metal-organic compounds
Bis(tetraphenylarsonium) hexachloridozirconate(IV) acetonitrile tetrasolvate
aDepartment of Chemistry, University of Nevada Las Vegas, 4505 South Maryland Parkway, Las Vegas, Nevada, 89154, United States
*Correspondence e-mail: m.b.eswari@unlv.edu
The bis(tetraphenylarsonium) hexachloridozirconate(IV) salt, (AsPh4)2[ZrCl6] (Ph = C6H5), was prepared more than 25 years ago [Esmadi & Sutcliffe (1991). Indian J. Chem. 30 A, 99–101], but its was never reported. By following a similar experimental procedure, the compound was synthesized and its was investigated as a acetonitrile tetrasolvate, (As(C6H5)4)2[ZrCl6]·4CH3CN, by single-crystal X–ray diffraction. The [ZrCl6]2− anion adopts a slightly distorted octahedral coordination sphere, with Zr—Cl bond lengths of 2.4586 (6), 2.4723 (6), and 2.4818 (5) Å, and Cl—Zr—Cl angles ranging from 89.602 (19) to 90.397 (19)°.
Keywords: crystal structure; zirconium; tetraphenylarsonium; solvate.
CCDC reference: 1834601
Structure description
Zirconium tetrachloride is encountered in the et al., 1996; Collins et al., 2012; Jeon et al., 2013). The ZrCl4 produced from these alloys at temperatures above 573 K contains several impurities that are difficult to separate. It has been considered that the impurities could be present due to the formation of intermediate ternary compounds, or by the co-crystallization of various chloride species. For these reasons, investigating the chemical behavior of ZrCl4 in the presence of other chlorides is of importance. At least ten hexachloridozirconate(IV) salts have been prepared and their structures reported. The majority of these salts were prepared using ZrCl4 and chloride salts as starting materials (Esmadi & Sutcliffe, 1991; Ohashi et al., 1987). These [ZrCl6]2− salts contain single-element cations (e.g. Cs+, Rb+, Fe2+) or more complex cations {e.g. [P(C6H5)4]+, [N(CH3)4]+}. On the other hand, crystal structures have not been reported for many of these hexachloridozirconates(IV) (e.g. Na2[ZrCl6] and K2[ZrCl6]; Lister, 1964). One of these salts, bis(tetraphenylarsonium) hexachloridozirconate(IV), was synthesized (Esmadi & Sutcliffe, 1991) but its structure never reported. Here, (AsPh4)2[ZrCl6]·4(CH3CN) (Ph = C6H5) was crystallized as its acetonitrile tetrasolvate (Fig. 1) and its structure investigated by single-crystal X-ray diffraction.
cycle for the recycling of zirconium from zirconium alloy cladding using a chloride volatility process (BoheThe unit-cell packing of (AsPh4)2[ZrCl6]·4(CH3CN) is shown in Fig. 2. The (AsPh4)+ cation adopts a distorted tetrahedral configuration in which the phenyl groups are asymmetrically attached (Fig. 1). The As—C bond lengths (Table 1) are similar to those reported for (AsPh4)2[TcCl6] (Baldas et al., 1984) or (AsPh4)2[ReBr6] (Kochel, 2007). The asymmetric orientation of the phenyl groups is reflected by the deviation of the C—As—C angles from those of a perfect tetrahedron (Table 1).
The [ZrCl6]2− anion, which is located on a position with (Wyckoff position 2a), adopts a slightly distorted octahedral coordination sphere (Fig. 1, Table 1), The shortest Zr ⋯ Zr distance in the structure is 9.6505 (7) Å that corresponds with the length of the a axis. The shortest As ⋯ As distance is 7.8562 (7) Å and corresponds to adjacent (AsPh4)+ cations within the same unit cell.
The isolated (AsPh4)+ cations and [ZrCl6]2− anions pack in alternating rows extending parallel to [100]. The two unique solvent molecules are located in the voids of this arrangement (Fig. 2). The shortest distances observed between N or Cl atoms and H atoms range between 2.61 and 2.81 Å (Table 2). These distances suggest that the components interact only weakly through hydrogen bonding and that the structural cohesion is primarily accomplished by Coulombic attraction.
Synthesis and crystallization
All chemicals were purchased from Sigma Aldrich and used as received. The reaction used to prepare (AsPh4)2[ZrCl6] (Fig. 3) is similar to that described in the literature (Esmadi & Sutcliffe, 1991): A solution of (AsPh4)Cl (0.72 g, 1.7 mmol) in thionyl chloride (2 ml) was added dropwise to a stirring solution of ZrCl4 (0.20 g, 0.86 mmol) in thionyl chloride (1 ml). After stirring the mixture for 20 h, ethyl acetate was added dropwise to induce precipitation. The white precipitate was washed with ethyl acetate (3 × 3 ml) and diethyl ether (3 × 3 ml), and then dried under vacuum over CaCl2. Yield: 0.35 g (38%). Colorless block-shaped crystals were obtained by recrystallization from acetonitrile and slow evaporation at room temperature.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 3
|
Structural data
CCDC reference: 1834601
https://doi.org/10.1107/S241431461800528X/wm4070sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S241431461800528X/wm4070Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S241431461800528X/wm4070sup3.docx
Data collection: APEX3 (Bruker, 2015); cell
SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: publCIF (Westrip, 2010).(C24H20As)2[ZrCl6]·4C2H3N | F(000) = 1248 |
Mr = 1234.77 | Dx = 1.466 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.6505 (7) Å | Cell parameters from 9919 reflections |
b = 19.3780 (13) Å | θ = 2.4–30.5° |
c = 15.1026 (10) Å | µ = 1.70 mm−1 |
β = 97.849 (1)° | T = 100 K |
V = 2797.8 (3) Å3 | Rectangular, translucent colourless |
Z = 2 | 0.12 × 0.10 × 0.05 mm |
Bruker SMART APEX CCD area detector diffractometer | 8589 independent reflections |
Radiation source: sealed tube | 6236 reflections with I > 2σ(I) |
Curved graphite monochromator | Rint = 0.079 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 30.6°, θmin = 1.7° |
ω and φ scans | h = −13→13 |
Absorption correction: multi-scan (SADABS; Bruker 2015) | k = −27→27 |
Tmin = 0.80, Tmax = 0.93 | l = −21→21 |
45888 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.037 | H-atom parameters constrained |
wR(F2) = 0.082 | w = 1/[σ2(Fo2) + (0.0292P)2 + 0.8047P] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max = 0.001 |
8589 reflections | Δρmax = 0.59 e Å−3 |
315 parameters | Δρmin = −0.47 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Zr1 | 0 | 0.5 | 0.5 | 0.01200 (7) | |
Cl1 | −0.12452 (6) | 0.49192 (3) | 0.63295 (4) | 0.01817 (12) | |
Cl2 | 0.21611 (6) | 0.46095 (3) | 0.59151 (4) | 0.01759 (12) | |
Cl3 | −0.06208 (6) | 0.37896 (3) | 0.46088 (4) | 0.01820 (12) | |
As1 | 0.33890 (2) | 0.19416 (2) | 0.56737 (2) | 0.01347 (6) | |
C1 | 0.1981 (2) | 0.20864 (12) | 0.64294 (15) | 0.0158 (5) | |
C2 | 0.1159 (2) | 0.26745 (13) | 0.63054 (15) | 0.0183 (5) | |
H2 | 0.1348 | 0.3019 | 0.5891 | 0.022* | |
C3 | 0.0045 (3) | 0.27509 (14) | 0.68001 (17) | 0.0233 (5) | |
H3 | −0.053 | 0.315 | 0.6724 | 0.028* | |
C4 | −0.0218 (3) | 0.22430 (15) | 0.74010 (17) | 0.0261 (6) | |
H4 | −0.0977 | 0.2297 | 0.7735 | 0.031* | |
C5 | 0.0609 (3) | 0.16591 (14) | 0.75216 (17) | 0.0257 (6) | |
H5 | 0.0423 | 0.1317 | 0.794 | 0.031* | |
C6 | 0.1713 (3) | 0.15734 (13) | 0.70298 (16) | 0.0215 (5) | |
H6 | 0.2277 | 0.117 | 0.7102 | 0.026* | |
C7 | 0.4895 (2) | 0.14073 (12) | 0.62672 (15) | 0.0160 (5) | |
C8 | 0.5372 (3) | 0.15342 (13) | 0.71679 (16) | 0.0198 (5) | |
H8 | 0.489 | 0.1848 | 0.75 | 0.024* | |
C9 | 0.6563 (3) | 0.11940 (13) | 0.75712 (17) | 0.0223 (5) | |
H9 | 0.6901 | 0.1277 | 0.8182 | 0.027* | |
C10 | 0.7255 (3) | 0.07347 (13) | 0.70835 (17) | 0.0232 (5) | |
H10 | 0.8069 | 0.0505 | 0.7362 | 0.028* | |
C11 | 0.6772 (3) | 0.06076 (13) | 0.61916 (17) | 0.0226 (5) | |
H11 | 0.7253 | 0.029 | 0.5863 | 0.027* | |
C12 | 0.5584 (3) | 0.09436 (12) | 0.57771 (16) | 0.0192 (5) | |
H12 | 0.5247 | 0.0857 | 0.5166 | 0.023* | |
C13 | 0.2531 (2) | 0.14813 (12) | 0.46202 (15) | 0.0161 (5) | |
C14 | 0.1334 (3) | 0.10940 (13) | 0.46581 (18) | 0.0232 (5) | |
H14 | 0.0967 | 0.104 | 0.5207 | 0.028* | |
C15 | 0.0675 (3) | 0.07837 (14) | 0.3877 (2) | 0.0303 (6) | |
H15 | −0.0148 | 0.0517 | 0.3891 | 0.036* | |
C16 | 0.1224 (3) | 0.08663 (14) | 0.30838 (19) | 0.0319 (7) | |
H16 | 0.0763 | 0.0664 | 0.2551 | 0.038* | |
C17 | 0.2431 (3) | 0.12383 (14) | 0.30598 (18) | 0.0285 (6) | |
H17 | 0.2815 | 0.1277 | 0.2515 | 0.034* | |
C18 | 0.3090 (3) | 0.15558 (13) | 0.38228 (16) | 0.0220 (5) | |
H18 | 0.3913 | 0.1821 | 0.3804 | 0.026* | |
C19 | 0.4146 (2) | 0.27956 (12) | 0.53165 (15) | 0.0152 (5) | |
C20 | 0.3407 (3) | 0.31814 (13) | 0.46303 (16) | 0.0207 (5) | |
H20 | 0.2515 | 0.3033 | 0.4351 | 0.025* | |
C21 | 0.3994 (3) | 0.37853 (14) | 0.43617 (18) | 0.0264 (6) | |
H21 | 0.3498 | 0.4055 | 0.3897 | 0.032* | |
C22 | 0.5302 (3) | 0.40003 (13) | 0.47654 (18) | 0.0256 (6) | |
H22 | 0.5702 | 0.4412 | 0.4571 | 0.031* | |
C23 | 0.6021 (3) | 0.36166 (14) | 0.54487 (18) | 0.0260 (6) | |
H23 | 0.6913 | 0.3767 | 0.5726 | 0.031* | |
C24 | 0.5446 (3) | 0.30097 (13) | 0.57344 (16) | 0.0203 (5) | |
H24 | 0.5936 | 0.2746 | 0.6208 | 0.024* | |
N1S | 0.6349 (3) | 0.29350 (14) | 0.8309 (2) | 0.0488 (8) | |
C1S | 0.8149 (3) | 0.29684 (15) | 0.9742 (2) | 0.0354 (7) | |
H1SA | 0.9092 | 0.2909 | 0.9581 | 0.053* | |
H1SB | 0.795 | 0.2595 | 1.0144 | 0.053* | |
H1SC | 0.809 | 0.3413 | 1.0043 | 0.053* | |
C2S | 0.7135 (3) | 0.29509 (14) | 0.8939 (2) | 0.0330 (7) | |
N2S | 0.7183 (3) | 0.47851 (14) | 0.89707 (18) | 0.0415 (7) | |
C3S | 0.5671 (3) | 0.45689 (15) | 0.74402 (18) | 0.0305 (6) | |
H3SA | 0.6178 | 0.4728 | 0.6959 | 0.046* | |
H3SB | 0.4785 | 0.4821 | 0.7413 | 0.046* | |
H3SC | 0.548 | 0.4074 | 0.737 | 0.046* | |
C4S | 0.6518 (3) | 0.46939 (14) | 0.8301 (2) | 0.0280 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zr1 | 0.01241 (14) | 0.01349 (15) | 0.01014 (14) | −0.00022 (12) | 0.00168 (11) | 0.00088 (11) |
Cl1 | 0.0181 (3) | 0.0237 (3) | 0.0137 (3) | 0.0007 (2) | 0.0057 (2) | 0.0023 (2) |
Cl2 | 0.0159 (3) | 0.0219 (3) | 0.0144 (3) | 0.0019 (2) | 0.0001 (2) | 0.0022 (2) |
Cl3 | 0.0206 (3) | 0.0155 (3) | 0.0184 (3) | −0.0018 (2) | 0.0024 (2) | −0.0012 (2) |
As1 | 0.01339 (11) | 0.01436 (12) | 0.01258 (11) | −0.00053 (9) | 0.00148 (8) | −0.00037 (9) |
C1 | 0.0124 (11) | 0.0194 (12) | 0.0154 (11) | −0.0027 (9) | 0.0017 (9) | −0.0023 (9) |
C2 | 0.0197 (12) | 0.0192 (12) | 0.0162 (11) | 0.0001 (10) | 0.0027 (9) | 0.0001 (9) |
C3 | 0.0200 (13) | 0.0240 (14) | 0.0261 (14) | 0.0018 (10) | 0.0033 (10) | −0.0049 (11) |
C4 | 0.0204 (13) | 0.0368 (16) | 0.0222 (13) | −0.0031 (11) | 0.0073 (10) | −0.0072 (11) |
C5 | 0.0269 (14) | 0.0305 (15) | 0.0215 (13) | −0.0052 (11) | 0.0099 (11) | 0.0016 (11) |
C6 | 0.0220 (13) | 0.0214 (13) | 0.0216 (13) | −0.0004 (10) | 0.0045 (10) | 0.0028 (10) |
C7 | 0.0148 (11) | 0.0139 (11) | 0.0192 (12) | 0.0002 (9) | 0.0020 (9) | 0.0029 (9) |
C8 | 0.0212 (12) | 0.0210 (13) | 0.0165 (12) | 0.0000 (10) | 0.0007 (10) | −0.0006 (10) |
C9 | 0.0225 (13) | 0.0231 (13) | 0.0196 (12) | −0.0028 (10) | −0.0037 (10) | 0.0026 (10) |
C10 | 0.0187 (12) | 0.0236 (14) | 0.0266 (14) | 0.0025 (10) | 0.0001 (10) | 0.0078 (11) |
C11 | 0.0199 (12) | 0.0193 (13) | 0.0291 (14) | 0.0055 (10) | 0.0058 (10) | 0.0041 (10) |
C12 | 0.0225 (12) | 0.0183 (12) | 0.0167 (12) | 0.0011 (10) | 0.0017 (9) | 0.0015 (9) |
C13 | 0.0170 (11) | 0.0161 (12) | 0.0144 (11) | 0.0038 (9) | −0.0014 (9) | −0.0030 (9) |
C14 | 0.0195 (12) | 0.0190 (13) | 0.0298 (14) | 0.0039 (10) | −0.0008 (10) | −0.0040 (11) |
C15 | 0.0224 (14) | 0.0228 (14) | 0.0421 (17) | 0.0045 (11) | −0.0087 (12) | −0.0096 (12) |
C16 | 0.0381 (16) | 0.0250 (15) | 0.0280 (15) | 0.0125 (12) | −0.0122 (12) | −0.0131 (11) |
C17 | 0.0375 (16) | 0.0278 (15) | 0.0186 (13) | 0.0133 (12) | −0.0018 (11) | −0.0057 (11) |
C18 | 0.0273 (13) | 0.0207 (13) | 0.0179 (12) | 0.0070 (11) | 0.0030 (10) | −0.0008 (10) |
C19 | 0.0160 (11) | 0.0144 (11) | 0.0165 (11) | −0.0006 (9) | 0.0066 (9) | −0.0001 (9) |
C20 | 0.0192 (12) | 0.0228 (13) | 0.0208 (12) | 0.0021 (10) | 0.0050 (10) | 0.0022 (10) |
C21 | 0.0321 (15) | 0.0228 (14) | 0.0271 (14) | 0.0069 (11) | 0.0136 (12) | 0.0049 (11) |
C22 | 0.0325 (15) | 0.0152 (12) | 0.0328 (15) | −0.0029 (11) | 0.0179 (12) | −0.0002 (11) |
C23 | 0.0238 (13) | 0.0256 (14) | 0.0309 (15) | −0.0070 (11) | 0.0123 (11) | −0.0045 (11) |
C24 | 0.0184 (12) | 0.0216 (13) | 0.0215 (12) | −0.0014 (10) | 0.0052 (10) | −0.0021 (10) |
N1S | 0.0466 (17) | 0.0337 (16) | 0.061 (2) | 0.0065 (13) | −0.0098 (15) | −0.0145 (14) |
C1S | 0.0304 (16) | 0.0303 (16) | 0.0450 (18) | −0.0015 (13) | 0.0039 (13) | 0.0032 (13) |
C2S | 0.0276 (15) | 0.0175 (14) | 0.054 (2) | 0.0013 (11) | 0.0074 (14) | −0.0045 (13) |
N2S | 0.0434 (16) | 0.0390 (16) | 0.0414 (16) | 0.0038 (13) | 0.0033 (13) | −0.0101 (13) |
C3S | 0.0279 (15) | 0.0349 (16) | 0.0305 (15) | 0.0030 (12) | 0.0096 (12) | 0.0035 (12) |
C4S | 0.0275 (15) | 0.0237 (14) | 0.0354 (16) | 0.0033 (11) | 0.0133 (13) | −0.0013 (12) |
Zr1—Cl2 | 2.4586 (6) | C13—C14 | 1.385 (3) |
Zr1—Cl2i | 2.4587 (6) | C13—C18 | 1.393 (3) |
Zr1—Cl3 | 2.4723 (6) | C14—C15 | 1.397 (4) |
Zr1—Cl3i | 2.4724 (6) | C14—H14 | 0.95 |
Zr1—Cl1i | 2.4818 (6) | C15—C16 | 1.385 (4) |
Zr1—Cl1 | 2.4818 (5) | C15—H15 | 0.95 |
As1—C7 | 1.906 (2) | C16—C17 | 1.374 (4) |
As1—C1 | 1.911 (2) | C16—H16 | 0.95 |
As1—C13 | 1.911 (2) | C17—C18 | 1.382 (4) |
As1—C19 | 1.916 (2) | C17—H17 | 0.95 |
C1—C2 | 1.387 (3) | C18—H18 | 0.95 |
C1—C6 | 1.393 (3) | C19—C24 | 1.389 (3) |
C2—C3 | 1.398 (3) | C19—C20 | 1.393 (3) |
C2—H2 | 0.95 | C20—C21 | 1.385 (3) |
C3—C4 | 1.385 (4) | C20—H20 | 0.95 |
C3—H3 | 0.95 | C21—C22 | 1.388 (4) |
C4—C5 | 1.382 (4) | C21—H21 | 0.95 |
C4—H4 | 0.95 | C22—C23 | 1.380 (4) |
C5—C6 | 1.389 (3) | C22—H22 | 0.95 |
C5—H5 | 0.95 | C23—C24 | 1.394 (3) |
C6—H6 | 0.95 | C23—H23 | 0.95 |
C7—C12 | 1.389 (3) | C24—H24 | 0.95 |
C7—C8 | 1.397 (3) | N1S—C2S | 1.134 (4) |
C8—C9 | 1.391 (3) | C1S—C2S | 1.451 (4) |
C8—H8 | 0.95 | C1S—H1SA | 0.98 |
C9—C10 | 1.384 (4) | C1S—H1SB | 0.98 |
C9—H9 | 0.95 | C1S—H1SC | 0.98 |
C10—C11 | 1.386 (4) | N2S—C4S | 1.135 (4) |
C10—H10 | 0.95 | C3S—C4S | 1.459 (4) |
C11—C12 | 1.391 (3) | C3S—H3SA | 0.98 |
C11—H11 | 0.95 | C3S—H3SB | 0.98 |
C12—H12 | 0.95 | C3S—H3SC | 0.98 |
Cl2—Zr1—Cl2i | 180.0 | C7—C12—C11 | 119.2 (2) |
Cl2—Zr1—Cl3 | 90.09 (2) | C7—C12—H12 | 120.4 |
Cl2i—Zr1—Cl3 | 89.91 (2) | C11—C12—H12 | 120.4 |
Cl2—Zr1—Cl3i | 89.91 (2) | C14—C13—C18 | 121.1 (2) |
Cl2i—Zr1—Cl3i | 90.09 (2) | C14—C13—As1 | 119.17 (18) |
Cl3—Zr1—Cl3i | 180.00 (3) | C18—C13—As1 | 119.75 (18) |
Cl2—Zr1—Cl1i | 90.398 (19) | C13—C14—C15 | 119.0 (3) |
Cl2i—Zr1—Cl1i | 89.602 (19) | C13—C14—H14 | 120.5 |
Cl3—Zr1—Cl1i | 89.703 (19) | C15—C14—H14 | 120.5 |
Cl3i—Zr1—Cl1i | 90.296 (19) | C16—C15—C14 | 119.8 (3) |
Cl2—Zr1—Cl1 | 89.603 (19) | C16—C15—H15 | 120.1 |
Cl2i—Zr1—Cl1 | 90.397 (19) | C14—C15—H15 | 120.1 |
Cl3—Zr1—Cl1 | 90.298 (19) | C17—C16—C15 | 120.6 (2) |
Cl3i—Zr1—Cl1 | 89.703 (19) | C17—C16—H16 | 119.7 |
Cl1i—Zr1—Cl1 | 180.0 | C15—C16—H16 | 119.7 |
C7—As1—C1 | 110.95 (10) | C16—C17—C18 | 120.4 (3) |
C7—As1—C13 | 110.73 (10) | C16—C17—H17 | 119.8 |
C1—As1—C13 | 107.65 (10) | C18—C17—H17 | 119.8 |
C7—As1—C19 | 107.83 (10) | C17—C18—C13 | 119.1 (3) |
C1—As1—C19 | 111.76 (10) | C17—C18—H18 | 120.5 |
C13—As1—C19 | 107.89 (10) | C13—C18—H18 | 120.5 |
C2—C1—C6 | 121.3 (2) | C24—C19—C20 | 121.1 (2) |
C2—C1—As1 | 118.72 (18) | C24—C19—As1 | 119.04 (18) |
C6—C1—As1 | 119.64 (18) | C20—C19—As1 | 119.80 (18) |
C1—C2—C3 | 118.9 (2) | C21—C20—C19 | 118.9 (2) |
C1—C2—H2 | 120.6 | C21—C20—H20 | 120.6 |
C3—C2—H2 | 120.6 | C19—C20—H20 | 120.6 |
C4—C3—C2 | 119.8 (2) | C20—C21—C22 | 120.6 (2) |
C4—C3—H3 | 120.1 | C20—C21—H21 | 119.7 |
C2—C3—H3 | 120.1 | C22—C21—H21 | 119.7 |
C5—C4—C3 | 120.9 (2) | C23—C22—C21 | 120.1 (2) |
C5—C4—H4 | 119.5 | C23—C22—H22 | 120.0 |
C3—C4—H4 | 119.5 | C21—C22—H22 | 120.0 |
C4—C5—C6 | 119.9 (2) | C22—C23—C24 | 120.4 (2) |
C4—C5—H5 | 120.1 | C22—C23—H23 | 119.8 |
C6—C5—H5 | 120.1 | C24—C23—H23 | 119.8 |
C5—C6—C1 | 119.1 (2) | C19—C24—C23 | 119.0 (2) |
C5—C6—H6 | 120.4 | C19—C24—H24 | 120.5 |
C1—C6—H6 | 120.4 | C23—C24—H24 | 120.5 |
C12—C7—C8 | 121.0 (2) | C2S—C1S—H1SA | 109.5 |
C12—C7—As1 | 119.35 (17) | C2S—C1S—H1SB | 109.5 |
C8—C7—As1 | 119.40 (18) | H1SA—C1S—H1SB | 109.5 |
C9—C8—C7 | 119.0 (2) | C2S—C1S—H1SC | 109.5 |
C9—C8—H8 | 120.5 | H1SA—C1S—H1SC | 109.5 |
C7—C8—H8 | 120.5 | H1SB—C1S—H1SC | 109.5 |
C10—C9—C8 | 120.1 (2) | N1S—C2S—C1S | 179.5 (4) |
C10—C9—H9 | 119.9 | C4S—C3S—H3SA | 109.5 |
C8—C9—H9 | 119.9 | C4S—C3S—H3SB | 109.5 |
C9—C10—C11 | 120.6 (2) | H3SA—C3S—H3SB | 109.5 |
C9—C10—H10 | 119.7 | C4S—C3S—H3SC | 109.5 |
C11—C10—H10 | 119.7 | H3SA—C3S—H3SC | 109.5 |
C10—C11—C12 | 120.1 (2) | H3SB—C3S—H3SC | 109.5 |
C10—C11—H11 | 119.9 | N2S—C4S—C3S | 179.3 (3) |
C12—C11—H11 | 119.9 |
Symmetry code: (i) −x, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3S—H3SA···Cl1ii | 0.98 | 2.81 | 3.674 (3) | 148 |
C16—H16···Cl1iii | 0.95 | 2.73 | 3.646 (3) | 162 |
C18—H18···N1Siii | 0.95 | 2.61 | 3.483 (4) | 154 |
Symmetry codes: (ii) x+1, y, z; (iii) x, −y+1/2, z−1/2. |
Acknowledgements
The authors thank Ms Julie Bertoia for laboratory support, Ms Wendee Johns for administrative support.
Funding information
This research was performed using funding received from the US Department of Energy, Office of Nuclear Energy's Nuclear Energy University Program (NEUP, DOE-NEUP award No. DE-NE0008449).
References
Baldas, J., Bonnyman, J., Samuels, D. L. & Williams, G. A. (1984). Acta Cryst. C40, 1343–1346. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bohe, A. E., Andrade Gamboa, J. J., Lopasso, E. M. & Pasquevich, D. M. (1996). J. Mater. Sci. 31, 3469–3474. CrossRef CAS Google Scholar
Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, WI, USA. Google Scholar
Collins, E. D., DelCul, G. D., Spencer, B. B., Brunson, R. R., Johnson, J. A., Terekhov, D. S. & Emmanuel, N. V. (2012). Procedia Chem. 7, 72–76. CrossRef CAS Google Scholar
Esmadi, F. & Sutcliffe, H. (1991). Indian J. Chem. Section A, 30, 99–101. Google Scholar
Jeon, M. K., Lee, C. H., Lee, Y. L., Choi, Y. T., Kang, K. H. & Park, G. I. (2013). J. Korean Radioactive Waste Soc. 11, 55-61. CrossRef Google Scholar
Kochel, A. (2007). Acta Cryst. E63, m596–m597. Web of Science CrossRef IUCr Journals Google Scholar
Lister, R. L. (1964). Can. J. Chem. 42, 1102–1105. CrossRef CAS Web of Science Google Scholar
Ohashi, M., Yamanaka, S., Morimoto, Y. & Hattori, M. (1987). Bull. Chem. Soc. Jpn, 60, 2387–2390. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.