | 0.01602 (18) | |
Al05 | 0.666667 | 0.333333 | 0.4775 (3) | 0.0134 (3) | |
Al06 | 0.63864 (9) | 0.47463 (10) | 0.66904 (10) | 0.0152 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe01 | 0.00493 (19) | 0.00516 (14) | 0.00559 (16) | 0.00245 (16) | −0.00091 (16) | −0.00119 (11) |
Al02 | 0.0279 (6) | 0.0094 (4) | 0.0099 (4) | 0.0103 (5) | −0.0025 (5) | −0.0030 (4) |
Al03 | 0.0149 (5) | 0.0144 (5) | 0.0049 (4) | 0.0128 (3) | 0.0002 (4) | −0.0011 (5) |
Al04 | 0.0114 (3) | 0.0066 (3) | 0.0311 (5) | 0.0053 (3) | 0.0047 (3) | 0.0037 (3) |
Al05 | 0.0071 (3) | 0.0071 (3) | 0.0259 (10) | 0.00355 (16) | 0.000 | 0.000 |
Al06 | 0.0129 (5) | 0.0135 (5) | 0.0096 (5) | −0.0006 (4) | −0.0016 (4) | −0.0056 (4) |
Fe01—Al04 | 2.4667 (16) | Al02—Al04ii | 2.832 (2) |
Fe01—Al04i | 2.4697 (15) | Al02—Al04i | 2.8522 (19) |
Fe01—Al02 | 2.4776 (13) | Al03—Al03ii | 2.6558 (3) |
Fe01—Al06 | 2.4854 (12) | Al03—Al03vii | 2.6558 (4) |
Fe01—Al03ii | 2.5115 (12) | Al03—Al04vii | 2.7230 (19) |
Fe01—Al03 | 2.5226 (12) | Al03—Al04i | 2.7254 (18) |
Fe01—Al05 | 2.5319 (4) | Al03—Al06viii | 2.7454 (18) |
Fe01—Al06iii | 2.5797 (11) | Al03—Al04 | 2.790 (2) |
Fe01—Al02iv | 2.5893 (13) | Al03—Al04ix | 2.821 (2) |
Al02—Al06iii | 2.6790 (17) | Al04—Al06iii | 2.901 (2) |
Al02—Al03v | 2.7043 (17) | Al04—Al06 | 2.933 (2) |
Al02—Al06vi | 2.7269 (11) | Al04—Al06viii | 2.9428 (19) |
Al02—Al06v | 2.7341 (18) | Al05—Al06x | 2.7253 (16) |
Al02—Al05 | 2.7450 (13) | Al05—Al06vi | 2.7253 (16) |
Al02—Al04vi | 2.820 (2) | Al05—Al06 | 2.7254 (16) |
Al04—Fe01—Al04i | 126.125 (12) | Fe01xi—Al04—Al02x | 108.89 (6) |
Al04—Fe01—Al02 | 133.36 (8) | Al03ii—Al04—Al02x | 112.86 (6) |
Al04i—Fe01—Al02 | 70.41 (5) | Al03xi—Al04—Al02x | 67.36 (4) |
Al04—Fe01—Al06 | 72.65 (5) | Al03—Al04—Al02x | 126.10 (6) |
Al04i—Fe01—Al06 | 133.11 (7) | Fe01—Al04—Al03iii | 125.60 (8) |
Al02—Fe01—Al06 | 132.02 (4) | Fe01xi—Al04—Al03iii | 56.20 (4) |
Al04—Fe01—Al03ii | 66.31 (4) | Al03ii—Al04—Al03iii | 120.99 (10) |
Al04i—Fe01—Al03ii | 68.99 (6) | Al03xi—Al04—Al03iii | 57.19 (3) |
Al02—Fe01—Al03ii | 86.95 (4) | Al03—Al04—Al03iii | 176.46 (8) |
Al06—Fe01—Al03ii | 137.21 (4) | Al02x—Al04—Al03iii | 57.29 (4) |
Al04—Fe01—Al03 | 67.99 (5) | Fe01—Al04—Al02vii | 121.54 (9) |
Al04i—Fe01—Al03 | 66.17 (4) | Fe01xi—Al04—Al02vii | 57.99 (5) |
Al02—Fe01—Al03 | 133.83 (4) | Al03ii—Al04—Al02vii | 122.36 (7) |
Al06—Fe01—Al03 | 90.44 (4) | Al03xi—Al04—Al02vii | 58.20 (5) |
Al03ii—Fe01—Al03 | 63.682 (17) | Al03—Al04—Al02vii | 75.26 (6) |
Al04—Fe01—Al05 | 114.14 (4) | Al02x—Al04—Al02vii | 121.54 (6) |
Al04i—Fe01—Al05 | 119.65 (4) | Al03iii—Al04—Al02vii | 103.99 (5) |
Al02—Fe01—Al05 | 66.44 (4) | Fe01—Al04—Al02xi | 123.48 (7) |
Al06—Fe01—Al05 | 65.80 (4) | Fe01xi—Al04—Al02xi | 54.92 (4) |
Al03ii—Fe01—Al05 | 143.61 (5) | Al03ii—Al04—Al02xi | 66.93 (5) |
Al03—Fe01—Al05 | 152.47 (5) | Al03xi—Al04—Al02xi | 111.09 (6) |
Al04—Fe01—Al06iii | 70.15 (6) | Al03—Al04—Al02xi | 102.12 (5) |
Al04i—Fe01—Al06iii | 115.20 (7) | Al02x—Al04—Al02xi | 123.32 (8) |
Al02—Fe01—Al06iii | 63.94 (4) | Al03iii—Al04—Al02xi | 74.46 (6) |
Al06—Fe01—Al06iii | 111.62 (3) | Al02vii—Al04—Al02xi | 95.95 (6) |
Al03ii—Fe01—Al06iii | 65.25 (4) | Fe01—Al04—Al06iii | 56.75 (5) |
Al03—Fe01—Al06iii | 123.20 (4) | Fe01xi—Al04—Al06iii | 123.79 (9) |
Al05—Fe01—Al06iii | 80.44 (6) | Al03ii—Al04—Al06iii | 58.33 (5) |
Al04—Fe01—Al02iv | 113.68 (7) | Al03xi—Al04—Al06iii | 121.20 (7) |
Al04i—Fe01—Al02iv | 68.04 (6) | Al03—Al04—Al06iii | 104.09 (5) |
Al02—Fe01—Al02iv | 112.87 (3) | Al02x—Al04—Al06iii | 57.08 (5) |
Al06—Fe01—Al02iv | 65.16 (4) | Al03iii—Al04—Al06iii | 76.79 (6) |
Al03ii—Fe01—Al02iv | 121.68 (4) | Al02vii—Al04—Al06iii | 177.80 (8) |
Al03—Fe01—Al02iv | 63.86 (4) | Al02xi—Al04—Al06iii | 86.24 (6) |
Al05—Fe01—Al02iv | 92.36 (6) | Fe01—Al04—Al06 | 53.97 (5) |
Al06iii—Fe01—Al02iv | 172.79 (4) | Fe01xi—Al04—Al06 | 127.63 (7) |
Fe01—Al02—Fe01v | 129.49 (5) | Al03ii—Al04—Al06 | 110.62 (6) |
Fe01—Al02—Al06iii | 59.88 (4) | Al03xi—Al04—Al06 | 71.35 (5) |
Fe01v—Al02—Al06iii | 69.76 (3) | Al03—Al04—Al06 | 76.75 (6) |
Fe01—Al02—Al03v | 148.34 (5) | Al02x—Al04—Al06 | 56.54 (4) |
Fe01v—Al02—Al03v | 56.87 (3) | Al03iii—Al04—Al06 | 106.71 (5) |
Al06iii—Al02—Al03v | 117.46 (5) | Al02vii—Al04—Al06 | 86.01 (6) |
Fe01—Al02—Al06vi | 70.58 (4) | Al02xi—Al04—Al06 | 177.44 (7) |
Fe01v—Al02—Al06vi | 154.40 (4) | Al06iii—Al04—Al06 | 91.80 (6) |
Al06iii—Al02—Al06vi | 125.55 (5) | Fe01—Al04—Al06viii | 110.76 (6) |
Al03v—Al02—Al06vi | 116.47 (6) | Fe01xi—Al04—Al06viii | 67.01 (4) |
Fe01—Al02—Al06v | 129.03 (5) | Al03ii—Al04—Al06viii | 71.23 (5) |
Fe01v—Al02—Al06v | 55.58 (3) | Al03xi—Al04—Al06viii | 108.48 (6) |
Al06iii—Al02—Al06v | 94.31 (6) | Al03—Al04—Al06viii | 57.15 (5) |
Al03v—Al02—Al06v | 81.63 (4) | Al02x—Al04—Al06viii | 175.59 (6) |
Al06vi—Al02—Al06v | 100.22 (3) | Al03iii—Al04—Al06viii | 119.52 (6) |
Fe01—Al02—Al05 | 57.73 (3) | Al02vii—Al04—Al06viii | 55.24 (4) |
Fe01v—Al02—Al05 | 113.86 (6) | Al02xi—Al04—Al06viii | 56.11 (4) |
Al06iii—Al02—Al05 | 74.96 (5) | Al06iii—Al04—Al06viii | 126.25 (7) |
Al03v—Al02—Al05 | 153.71 (5) | Al06—Al04—Al06viii | 124.25 (8) |
Al06vi—Al02—Al05 | 59.74 (5) | Fe01vi—Al05—Fe01x | 119.592 (12) |
Al06v—Al02—Al05 | 74.09 (5) | Fe01vi—Al05—Fe01 | 119.591 (12) |
Fe01—Al02—Al04vi | 134.41 (5) | Fe01x—Al05—Fe01 | 119.593 (12) |
Fe01v—Al02—Al04vi | 94.65 (5) | Fe01vi—Al05—Al06x | 69.84 (4) |
Al06iii—Al02—Al04vi | 157.26 (5) | Fe01x—Al05—Al06x | 56.28 (3) |
Al03v—Al02—Al04vi | 61.38 (5) | Fe01—Al05—Al06x | 142.70 (10) |
Al06vi—Al02—Al04vi | 63.83 (5) | Fe01vi—Al05—Al06vi | 56.28 (3) |
Al06v—Al02—Al04vi | 62.96 (5) | Fe01x—Al05—Al06vi | 142.70 (10) |
Al05—Al02—Al04vi | 97.86 (5) | Fe01—Al05—Al06vi | 69.84 (4) |
Fe01—Al02—Al04ii | 98.01 (5) | Al06x—Al05—Al06vi | 93.47 (6) |
Fe01v—Al02—Al04ii | 53.97 (4) | Fe01vi—Al05—Al06 | 142.70 (10) |
Al06iii—Al02—Al04ii | 64.48 (4) | Fe01x—Al05—Al06 | 69.84 (4) |
Al03v—Al02—Al04ii | 58.92 (4) | Fe01—Al05—Al06 | 56.28 (3) |
Al06vi—Al02—Al04ii | 148.11 (6) | Al06x—Al05—Al06 | 93.47 (6) |
Al06v—Al02—Al04ii | 109.50 (4) | Al06vi—Al05—Al06 | 93.47 (6) |
Al05—Al02—Al04ii | 139.40 (6) | Fe01vi—Al05—Al02 | 73.73 (3) |
Al04vi—Al02—Al04ii | 120.25 (6) | Fe01x—Al05—Al02 | 157.09 (9) |
Fe01—Al02—Al04i | 54.67 (4) | Fe01—Al05—Al02 | 55.83 (3) |
Fe01v—Al02—Al04i | 138.74 (6) | Al06x—Al05—Al02 | 142.93 (3) |
Al06iii—Al02—Al04i | 100.82 (5) | Al06vi—Al05—Al02 | 59.80 (3) |
Al03v—Al02—Al04i | 99.00 (5) | Al06—Al05—Al02 | 111.97 (2) |
Al06vi—Al02—Al04i | 63.62 (5) | Fe01vi—Al05—Al02vi | 55.83 (3) |
Al06v—Al02—Al04i | 162.42 (6) | Fe01x—Al05—Al02vi | 73.73 (3) |
Al05—Al02—Al04i | 101.15 (6) | Fe01—Al05—Al02vi | 157.09 (9) |
Al04vi—Al02—Al04i | 101.74 (6) | Al06x—Al05—Al02vi | 59.80 (3) |
Al04ii—Al02—Al04i | 85.30 (5) | Al06vi—Al05—Al02vi | 111.97 (2) |
Fe01vii—Al03—Fe01 | 143.98 (3) | Al06—Al05—Al02vi | 142.93 (3) |
Fe01vii—Al03—Al03ii | 133.94 (6) | Al02—Al05—Al02vi | 104.21 (6) |
Fe01—Al03—Al03ii | 57.96 (4) | Fe01vi—Al05—Al02x | 157.09 (9) |
Fe01vii—Al03—Al03vii | 58.36 (4) | Fe01x—Al05—Al02x | 55.83 (3) |
Fe01—Al03—Al03vii | 129.21 (6) | Fe01—Al05—Al02x | 73.73 (3) |
Al03ii—Al03—Al03vii | 154.39 (4) | Al06x—Al05—Al02x | 111.97 (2) |
Fe01vii—Al03—Al02iv | 111.32 (4) | Al06vi—Al05—Al02x | 142.93 (3) |
Fe01—Al03—Al02iv | 59.27 (4) | Al06—Al05—Al02x | 59.80 (3) |
Al03ii—Al03—Al02iv | 112.41 (7) | Al02—Al05—Al02x | 104.21 (6) |
Al03vii—Al03—Al02iv | 70.04 (4) | Al02vi—Al05—Al02x | 104.21 (6) |
Fe01vii—Al03—Al04vii | 56.05 (5) | Fe01—Al06—Fe01ix | 132.10 (5) |
Fe01—Al03—Al04vii | 158.60 (6) | Fe01—Al06—Al02ix | 140.79 (6) |
Al03ii—Al03—Al04vii | 103.57 (8) | Fe01ix—Al06—Al02ix | 56.18 (3) |
Al03vii—Al03—Al04vii | 62.47 (6) | Fe01—Al06—Al05 | 57.92 (3) |
Al02iv—Al03—Al04vii | 129.43 (7) | Fe01ix—Al06—Al05 | 126.73 (6) |
Fe01vii—Al03—Al04i | 155.79 (6) | Al02ix—Al06—Al05 | 86.27 (5) |
Fe01—Al03—Al04i | 55.99 (5) | Fe01—Al06—Al02x | 74.77 (3) |
Al03ii—Al03—Al04i | 63.22 (7) | Fe01ix—Al06—Al02x | 153.01 (4) |
Al03vii—Al03—Al04i | 99.06 (7) | Al02ix—Al06—Al02x | 102.72 (3) |
Al02iv—Al03—Al04i | 62.88 (6) | Al05—Al06—Al02x | 60.46 (5) |
Al04vii—Al03—Al04i | 107.73 (2) | Fe01—Al06—Al02iv | 59.25 (4) |
Fe01vii—Al03—Al06viii | 58.57 (4) | Fe01ix—Al06—Al02iv | 73.19 (3) |
Fe01—Al03—Al06viii | 115.62 (4) | Al02ix—Al06—Al02iv | 106.32 (5) |
Al03ii—Al03—Al06viii | 75.42 (4) | Al05—Al06—Al02iv | 85.20 (6) |
Al03vii—Al03—Al06viii | 112.38 (7) | Al02x—Al06—Al02iv | 132.89 (4) |
Al02iv—Al03—Al06viii | 157.83 (4) | Fe01—Al06—Al03xii | 140.38 (5) |
Al04vii—Al03—Al06viii | 64.09 (6) | Fe01ix—Al06—Al03xii | 56.18 (3) |
Al04i—Al03—Al06viii | 134.87 (8) | Al02ix—Al06—Al03xii | 78.51 (3) |
Fe01vii—Al03—Al04 | 98.30 (5) | Al05—Al06—Al03xii | 157.46 (5) |
Fe01—Al03—Al04 | 55.06 (4) | Al02x—Al06—Al03xii | 106.64 (6) |
Al03ii—Al03—Al04 | 59.94 (6) | Al02iv—Al06—Al03xii | 114.89 (4) |
Al03vii—Al03—Al04 | 145.67 (7) | Fe01—Al06—Al04ix | 94.96 (5) |
Al02iv—Al03—Al04 | 100.78 (5) | Fe01ix—Al06—Al04ix | 53.10 (4) |
Al04vii—Al03—Al04 | 128.21 (7) | Al02ix—Al06—Al04ix | 108.84 (4) |
Al04i—Al03—Al04 | 105.86 (8) | Al05—Al06—Al04ix | 144.45 (6) |
Al06viii—Al03—Al04 | 64.23 (5) | Al02x—Al06—Al04ix | 139.57 (6) |
Fe01vii—Al03—Al04ix | 54.81 (4) | Al02iv—Al06—Al04ix | 59.96 (4) |
Fe01—Al03—Al04ix | 96.12 (5) | Al03xii—Al06—Al04ix | 57.58 (4) |
Al03ii—Al03—Al04ix | 145.22 (7) | Fe01—Al06—Al04 | 53.38 (3) |
Al03vii—Al03—Al04ix | 59.59 (5) | Fe01ix—Al06—Al04 | 134.06 (6) |
Al02iv—Al03—Al04ix | 61.33 (5) | Al02ix—Al06—Al04 | 157.10 (6) |
Al04vii—Al03—Al04ix | 105.06 (8) | Al05—Al06—Al04 | 95.64 (6) |
Al04i—Al03—Al04ix | 124.15 (7) | Al02x—Al06—Al04 | 59.63 (5) |
Al06viii—Al03—Al04ix | 99.98 (5) | Al02iv—Al06—Al04 | 96.58 (4) |
Al04—Al03—Al04ix | 86.68 (2) | Al03xii—Al06—Al04 | 92.20 (6) |
Fe01—Al04—Fe01xi | 177.68 (6) | Al04ix—Al06—Al04 | 82.61 (5) |
Fe01—Al04—Al03ii | 57.63 (4) | Fe01—Al06—Al04xii | 134.86 (5) |
Fe01xi—Al04—Al03ii | 120.42 (7) | Fe01ix—Al06—Al04xii | 93.02 (5) |
Fe01—Al04—Al03xi | 124.13 (7) | Al02ix—Al06—Al04xii | 60.28 (4) |
Fe01xi—Al04—Al03xi | 57.85 (4) | Al05—Al06—Al04xii | 99.36 (5) |
Al03ii—Al04—Al03xi | 177.86 (11) | Al02x—Al06—Al04xii | 60.26 (5) |
Fe01—Al04—Al03 | 56.96 (4) | Al02iv—Al06—Al04xii | 165.19 (5) |
Fe01xi—Al04—Al03 | 121.17 (7) | Al03xii—Al06—Al04xii | 58.62 (5) |
Al03ii—Al04—Al03 | 57.58 (3) | Al04ix—Al06—Al04xii | 116.13 (6) |
Al03xi—Al04—Al03 | 124.16 (10) | Al04—Al06—Al04xii | 96.98 (5) |
Fe01—Al04—Al02x | 73.36 (4) |
Symmetry codes: (i) −x+y+1/3, y−1/3, z+1/6; (ii) −x+y+1/3, −x+2/3, z−1/3; (iii) −y+1, −x+1, z−1/2; (iv) x, x−y, z+1/2; (v) x, x−y, z−1/2; (vi) −y+1, x−y, z; (vii) −y+2/3, x−y+1/3, z+1/3; (viii) x−1/3, x−y+1/3, z−1/6; (ix) −y+1, −x+1, z+1/2; (x) −x+y+1, −x+1, z; (xi) −x+y+2/3, y+1/3, z−1/6; (xii) x+1/3, x−y+2/3, z+1/6. |
Acknowledgements
We greatly acknowledge financial support from the Hebei Province Youth Top-notch Talent Program (2013–2018).
References
Armbrüster, M., Kovnir, K., Friedrich, M., Teschner, D., Wowsnick, G., Hahne, M., Gille, P., Szentmiklósi, L., Feuerbacher, M., Heggen, M., Girgsdies, F., Rosenthal, D., Schlögl, R. & Grin, Y. (2012). Nat. Mater. 11, 690–693. Google Scholar
Bachmetew, E. (1934). Z. Kristallogr. 89, 575–586. Google Scholar
Bindi, L. & Steinhardt, P. J. (2018). Rocks Miner. 93, 50–59. Google Scholar
Black, P. J. (1955a). Acta Cryst. 8, 43–48. CrossRef CAS IUCr Journals Web of Science Google Scholar
Black, P. J. (1955b). Acta Cryst. 8, 175–182. CrossRef CAS IUCr Journals Web of Science Google Scholar
Brandenburg, K. & Putz, H. (2017). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2015). APEX3 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA, 2008. Google Scholar
Chandrasekaran, M., Lin, Y. P., Vincent, R. & Staniek, G. (1988). Scr. Metall. 22, 797–802. CAS Google Scholar
Groth, P. (1906). Chemische Krystallographie, Erster Teil, pp. 47–48. Leipzig: Verlag Wilhelm Engelmann. Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Liu, C. & Fan, C. (2018). IUCrData, 3, x180363. Google Scholar
Ma, C., Lin, C., Bindi, L. & Steinhardt, P. J. (2017). Am. Mineral. 102, 690–693. Google Scholar
Osawa, A. (1933). Sci. Rep. Tohoku Univ. 22, 803–823. Google Scholar
Phragmén, G. (1950). J. Inst. Met. 77, 489–551. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.