metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis(tetra­phenyl­arsonium) hexa­chlorido­zirconate(IV) aceto­nitrile tetra­solvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Nevada Las Vegas, 4505 South Maryland Parkway, Las Vegas, Nevada, 89154, United States
*Correspondence e-mail: m.b.eswari@unlv.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 22 January 2018; accepted 3 April 2018; online 6 April 2018)

The bis­(tetra­phenyl­arsonium) hexa­chlorido­zirconate(IV) salt, (AsPh4)2[ZrCl6] (Ph = C6H5), was prepared more than 25 years ago [Esmadi & Sutcliffe (1991[Esmadi, F. & Sutcliffe, H. (1991). Indian J. Chem. Section A, 30, 99-101.]). Indian J. Chem. 30 A, 99–101], but its crystal structure was never reported. By following a similar experimental procedure, the compound was synthesized and its crystal structure was investigated as a aceto­nitrile tetra­solvate, (As(C6H5)4)2[ZrCl6]·4CH3CN, by single-crystal X–ray diffraction. The [ZrCl6]2− anion adopts a slightly distorted octa­hedral coordination sphere, with Zr—Cl bond lengths of 2.4586 (6), 2.4723 (6), and 2.4818 (5) Å, and Cl—Zr—Cl angles ranging from 89.602 (19) to 90.397 (19)°.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Zirconium tetra­chloride is encountered in the nuclear fuel cycle for the recycling of zirconium from zirconium alloy cladding using a chloride volatility process (Bohe et al., 1996[Bohe, A. E., Andrade Gamboa, J. J., Lopasso, E. M. & Pasquevich, D. M. (1996). J. Mater. Sci. 31, 3469-3474.]; Collins et al., 2012[Collins, E. D., DelCul, G. D., Spencer, B. B., Brunson, R. R., Johnson, J. A., Terekhov, D. S. & Emmanuel, N. V. (2012). Procedia Chem. 7, 72-76.]; Jeon et al., 2013[Jeon, M. K., Lee, C. H., Lee, Y. L., Choi, Y. T., Kang, K. H. & Park, G. I. (2013). J. Korean Radioactive Waste Soc. 11, 55-61.]). The ZrCl4 produced from these alloys at temperatures above 573 K contains several impurities that are difficult to separate. It has been considered that the impurities could be present due to the formation of inter­mediate ternary compounds, or by the co-crystallization of various chloride species. For these reasons, investigating the chemical behavior of ZrCl4 in the presence of other chlorides is of importance. At least ten hexa­chlorido­zirconate(IV) salts have been prepared and their structures reported. The majority of these salts were prepared using ZrCl4 and chloride salts as starting materials (Esmadi & Sutcliffe, 1991[Esmadi, F. & Sutcliffe, H. (1991). Indian J. Chem. Section A, 30, 99-101.]; Ohashi et al., 1987[Ohashi, M., Yamanaka, S., Morimoto, Y. & Hattori, M. (1987). Bull. Chem. Soc. Jpn, 60, 2387-2390.]). These [ZrCl6]2− salts contain single-element cations (e.g. Cs+, Rb+, Fe2+) or more complex cations {e.g. [P(C6H5)4]+, [N(CH3)4]+}. On the other hand, crystal structures have not been reported for many of these hexa­chlorido­zirconates(IV) (e.g. Na2[ZrCl6] and K2[ZrCl6]; Lister, 1964[Lister, R. L. (1964). Can. J. Chem. 42, 1102-1105.]). One of these salts, bis­(tetra­phenyl­arsonium) hexa­chlorido­zirconate(IV), was synthesized (Esmadi & Sutcliffe, 1991[Esmadi, F. & Sutcliffe, H. (1991). Indian J. Chem. Section A, 30, 99-101.]) but its structure never reported. Here, (AsPh4)2[ZrCl6]·4(CH3CN) (Ph = C6H5) was crystallized as its aceto­nitrile tetra­solvate (Fig. 1[link]) and its structure investigated by single-crystal X-ray diffraction.

[Figure 1]
Figure 1
The mol­ecular structures of the cation and anion in (AsPh4)2[ZrCl6]·4CH3CN, with displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (') –x, 1 − y, 1 − z.]

The unit-cell packing of (AsPh4)2[ZrCl6]·4(CH3CN) is shown in Fig. 2[link]. The (AsPh4)+ cation adopts a distorted tetra­hedral configuration in which the phenyl groups are asymmetrically attached (Fig. 1[link]). The As—C bond lengths (Table 1[link]) are similar to those reported for (AsPh4)2[TcCl6] (Baldas et al., 1984[Baldas, J., Bonnyman, J., Samuels, D. L. & Williams, G. A. (1984). Acta Cryst. C40, 1343-1346.]) or (AsPh4)2[ReBr6] (Kochel, 2007[Kochel, A. (2007). Acta Cryst. E63, m596-m597.]). The asymmetric orientation of the phenyl groups is reflected by the deviation of the C—As—C angles from those of a perfect tetra­hedron (Table 1[link]).

Table 1
Selected geometric parameters (Å, °)

Zr1—Cl2 2.4586 (6) As1—C1 1.911 (2)
Zr1—Cl3 2.4723 (6) As1—C13 1.911 (2)
Zr1—Cl1 2.4818 (5) As1—C19 1.916 (2)
As1—C7 1.906 (2)    
       
Cl2—Zr1—Cl3 90.09 (2) C7—As1—C1 110.95 (10)
Cl2i—Zr1—Cl3 89.91 (2) C7—As1—C13 110.73 (10)
Cl2—Zr1—Cl1i 90.398 (19) C1—As1—C13 107.65 (10)
Cl3—Zr1—Cl1i 89.703 (19) C7—As1—C19 107.83 (10)
Cl3i—Zr1—Cl1i 90.296 (19) C1—As1—C19 111.76 (10)
Cl2—Zr1—Cl1 89.603 (19) C13—As1—C19 107.89 (10)
Symmetry code: (i) -x, -y+1, -z+1.
[Figure 2]
Figure 2
Representation of the expanded unit cell of (AsPh4)2[ZrCl6]·4CH3CN. Hydrogen atoms are omitted for clarity. Color of atoms: Zr in gray, Cl in green, N in blue, As in light turquoise, C in light brown.

The [ZrCl6]2− anion, which is located on a position with site symmetry [\overline{1}] (Wyckoff position 2a), adopts a slightly distorted octa­hedral coordination sphere (Fig. 1[link], Table 1[link]), The shortest Zr ⋯ Zr distance in the structure is 9.6505 (7) Å that corres­ponds with the length of the a axis. The shortest As ⋯ As distance is 7.8562 (7) Å and corresponds to adjacent (AsPh4)+ cations within the same unit cell.

The isolated (AsPh4)+ cations and [ZrCl6]2− anions pack in alternating rows extending parallel to [100]. The two unique solvent mol­ecules are located in the voids of this arrangement (Fig. 2[link]). The shortest distances observed between N or Cl atoms and H atoms range between 2.61 and 2.81 Å (Table 2[link]). These distances suggest that the components inter­act only weakly through hydrogen bonding and that the structural cohesion is primarily accomplished by Coulombic attraction.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3S—H3SA⋯Cl1ii 0.98 2.81 3.674 (3) 148
C16—H16⋯Cl1iii 0.95 2.73 3.646 (3) 162
C18—H18⋯N1Siii 0.95 2.61 3.483 (4) 154
Symmetry codes: (ii) x+1, y, z; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Synthesis and crystallization

All chemicals were purchased from Sigma Aldrich and used as received. The reaction used to prepare (AsPh4)2[ZrCl6] (Fig. 3[link]) is similar to that described in the literature (Esmadi & Sutcliffe, 1991[Esmadi, F. & Sutcliffe, H. (1991). Indian J. Chem. Section A, 30, 99-101.]): A solution of (AsPh4)Cl (0.72 g, 1.7 mmol) in thionyl chloride (2 ml) was added dropwise to a stirring solution of ZrCl4 (0.20 g, 0.86 mmol) in thionyl chloride (1 ml). After stirring the mixture for 20 h, ethyl acetate was added dropwise to induce precipitation. The white precipitate was washed with ethyl acetate (3 × 3 ml) and diethyl ether (3 × 3 ml), and then dried under vacuum over CaCl2. Yield: 0.35 g (38%). Colorless block-shaped crystals were obtained by recrystallization from aceto­nitrile and slow evaporation at room temperature.

[Figure 3]
Figure 3
Reaction scheme.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula (C24H20As)2[ZrCl6]·4C2H3N
Mr 1234.77
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 9.6505 (7), 19.3780 (13), 15.1026 (10)
β (°) 97.849 (1)
V3) 2797.8 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.70
Crystal size (mm) 0.12 × 0.10 × 0.05
 
Data collection
Diffractometer Bruker SMART APEX CCD area detector
Absorption correction Multi-scan (SADABS; Bruker 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, WI, USA.])
Tmin, Tmax 0.80, 0.93
No. of measured, independent and observed [I > 2σ(I)] reflections 45888, 8589, 6236
Rint 0.079
(sin θ/λ)max−1) 0.716
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.082, 1.00
No. of reflections 8589
No. of parameters 315
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.59, −0.47
Computer programs: APEX3 and SAINT (Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, WI, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2007[Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(tetraphenylarsonium) hexachloridozirconate(IV) acetonitrile tetrasolvate top
Crystal data top
(C24H20As)2[ZrCl6]·4C2H3NF(000) = 1248
Mr = 1234.77Dx = 1.466 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.6505 (7) ÅCell parameters from 9919 reflections
b = 19.3780 (13) Åθ = 2.4–30.5°
c = 15.1026 (10) ŵ = 1.70 mm1
β = 97.849 (1)°T = 100 K
V = 2797.8 (3) Å3Rectangular, translucent colourless
Z = 20.12 × 0.10 × 0.05 mm
Data collection top
Bruker SMART APEX CCD area detector
diffractometer
8589 independent reflections
Radiation source: sealed tube6236 reflections with I > 2σ(I)
Curved graphite monochromatorRint = 0.079
Detector resolution: 8.3333 pixels mm-1θmax = 30.6°, θmin = 1.7°
ω and φ scansh = 1313
Absorption correction: multi-scan
(SADABS; Bruker 2015)
k = 2727
Tmin = 0.80, Tmax = 0.93l = 2121
45888 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.0292P)2 + 0.8047P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
8589 reflectionsΔρmax = 0.59 e Å3
315 parametersΔρmin = 0.47 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zr100.50.50.01200 (7)
Cl10.12452 (6)0.49192 (3)0.63295 (4)0.01817 (12)
Cl20.21611 (6)0.46095 (3)0.59151 (4)0.01759 (12)
Cl30.06208 (6)0.37896 (3)0.46088 (4)0.01820 (12)
As10.33890 (2)0.19416 (2)0.56737 (2)0.01347 (6)
C10.1981 (2)0.20864 (12)0.64294 (15)0.0158 (5)
C20.1159 (2)0.26745 (13)0.63054 (15)0.0183 (5)
H20.13480.30190.58910.022*
C30.0045 (3)0.27509 (14)0.68001 (17)0.0233 (5)
H30.0530.3150.67240.028*
C40.0218 (3)0.22430 (15)0.74010 (17)0.0261 (6)
H40.09770.22970.77350.031*
C50.0609 (3)0.16591 (14)0.75216 (17)0.0257 (6)
H50.04230.13170.7940.031*
C60.1713 (3)0.15734 (13)0.70298 (16)0.0215 (5)
H60.22770.1170.71020.026*
C70.4895 (2)0.14073 (12)0.62672 (15)0.0160 (5)
C80.5372 (3)0.15342 (13)0.71679 (16)0.0198 (5)
H80.4890.18480.750.024*
C90.6563 (3)0.11940 (13)0.75712 (17)0.0223 (5)
H90.69010.12770.81820.027*
C100.7255 (3)0.07347 (13)0.70835 (17)0.0232 (5)
H100.80690.05050.73620.028*
C110.6772 (3)0.06076 (13)0.61916 (17)0.0226 (5)
H110.72530.0290.58630.027*
C120.5584 (3)0.09436 (12)0.57771 (16)0.0192 (5)
H120.52470.08570.51660.023*
C130.2531 (2)0.14813 (12)0.46202 (15)0.0161 (5)
C140.1334 (3)0.10940 (13)0.46581 (18)0.0232 (5)
H140.09670.1040.52070.028*
C150.0675 (3)0.07837 (14)0.3877 (2)0.0303 (6)
H150.01480.05170.38910.036*
C160.1224 (3)0.08663 (14)0.30838 (19)0.0319 (7)
H160.07630.06640.25510.038*
C170.2431 (3)0.12383 (14)0.30598 (18)0.0285 (6)
H170.28150.12770.25150.034*
C180.3090 (3)0.15558 (13)0.38228 (16)0.0220 (5)
H180.39130.18210.38040.026*
C190.4146 (2)0.27956 (12)0.53165 (15)0.0152 (5)
C200.3407 (3)0.31814 (13)0.46303 (16)0.0207 (5)
H200.25150.30330.43510.025*
C210.3994 (3)0.37853 (14)0.43617 (18)0.0264 (6)
H210.34980.40550.38970.032*
C220.5302 (3)0.40003 (13)0.47654 (18)0.0256 (6)
H220.57020.44120.45710.031*
C230.6021 (3)0.36166 (14)0.54487 (18)0.0260 (6)
H230.69130.37670.57260.031*
C240.5446 (3)0.30097 (13)0.57344 (16)0.0203 (5)
H240.59360.27460.62080.024*
N1S0.6349 (3)0.29350 (14)0.8309 (2)0.0488 (8)
C1S0.8149 (3)0.29684 (15)0.9742 (2)0.0354 (7)
H1SA0.90920.29090.95810.053*
H1SB0.7950.25951.01440.053*
H1SC0.8090.34131.00430.053*
C2S0.7135 (3)0.29509 (14)0.8939 (2)0.0330 (7)
N2S0.7183 (3)0.47851 (14)0.89707 (18)0.0415 (7)
C3S0.5671 (3)0.45689 (15)0.74402 (18)0.0305 (6)
H3SA0.61780.47280.69590.046*
H3SB0.47850.48210.74130.046*
H3SC0.5480.40740.7370.046*
C4S0.6518 (3)0.46939 (14)0.8301 (2)0.0280 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zr10.01241 (14)0.01349 (15)0.01014 (14)0.00022 (12)0.00168 (11)0.00088 (11)
Cl10.0181 (3)0.0237 (3)0.0137 (3)0.0007 (2)0.0057 (2)0.0023 (2)
Cl20.0159 (3)0.0219 (3)0.0144 (3)0.0019 (2)0.0001 (2)0.0022 (2)
Cl30.0206 (3)0.0155 (3)0.0184 (3)0.0018 (2)0.0024 (2)0.0012 (2)
As10.01339 (11)0.01436 (12)0.01258 (11)0.00053 (9)0.00148 (8)0.00037 (9)
C10.0124 (11)0.0194 (12)0.0154 (11)0.0027 (9)0.0017 (9)0.0023 (9)
C20.0197 (12)0.0192 (12)0.0162 (11)0.0001 (10)0.0027 (9)0.0001 (9)
C30.0200 (13)0.0240 (14)0.0261 (14)0.0018 (10)0.0033 (10)0.0049 (11)
C40.0204 (13)0.0368 (16)0.0222 (13)0.0031 (11)0.0073 (10)0.0072 (11)
C50.0269 (14)0.0305 (15)0.0215 (13)0.0052 (11)0.0099 (11)0.0016 (11)
C60.0220 (13)0.0214 (13)0.0216 (13)0.0004 (10)0.0045 (10)0.0028 (10)
C70.0148 (11)0.0139 (11)0.0192 (12)0.0002 (9)0.0020 (9)0.0029 (9)
C80.0212 (12)0.0210 (13)0.0165 (12)0.0000 (10)0.0007 (10)0.0006 (10)
C90.0225 (13)0.0231 (13)0.0196 (12)0.0028 (10)0.0037 (10)0.0026 (10)
C100.0187 (12)0.0236 (14)0.0266 (14)0.0025 (10)0.0001 (10)0.0078 (11)
C110.0199 (12)0.0193 (13)0.0291 (14)0.0055 (10)0.0058 (10)0.0041 (10)
C120.0225 (12)0.0183 (12)0.0167 (12)0.0011 (10)0.0017 (9)0.0015 (9)
C130.0170 (11)0.0161 (12)0.0144 (11)0.0038 (9)0.0014 (9)0.0030 (9)
C140.0195 (12)0.0190 (13)0.0298 (14)0.0039 (10)0.0008 (10)0.0040 (11)
C150.0224 (14)0.0228 (14)0.0421 (17)0.0045 (11)0.0087 (12)0.0096 (12)
C160.0381 (16)0.0250 (15)0.0280 (15)0.0125 (12)0.0122 (12)0.0131 (11)
C170.0375 (16)0.0278 (15)0.0186 (13)0.0133 (12)0.0018 (11)0.0057 (11)
C180.0273 (13)0.0207 (13)0.0179 (12)0.0070 (11)0.0030 (10)0.0008 (10)
C190.0160 (11)0.0144 (11)0.0165 (11)0.0006 (9)0.0066 (9)0.0001 (9)
C200.0192 (12)0.0228 (13)0.0208 (12)0.0021 (10)0.0050 (10)0.0022 (10)
C210.0321 (15)0.0228 (14)0.0271 (14)0.0069 (11)0.0136 (12)0.0049 (11)
C220.0325 (15)0.0152 (12)0.0328 (15)0.0029 (11)0.0179 (12)0.0002 (11)
C230.0238 (13)0.0256 (14)0.0309 (15)0.0070 (11)0.0123 (11)0.0045 (11)
C240.0184 (12)0.0216 (13)0.0215 (12)0.0014 (10)0.0052 (10)0.0021 (10)
N1S0.0466 (17)0.0337 (16)0.061 (2)0.0065 (13)0.0098 (15)0.0145 (14)
C1S0.0304 (16)0.0303 (16)0.0450 (18)0.0015 (13)0.0039 (13)0.0032 (13)
C2S0.0276 (15)0.0175 (14)0.054 (2)0.0013 (11)0.0074 (14)0.0045 (13)
N2S0.0434 (16)0.0390 (16)0.0414 (16)0.0038 (13)0.0033 (13)0.0101 (13)
C3S0.0279 (15)0.0349 (16)0.0305 (15)0.0030 (12)0.0096 (12)0.0035 (12)
C4S0.0275 (15)0.0237 (14)0.0354 (16)0.0033 (11)0.0133 (13)0.0013 (12)
Geometric parameters (Å, º) top
Zr1—Cl22.4586 (6)C13—C141.385 (3)
Zr1—Cl2i2.4587 (6)C13—C181.393 (3)
Zr1—Cl32.4723 (6)C14—C151.397 (4)
Zr1—Cl3i2.4724 (6)C14—H140.95
Zr1—Cl1i2.4818 (6)C15—C161.385 (4)
Zr1—Cl12.4818 (5)C15—H150.95
As1—C71.906 (2)C16—C171.374 (4)
As1—C11.911 (2)C16—H160.95
As1—C131.911 (2)C17—C181.382 (4)
As1—C191.916 (2)C17—H170.95
C1—C21.387 (3)C18—H180.95
C1—C61.393 (3)C19—C241.389 (3)
C2—C31.398 (3)C19—C201.393 (3)
C2—H20.95C20—C211.385 (3)
C3—C41.385 (4)C20—H200.95
C3—H30.95C21—C221.388 (4)
C4—C51.382 (4)C21—H210.95
C4—H40.95C22—C231.380 (4)
C5—C61.389 (3)C22—H220.95
C5—H50.95C23—C241.394 (3)
C6—H60.95C23—H230.95
C7—C121.389 (3)C24—H240.95
C7—C81.397 (3)N1S—C2S1.134 (4)
C8—C91.391 (3)C1S—C2S1.451 (4)
C8—H80.95C1S—H1SA0.98
C9—C101.384 (4)C1S—H1SB0.98
C9—H90.95C1S—H1SC0.98
C10—C111.386 (4)N2S—C4S1.135 (4)
C10—H100.95C3S—C4S1.459 (4)
C11—C121.391 (3)C3S—H3SA0.98
C11—H110.95C3S—H3SB0.98
C12—H120.95C3S—H3SC0.98
Cl2—Zr1—Cl2i180.0C7—C12—C11119.2 (2)
Cl2—Zr1—Cl390.09 (2)C7—C12—H12120.4
Cl2i—Zr1—Cl389.91 (2)C11—C12—H12120.4
Cl2—Zr1—Cl3i89.91 (2)C14—C13—C18121.1 (2)
Cl2i—Zr1—Cl3i90.09 (2)C14—C13—As1119.17 (18)
Cl3—Zr1—Cl3i180.00 (3)C18—C13—As1119.75 (18)
Cl2—Zr1—Cl1i90.398 (19)C13—C14—C15119.0 (3)
Cl2i—Zr1—Cl1i89.602 (19)C13—C14—H14120.5
Cl3—Zr1—Cl1i89.703 (19)C15—C14—H14120.5
Cl3i—Zr1—Cl1i90.296 (19)C16—C15—C14119.8 (3)
Cl2—Zr1—Cl189.603 (19)C16—C15—H15120.1
Cl2i—Zr1—Cl190.397 (19)C14—C15—H15120.1
Cl3—Zr1—Cl190.298 (19)C17—C16—C15120.6 (2)
Cl3i—Zr1—Cl189.703 (19)C17—C16—H16119.7
Cl1i—Zr1—Cl1180.0C15—C16—H16119.7
C7—As1—C1110.95 (10)C16—C17—C18120.4 (3)
C7—As1—C13110.73 (10)C16—C17—H17119.8
C1—As1—C13107.65 (10)C18—C17—H17119.8
C7—As1—C19107.83 (10)C17—C18—C13119.1 (3)
C1—As1—C19111.76 (10)C17—C18—H18120.5
C13—As1—C19107.89 (10)C13—C18—H18120.5
C2—C1—C6121.3 (2)C24—C19—C20121.1 (2)
C2—C1—As1118.72 (18)C24—C19—As1119.04 (18)
C6—C1—As1119.64 (18)C20—C19—As1119.80 (18)
C1—C2—C3118.9 (2)C21—C20—C19118.9 (2)
C1—C2—H2120.6C21—C20—H20120.6
C3—C2—H2120.6C19—C20—H20120.6
C4—C3—C2119.8 (2)C20—C21—C22120.6 (2)
C4—C3—H3120.1C20—C21—H21119.7
C2—C3—H3120.1C22—C21—H21119.7
C5—C4—C3120.9 (2)C23—C22—C21120.1 (2)
C5—C4—H4119.5C23—C22—H22120.0
C3—C4—H4119.5C21—C22—H22120.0
C4—C5—C6119.9 (2)C22—C23—C24120.4 (2)
C4—C5—H5120.1C22—C23—H23119.8
C6—C5—H5120.1C24—C23—H23119.8
C5—C6—C1119.1 (2)C19—C24—C23119.0 (2)
C5—C6—H6120.4C19—C24—H24120.5
C1—C6—H6120.4C23—C24—H24120.5
C12—C7—C8121.0 (2)C2S—C1S—H1SA109.5
C12—C7—As1119.35 (17)C2S—C1S—H1SB109.5
C8—C7—As1119.40 (18)H1SA—C1S—H1SB109.5
C9—C8—C7119.0 (2)C2S—C1S—H1SC109.5
C9—C8—H8120.5H1SA—C1S—H1SC109.5
C7—C8—H8120.5H1SB—C1S—H1SC109.5
C10—C9—C8120.1 (2)N1S—C2S—C1S179.5 (4)
C10—C9—H9119.9C4S—C3S—H3SA109.5
C8—C9—H9119.9C4S—C3S—H3SB109.5
C9—C10—C11120.6 (2)H3SA—C3S—H3SB109.5
C9—C10—H10119.7C4S—C3S—H3SC109.5
C11—C10—H10119.7H3SA—C3S—H3SC109.5
C10—C11—C12120.1 (2)H3SB—C3S—H3SC109.5
C10—C11—H11119.9N2S—C4S—C3S179.3 (3)
C12—C11—H11119.9
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3S—H3SA···Cl1ii0.982.813.674 (3)148
C16—H16···Cl1iii0.952.733.646 (3)162
C18—H18···N1Siii0.952.613.483 (4)154
Symmetry codes: (ii) x+1, y, z; (iii) x, y+1/2, z1/2.
 

Acknowledgements

The authors thank Ms Julie Bertoia for laboratory support, Ms Wendee Johns for administrative support.

Funding information

This research was performed using funding received from the US Department of Energy, Office of Nuclear Energy's Nuclear Energy University Program (NEUP, DOE-NEUP award No. DE-NE0008449).

References

First citationBaldas, J., Bonnyman, J., Samuels, D. L. & Williams, G. A. (1984). Acta Cryst. C40, 1343–1346.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBohe, A. E., Andrade Gamboa, J. J., Lopasso, E. M. & Pasquevich, D. M. (1996). J. Mater. Sci. 31, 3469–3474.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, WI, USA.  Google Scholar
First citationCollins, E. D., DelCul, G. D., Spencer, B. B., Brunson, R. R., Johnson, J. A., Terekhov, D. S. & Emmanuel, N. V. (2012). Procedia Chem. 7, 72–76.  CrossRef CAS Google Scholar
First citationEsmadi, F. & Sutcliffe, H. (1991). Indian J. Chem. Section A, 30, 99–101.  Google Scholar
First citationJeon, M. K., Lee, C. H., Lee, Y. L., Choi, Y. T., Kang, K. H. & Park, G. I. (2013). J. Korean Radioactive Waste Soc. 11, 55-61.  CrossRef Google Scholar
First citationKochel, A. (2007). Acta Cryst. E63, m596–m597.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLister, R. L. (1964). Can. J. Chem. 42, 1102–1105.  CrossRef CAS Web of Science Google Scholar
First citationOhashi, M., Yamanaka, S., Morimoto, Y. & Hattori, M. (1987). Bull. Chem. Soc. Jpn, 60, 2387–2390.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds