organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ethyl 2-(2-oxo-3-phenyl-1,2-di­hydro­quinoxalin-1-yl)acetate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique, Centre de Recherche des Sciences des Médicaments, URAC 21, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bLaboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco, and cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: ab.nadeem2018@gmail.com

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 30 March 2018; accepted 2 April 2018; online 6 April 2018)

In the title compound, C18H16N2O3, the di­hydro­quinoxaline moiety is planar (r.m.s. deviation = 0.0115 Å) and the majority of the ester substituent is nearly perpendicular to its mean plane. In the crystal, the mol­ecules form oblique stacks along the b-axis direction through slipped ππ stacking inter­actions between adjacent di­hydro­quinoxaline units. C—H⋯O hydrogen bonds between the ester substituents on adjacent stacks form thick layers with the stacks on their outside surfaces. These layers extend along the c-axis direction and are coupled through C—H⋯π(ring) inter­actions. The structure was refined as a two-component twin.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Quinoxaline derivatives are important compounds in medicinal chemistry possessing a wide variety of biological properties such as anti­cancer (Abbas et al., 2015[Abbas, H. A. S., Al-Marhabi, A. R., Eissa, S. I. & Ammar, Y. A. (2015). Bioorg. Med. Chem. 23, 6560-6572.]; Ingle et al., 2013[Ingle, R., Marathe, R., Magar, D., Patel, H. M. & Surana, S. J. (2013). Eur. J. Med. Chem. 65, 168-186.]), anti­microbial (Attia et al., 2013[Attia, A. S., Abdel Aziz, A. A., Alfallous, K. A. & El-Shahat, M. F. (2013). Polyhedron, 51, 243-254.]; Vieira et al., 2014[Vieira, M., Pinheiro, C., Fernandes, R., Noronha, J. P. & Prudêncio, C. (2014). Microbiol. Res. 169, 287-293.]; Teja et al., 2016[Teja, R., Kapu, S., Kadiyala, S., Dhanapal, V. & Raman, A. N. (2016). J. Saudi Chem. Soc. 20, S387-S392.]), anti-inflammatory (Guirado et al., 2012[Guirado, A., López Sánchez, J. I., Ruiz-Alcaraz, A. J., Bautista, D. & Gálvez, J. (2012). Eur. J. Med. Chem. 54, 87-94.]; Burguete et al., 2001[Burguete, A., Pontiki, E., Hadjipavlou-Litina, D., Ancizu, S., Villar, R., Solano, B., Moreno, E., Torres, E., Pérez, S., Aldana, I. & Monge, A. (2001). Chem. Biol. Drug Des. 77, 255-267.]), anti­depressant (Mahesh et al., 2011[Mahesh, R., Devadoss, T., Pandey, D. K. & Bhatt, S. (2011). Bioorg. Med. Chem. Lett. 21, 1253-1256.]), anti­viral (Henen et al., 2012[Henen, M. A., El Bialy, S. A. A., Goda, F. E., Nasr, M. N. A. & Eisa, H. M. (2012). Med. Chem. Res. 21, 2368-2378.]; El-Tombary & El-Hawash, 2014[El-Tombary, A. A. & El-Hawash, S. A. M. (2014). Med. Chem. 10, 521-532.]), anti­diabetic (Kulkarni et al., 2012[Kulkarni, N. V., Revankar, V. K., Kirasur, B. N. & Hugar, M. H. (2012). Med. Chem. Res. 21, 663-671.]), anti­hypertensive (Gupta et al., 2011[Gupta, D. T., Devadoss, T., Bhatt, S., Gautam, B., Jindal, A., Pandey, D. & Mahesh, R. (2011). Indian J. Exp. Biol. 49, 619-626.]) and anti­histaminic activities (Sridevi et al., 2010[Sridevi, K. B. C. H., Naidu, A. & Sudhakaran, R. (2010). E-J. Chem. 7, 234-238.]). In addition, it has been reported that the quinoxaline moiety is also an integral part of natural and synthetic anti­biotics such as triostin A and echinomycin, known to inhibit the growth of Gram positive bacteria. As a continuation of our studies of quinoxaline derivatives (Ramli et al., 2018[Ramli, Y., El Bakri, Y., El Ghayati, L., Essassi, E. M. & Mague, J. T. (2018). IUCrData, 3, x180390.]), we report the synthesis and structure of the title compound (Fig. 1[link]).

[Figure 1]
Figure 1
The title mol­ecule with labelling scheme and 50% probability ellipsoids.

The di­hydro­quinoxaline moiety is planar to within 0.0221 (13) Å (r.m.s. deviation = 0.0115 Å). The pendant phenyl ring is inclined to this plane by 19.63 (7)°, while the N2/C15/C16/C17/O2/O3 unit, which is planar to within 0.0078 (16) Å (r.m.s. deviation = 0.005 Å), is inclined by 88.62 (7)°. In the crystal, the mol­ecules form oblique stacks along the b-axis direction through slipped ππ-stacking inter­actions between the C1–C6 and C1/C6/N1/C7/C8/N2 rings with centroid–centroid separations of 3.8364 (10) Å. This is reinforced by C2—H2⋯O2 hydrogen bonds. Adjacent stacks are associated by C17—H17B⋯O2 and C18—H18B⋯O3 inter­actions, forming thick layers extending along the c-axis direction (Table 1[link] and Fig. 2[link]). Finally, these layers are `stitched' together by a series of C12—H12⋯Cg3 inter­actions (Table 1[link] and Fig. 3[link]; Cg3 is the centroid of ring C9–C14).

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C9–C14 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2i 0.97 (2) 2.46 (2) 3.345 (2) 150.7 (17)
C17—H17B⋯O2ii 0.98 (2) 2.65 (2) 3.616 (3) 168.4 (18)
C18—H18B⋯O3iii 0.99 (3) 2.60 (3) 3.482 (2) 148.3 (19)
C12—H12⋯Cg3iv 0.99 (2) 2.96 (2) 3.713 (2) 133.4 (15)
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y+1, -z+1; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Detail of the inter­molecular inter­actions viewed along the c-axis direction. C—H⋯O hydrogen bonds are shown by black dashed lines while C—H⋯π(ring) and ππ-stacking inter­actions are shown, respectively, by green and orange dashed lines.
[Figure 3]
Figure 3
Packing viewed along the b-axis direction with inter­molecular inter­actions depicted as in Fig. 2[link].

Synthesis and crystallization

To a solution of 2-oxo-3-phenyl-1,2-di­hydro­quinoxaline (0.7 g, 3 mmol) in N,N-di­methyl­formamide (20 ml) were added ethyl bromo­acetate (0.25 ml, 2.25 mmol), potassium carbonate K2CO3 (0.1 g, 2.25 mmol) and a catalytic qu­antity of tetra-n-butyl­ammonium bromide. The mixture was stirred at room temperature for 12 h. The solution was filtered and the solvent removed under reduced pressure. The residue obtained, after evaporation of solvent, was chromatographed on a silica gel column using a hexa­ne/ethyl acetate 9:1 mixture as eluent. The solid obtained was recrystallized from ethanol to afford colourless crystals (yield: 90%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The structure was refined as a two-component twin.

Table 2
Experimental details

Crystal data
Chemical formula C18H16N2O3
Mr 308.33
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 18.1710 (5), 4.9012 (1), 16.9492 (5)
β (°) 91.923 (1)
V3) 1508.64 (7)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.77
Crystal size (mm) 0.32 × 0.11 × 0.04
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (TWINABS; Sheldrick, 2009[Sheldrick, G. M. (2009). TWINABS. University of Göttingen, Göttingen, Germany.])
Tmin, Tmax 0.79, 0.97
No. of measured, independent and observed [I > 2σ(I)] reflections 19783, 19783, 14579
Rint 0.030
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.121, 1.02
No. of reflections 19783
No. of parameters 274
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.20, −0.24
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, WI.]), CELL_NOW (Sheldrick, 2008a[Sheldrick, G. M. (2008a). Acta Cryst. A64, 112-122.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). CELL_NOW. University of Göttingen, Göttingen, Germany.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016) and CELL_NOW (Sheldrick, 2008a); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

Ethyl 2-(2-oxo-3-phenyl-1,2-dihydroquinoxalin-1-yl)acetate top
Crystal data top
C18H16N2O3F(000) = 648
Mr = 308.33Dx = 1.357 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 18.1710 (5) ÅCell parameters from 9923 reflections
b = 4.9012 (1) Åθ = 2.4–72.4°
c = 16.9492 (5) ŵ = 0.77 mm1
β = 91.923 (1)°T = 150 K
V = 1508.64 (7) Å3Plate, colourless
Z = 40.32 × 0.11 × 0.04 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
19783 independent reflections
Radiation source: INCOATEC IµS micro-focus source14579 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.030
Detector resolution: 10.4167 pixels mm-1θmax = 72.4°, θmin = 2.4°
ω scansh = 2221
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2009)
k = 65
Tmin = 0.79, Tmax = 0.97l = 2020
19783 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046All H-atom parameters refined
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0459P)2 + 0.2438P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
19783 reflectionsΔρmax = 0.20 e Å3
274 parametersΔρmin = 0.24 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0050 (8)
Special details top

Experimental. Analysis of 1517 reflections having I/σ(I) > 12 and chosen from the full data set with CELL_NOW (Sheldrick, 2008) showed the crystal to belong to the monoclinic system and to consist of two components related by a 35.5° rotation about the b axis. The raw data were processed using the multi-component version ofSAINT under control of the two-component orientation filegenerated by CELL_NOW.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.25922 (7)0.7640 (3)0.31580 (8)0.0417 (4)
O20.41992 (7)0.6916 (3)0.43879 (8)0.0438 (4)
O30.46812 (6)0.4139 (3)0.34884 (7)0.0364 (3)
N10.15573 (8)0.6338 (3)0.48696 (8)0.0277 (3)
N20.28105 (7)0.4569 (3)0.41319 (8)0.0285 (3)
C10.26404 (9)0.3412 (3)0.48550 (10)0.0282 (4)
C20.30684 (10)0.1373 (4)0.52219 (11)0.0352 (4)
H20.3510 (13)0.067 (4)0.4983 (13)0.043 (6)*
C30.28523 (11)0.0297 (4)0.59278 (12)0.0395 (4)
H30.3145 (13)0.117 (5)0.6175 (13)0.050 (6)*
C40.22231 (11)0.1216 (4)0.62916 (11)0.0393 (4)
H40.2080 (12)0.036 (5)0.6796 (14)0.045 (6)*
C50.18037 (10)0.3237 (4)0.59365 (11)0.0348 (4)
H50.1341 (12)0.395 (4)0.6164 (12)0.041 (5)*
C60.20033 (9)0.4357 (3)0.52132 (9)0.0280 (4)
C70.17228 (9)0.7415 (3)0.41992 (9)0.0260 (4)
C80.23990 (9)0.6628 (3)0.37802 (10)0.0294 (4)
C90.11989 (9)0.9429 (3)0.38455 (9)0.0268 (4)
C100.04810 (10)0.9459 (4)0.41234 (10)0.0308 (4)
H100.0352 (11)0.811 (4)0.4512 (12)0.038 (5)*
C110.00326 (10)1.1326 (4)0.38378 (10)0.0335 (4)
H110.0533 (13)1.128 (4)0.4046 (12)0.040 (5)*
C120.01550 (10)1.3195 (4)0.32662 (10)0.0339 (4)
H120.0217 (12)1.452 (4)0.3059 (12)0.036 (5)*
C130.08591 (10)1.3174 (4)0.29784 (10)0.0332 (4)
H130.1002 (11)1.449 (4)0.2570 (12)0.039 (5)*
C140.13792 (10)1.1303 (3)0.32583 (10)0.0299 (4)
H140.1874 (12)1.132 (4)0.3037 (12)0.040 (5)*
C150.34349 (10)0.3597 (4)0.36944 (11)0.0324 (4)
H15A0.3325 (12)0.389 (5)0.3142 (15)0.046 (6)*
H15B0.3514 (12)0.167 (5)0.3776 (12)0.040 (5)*
C160.41371 (9)0.5107 (3)0.39143 (10)0.0297 (4)
C170.54066 (10)0.5371 (5)0.36140 (13)0.0422 (5)
H17A0.5341 (14)0.739 (6)0.3615 (15)0.062 (7)*
H17B0.5591 (13)0.475 (5)0.4136 (14)0.047 (6)*
C180.58651 (11)0.4416 (5)0.29504 (12)0.0407 (5)
H18A0.6373 (14)0.517 (5)0.3032 (14)0.052 (6)*
H18B0.5656 (14)0.506 (5)0.2434 (16)0.058 (7)*
H18C0.5870 (13)0.234 (5)0.2945 (13)0.049 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0402 (8)0.0435 (8)0.0427 (7)0.0049 (6)0.0176 (6)0.0057 (6)
O20.0317 (7)0.0435 (8)0.0567 (8)0.0015 (6)0.0059 (6)0.0212 (6)
O30.0226 (6)0.0414 (7)0.0457 (7)0.0027 (5)0.0081 (5)0.0121 (5)
N10.0241 (7)0.0285 (7)0.0306 (7)0.0023 (6)0.0025 (5)0.0011 (5)
N20.0208 (7)0.0292 (7)0.0357 (7)0.0009 (6)0.0047 (6)0.0064 (6)
C10.0241 (8)0.0259 (8)0.0345 (8)0.0009 (6)0.0003 (7)0.0063 (6)
C20.0271 (9)0.0319 (9)0.0465 (10)0.0047 (7)0.0029 (8)0.0067 (7)
C30.0369 (11)0.0332 (10)0.0477 (11)0.0064 (8)0.0097 (8)0.0004 (8)
C40.0419 (11)0.0375 (10)0.0382 (10)0.0031 (8)0.0017 (8)0.0049 (8)
C50.0328 (10)0.0363 (9)0.0354 (9)0.0040 (8)0.0030 (7)0.0016 (7)
C60.0246 (8)0.0268 (8)0.0327 (8)0.0018 (7)0.0000 (6)0.0031 (6)
C70.0237 (8)0.0249 (8)0.0296 (8)0.0015 (6)0.0023 (6)0.0043 (6)
C80.0254 (8)0.0293 (9)0.0336 (9)0.0018 (7)0.0048 (7)0.0041 (6)
C90.0263 (8)0.0260 (8)0.0279 (8)0.0006 (7)0.0000 (6)0.0048 (6)
C100.0294 (9)0.0320 (9)0.0310 (8)0.0029 (7)0.0030 (7)0.0009 (7)
C110.0290 (9)0.0374 (10)0.0340 (9)0.0060 (7)0.0007 (7)0.0032 (7)
C120.0359 (10)0.0316 (9)0.0337 (9)0.0065 (8)0.0062 (7)0.0035 (7)
C130.0378 (10)0.0297 (9)0.0317 (9)0.0025 (7)0.0037 (7)0.0006 (7)
C140.0296 (9)0.0297 (9)0.0302 (8)0.0040 (7)0.0006 (7)0.0029 (6)
C150.0240 (9)0.0326 (10)0.0409 (10)0.0018 (7)0.0071 (7)0.0097 (7)
C160.0251 (9)0.0290 (8)0.0352 (8)0.0036 (7)0.0043 (7)0.0031 (7)
C170.0234 (9)0.0502 (12)0.0533 (12)0.0070 (8)0.0052 (8)0.0082 (9)
C180.0258 (10)0.0550 (13)0.0415 (10)0.0020 (9)0.0049 (8)0.0111 (9)
Geometric parameters (Å, º) top
O1—C81.227 (2)C9—C101.402 (2)
O2—C161.199 (2)C9—C141.401 (2)
O3—C161.3311 (19)C10—C111.383 (3)
O3—C171.459 (2)C10—H100.97 (2)
N1—C71.297 (2)C11—C121.384 (3)
N1—C61.381 (2)C11—H110.99 (2)
N2—C81.379 (2)C12—C131.385 (3)
N2—C11.395 (2)C12—H120.99 (2)
N2—C151.456 (2)C13—C141.389 (3)
C1—C21.399 (3)C13—H130.99 (2)
C1—C61.404 (2)C14—H140.99 (2)
C2—C31.377 (3)C15—C161.511 (2)
C2—H20.97 (2)C15—H15A0.96 (2)
C3—C41.392 (3)C15—H15B0.96 (2)
C3—H30.98 (2)C17—C181.497 (3)
C4—C51.376 (3)C17—H17A1.00 (3)
C4—H40.99 (2)C17—H17B0.98 (2)
C5—C61.402 (2)C18—H18A1.00 (2)
C5—H51.00 (2)C18—H18B0.99 (3)
C7—C91.484 (2)C18—H18C1.02 (3)
C7—C81.490 (2)
C16—O3—C17117.19 (14)C9—C10—H10118.1 (12)
C7—N1—C6120.36 (14)C10—C11—C12120.25 (17)
C8—N2—C1122.99 (13)C10—C11—H11118.7 (12)
C8—N2—C15116.08 (14)C12—C11—H11121.1 (12)
C1—N2—C15120.92 (15)C11—C12—C13119.59 (17)
N2—C1—C2123.01 (15)C11—C12—H12120.0 (12)
N2—C1—C6117.13 (15)C13—C12—H12120.4 (12)
C2—C1—C6119.86 (16)C12—C13—C14120.72 (16)
C3—C2—C1119.29 (17)C12—C13—H13120.7 (12)
C3—C2—H2119.3 (13)C14—C13—H13118.6 (12)
C1—C2—H2121.4 (13)C13—C14—C9120.18 (16)
C2—C3—C4121.57 (17)C13—C14—H14118.8 (12)
C2—C3—H3119.0 (13)C9—C14—H14121.0 (12)
C4—C3—H3119.4 (13)N2—C15—C16112.34 (14)
C5—C4—C3119.35 (18)N2—C15—H15A107.9 (13)
C5—C4—H4121.5 (13)C16—C15—H15A108.3 (14)
C3—C4—H4119.1 (13)N2—C15—H15B111.2 (13)
C4—C5—C6120.56 (17)C16—C15—H15B108.9 (13)
C4—C5—H5122.9 (12)H15A—C15—H15B108.1 (18)
C6—C5—H5116.5 (12)O2—C16—O3124.89 (16)
N1—C6—C5118.60 (15)O2—C16—C15125.96 (15)
N1—C6—C1122.05 (15)O3—C16—C15109.15 (14)
C5—C6—C1119.35 (16)O3—C17—C18106.48 (16)
N1—C7—C9117.39 (14)O3—C17—H17A107.7 (15)
N1—C7—C8122.08 (15)C18—C17—H17A112.4 (15)
C9—C7—C8120.51 (14)O3—C17—H17B106.3 (13)
O1—C8—N2120.03 (15)C18—C17—H17B113.4 (13)
O1—C8—C7124.68 (16)H17A—C17—H17B110 (2)
N2—C8—C7115.28 (14)C17—C18—H18A108.4 (14)
C10—C9—C14118.30 (15)C17—C18—H18B110.8 (14)
C10—C9—C7117.58 (14)H18A—C18—H18B109.1 (19)
C14—C9—C7124.11 (15)C17—C18—H18C108.9 (13)
C11—C10—C9120.94 (16)H18A—C18—H18C111.2 (19)
C11—C10—H10120.9 (13)H18B—C18—H18C108.3 (19)
C8—N2—C1—C2178.28 (16)N1—C7—C8—O1177.72 (16)
C15—N2—C1—C23.2 (2)C9—C7—C8—O14.1 (3)
C8—N2—C1—C62.4 (2)N1—C7—C8—N23.6 (2)
C15—N2—C1—C6176.20 (15)C9—C7—C8—N2174.59 (14)
N2—C1—C2—C3178.57 (16)N1—C7—C9—C1018.0 (2)
C6—C1—C2—C30.8 (3)C8—C7—C9—C10160.34 (15)
C1—C2—C3—C40.9 (3)N1—C7—C9—C14161.55 (15)
C2—C3—C4—C50.4 (3)C8—C7—C9—C1420.1 (2)
C3—C4—C5—C60.3 (3)C14—C9—C10—C111.3 (2)
C7—N1—C6—C5179.75 (16)C7—C9—C10—C11178.23 (15)
C7—N1—C6—C10.7 (2)C9—C10—C11—C120.4 (3)
C4—C5—C6—N1178.56 (16)C10—C11—C12—C130.4 (3)
C4—C5—C6—C10.5 (3)C11—C12—C13—C140.2 (3)
N2—C1—C6—N10.3 (2)C12—C13—C14—C90.8 (3)
C2—C1—C6—N1179.10 (15)C10—C9—C14—C131.5 (2)
N2—C1—C6—C5179.30 (15)C7—C9—C14—C13177.98 (15)
C2—C1—C6—C50.1 (2)C8—N2—C15—C1691.54 (19)
C6—N1—C7—C9176.98 (14)C1—N2—C15—C1689.81 (19)
C6—N1—C7—C81.3 (2)C17—O3—C16—O20.4 (3)
C1—N2—C8—O1177.16 (15)C17—O3—C16—C15179.47 (16)
C15—N2—C8—O14.2 (2)N2—C15—C16—O20.3 (3)
C1—N2—C8—C74.1 (2)N2—C15—C16—O3179.37 (15)
C15—N2—C8—C7174.49 (14)C16—O3—C17—C18167.13 (16)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.97 (2)2.46 (2)3.345 (2)150.7 (17)
C17—H17B···O2ii0.98 (2)2.65 (2)3.616 (3)168.4 (18)
C18—H18B···O3iii0.99 (3)2.60 (3)3.482 (2)148.3 (19)
C12—H12···Cg3iv0.99 (2)2.96 (2)3.713 (2)133.4 (15)
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+1; (iii) x+1, y+1/2, z+1/2; (iv) x, y+1/2, z+1/2.
 

Funding information

The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationAbbas, H. A. S., Al-Marhabi, A. R., Eissa, S. I. & Ammar, Y. A. (2015). Bioorg. Med. Chem. 23, 6560–6572.  Web of Science CrossRef CAS Google Scholar
First citationAttia, A. S., Abdel Aziz, A. A., Alfallous, K. A. & El-Shahat, M. F. (2013). Polyhedron, 51, 243–254.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, WI.  Google Scholar
First citationBurguete, A., Pontiki, E., Hadjipavlou-Litina, D., Ancizu, S., Villar, R., Solano, B., Moreno, E., Torres, E., Pérez, S., Aldana, I. & Monge, A. (2001). Chem. Biol. Drug Des. 77, 255–267.  Web of Science CrossRef Google Scholar
First citationEl-Tombary, A. A. & El-Hawash, S. A. M. (2014). Med. Chem. 10, 521–532.  CAS Google Scholar
First citationGuirado, A., López Sánchez, J. I., Ruiz-Alcaraz, A. J., Bautista, D. & Gálvez, J. (2012). Eur. J. Med. Chem. 54, 87–94.  Web of Science CSD CrossRef CAS Google Scholar
First citationGupta, D. T., Devadoss, T., Bhatt, S., Gautam, B., Jindal, A., Pandey, D. & Mahesh, R. (2011). Indian J. Exp. Biol. 49, 619–626.  CAS Google Scholar
First citationHenen, M. A., El Bialy, S. A. A., Goda, F. E., Nasr, M. N. A. & Eisa, H. M. (2012). Med. Chem. Res. 21, 2368–2378.  Web of Science CrossRef CAS Google Scholar
First citationIngle, R., Marathe, R., Magar, D., Patel, H. M. & Surana, S. J. (2013). Eur. J. Med. Chem. 65, 168–186.  Web of Science CrossRef CAS Google Scholar
First citationKulkarni, N. V., Revankar, V. K., Kirasur, B. N. & Hugar, M. H. (2012). Med. Chem. Res. 21, 663–671.  Web of Science CrossRef CAS Google Scholar
First citationMahesh, R., Devadoss, T., Pandey, D. K. & Bhatt, S. (2011). Bioorg. Med. Chem. Lett. 21, 1253–1256.  Web of Science CrossRef CAS Google Scholar
First citationRamli, Y., El Bakri, Y., El Ghayati, L., Essassi, E. M. & Mague, J. T. (2018). IUCrData, 3, x180390.  Google Scholar
First citationSheldrick, G. M. (2008a). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008b). CELL_NOW. University of Göttingen, Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2009). TWINABS. University of Göttingen, Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSridevi, K. B. C. H., Naidu, A. & Sudhakaran, R. (2010). E-J. Chem. 7, 234–238.  Web of Science CrossRef CAS Google Scholar
First citationTeja, R., Kapu, S., Kadiyala, S., Dhanapal, V. & Raman, A. N. (2016). J. Saudi Chem. Soc. 20, S387–S392.  Web of Science CrossRef CAS Google Scholar
First citationVieira, M., Pinheiro, C., Fernandes, R., Noronha, J. P. & Prudêncio, C. (2014). Microbiol. Res. 169, 287–293.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds