organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-[(1-Butyl-1H-1,2,3-triazol-5-yl)meth­yl]-3-methyl­quinoxalin-2(1H)-one

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique, Centre de Recherche des Sciences des Médicaments, URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bLaboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco, and cDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: nadeemabad2018@gmail.com

Edited by J. Simpson, University of Otago, New Zealand (Received 19 March 2018; accepted 24 March 2018; online 6 April 2018)

In the title compound, C16H19N5O, the quinoxaline and triazole rings are almost orthogonal, inclined to one another at an angle of 79.8 (3)°. A weak intra­molecular C—H⋯O inter­action locks the conformation of the mol­ecule. The crystal packing features weak inter­molecular C—H⋯O and C—H⋯N inter­actions, which form chains along the b-axis direction. In addition, weak C—H⋯π inter­molecular inter­actions further influence the crystal packing.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The quinoxaline moiety is present in a variety of physiologically active compounds, with applications varying from medicinal to agricultural (Ramli et al., 2014[Ramli, Y., Moussaif, A., Karrouchi, K. & Essassi, E. M. (2014). J. Chem. Article ID 563406, 1-21.]). Quinoxaline derivatives possess diverse biological activities showing insecticidal, fungicidal, herbicidal, anthelmintic and anti­viral properties (Ramli & Essassi, 2015[Ramli, Y. & Essassi, E. M. (2015). Adv. Chem. Res. 27, 109-160.]). As a continuation of our work on the synthesis of 3-methyl quinoxalin-2-one derivatives in order to evaluate their pharmacological activities (Ramli et al., 2010a[Ramli, Y., Benzeid, H., Bouhfid, R., Kandri Rodi, Y., Ferfra, S. & Essassi, E. M. (2010a). Sci. Study Res. Chem. Chem. Eng. Biotechnol. Food Ind. 11, 67-90.],b[Ramli, Y., Slimani, R., Zouihri, H., Lazar, S. & Essassi, E. M. (2010b). Acta Cryst. E66, o992.], 2011[Ramli, Y., Moussaif, A., Zouihri, H., Bourichi, H. & Essassi, E. M. (2011). Acta Cryst. E67, o1374.], 2013[Ramli, Y., Karrouchi, K., Essassi, E. M. & El Ammari, L. (2013). Acta Cryst. E69, o1320-o1321.], 2017[Ramli, Y., Missioui, M., El Fal, M., Ouhcine, M., Essassi, E. M. & Mague, J. T. (2017). IUCrData, 2, x171424.]; Caleb et al., 2016[Caleb, A. A., Ramli, Y., Benabdelkamel, H., Bouhfid, R., Es-Safi, N., Kandri Rodi, Y., Essassi, E. M. & Banoub, J. (2016). J. Maroc. Chim. Hétérocycl. 15, 109-123.]; Missioui et al., 2017[Missioui, M., Mague, J. T., El Fal, M., Taoufik, J., Essassi, E. M. & Ramli, Y. (2017). IUCrData, 2, x171763.]), the title compound (Fig. 1[link]) was synthesized and its crystal structure is reported here. This compound is built up from the two fused six-membered rings of a quinoxalinone ring system linked through a methyl­ene bridge to a 1,2,3-triazole ring, which in turn carries a n-butyl substituent on N3 (Sebbar et al., 2016[Sebbar, N. K., Mekhzoum, M. E. M., Essassi, E. M., Abdelfettah, Z., Ouzidan, Y., Kandri Rodi, Y., Talbaoui, A. & Bakri, Y. (2016). J. Maroc. Chim. Hétérocycl. 15, 1-11.], Ellouz et al., 2015[Ellouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015). Acta Cryst. E71, o1022-o1023.]).

[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level.

The title compound crystallizes with one independent mol­ecule in the asymmetric unit. The quinoxaline ring system is essentially planar with atom N4 showing a maximum deviation of 0.035 (9) Å from the mean plane of the ten-membered ring system. In addition, the quinoxaline ring system occupies an anti-clinal [C1—C2⋯C13—C14 = −119.8 (2)°] orientation with respect to the mean plane of the triazole ring and is twisted with a dihedral angle of 79.8 (3)° between this ring and the quinoxalinone ring system. The butyl moiety on the other hand is in a syn-clinal orientation [N2—N3—C12—C13 = 85.6 (2)] with respect to the triazole ring. A weak intra­molecular C12—H12B⋯O1 inter­action locks the conformation of the mol­ecule (Fig. 2[link], Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the N1–N3/C1/C2, N4/N5/C4–C6/C11 and C6–C11 rings respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12B⋯O1 0.97 2.48 3.335 (3) 147
C3—H3A⋯N1i 0.97 2.45 3.416 (3) 176
C8—H8⋯O1ii 0.93 2.58 3.251 (2) 130
C3—H3BCg1iii 0.97 3.00 3.670 (2) 127
C13—H13BCg2 0.97 2.85 3.661 (2) 142
C14—H14ACg3iv 0.97 2.84 3.724 (2) 152
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y, z-1; (iii) -x+1, -y+1, -z+1; (iv) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
A partial view along the c axis of the crystal packing. Dashed lines indicate both weak C—H⋯O, C—H⋯N inter­molecular and C—H⋯O intra­molecular inter­actions. Atoms not involved in the hydrogen-bonding inter­actions have been omitted for clarity.

The crystal packing features weak C—H⋯O and C—H⋯N inter­molecular inter­actions forming chains along the b-axis direction (Fig. 2[link], Table 1[link]). In addition, weak C3—H3Bπ(Cg1), C13—H13Bπ(Cg2) and C14—H14Aπ(Cg3) inter­molecular inter­actions, Table 1[link], further influence the crystal packing. No classical hydrogen bonds are observed.

Synthesis and crystallization

To a solution of 3-methyl-1-(prop-2-yn­yl)-3,4-di­hydro­quinoxalin-2(1H)-one (0.68 mmol) in ethanol (15 ml) was added 1-azido­butane (1.03 mmol). The reaction mixture was stirred under reflux for 72 h. After completion of the reaction (monitored by TLC), the solution was concentrated and the residue was purified by column chromatography on silica gel by using as eluent the mixture (hexa­ne/ethyl acetate 8:2). The solid product obtained was crystallized from ethanol to afford colourless crystals in 16% yield.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C16H19N5O
Mr 297.36
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 15.8299 (8), 10.6270 (4), 9.2041 (3)
β (°) 98.084 (4)
V3) 1532.97 (11)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.68
Crystal size (mm) 0.24 × 0.22 × 0.04
 
Data collection
Diffractometer Rigaku OD Xcalibur Eos Gemini
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Americas, The Woodlands, Texas, USA.])
Tmin, Tmax 0.794, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 5580, 2887, 2257
Rint 0.019
(sin θ/λ)max−1) 0.615
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.157, 1.02
No. of reflections 2887
No. of parameters 201
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.21
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Americas, The Woodlands, Texas, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

1-[(1-Butyl-1H-1,2,3-triazol-5-yl)methyl]-3-methylquinoxalin-2(1H)-one top
Crystal data top
C16H19N5OF(000) = 632
Mr = 297.36Dx = 1.288 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 15.8299 (8) ÅCell parameters from 2219 reflections
b = 10.6270 (4) Åθ = 5.0–71.3°
c = 9.2041 (3) ŵ = 0.68 mm1
β = 98.084 (4)°T = 293 K
V = 1532.97 (11) Å3Plate, colourless
Z = 40.24 × 0.22 × 0.04 mm
Data collection top
Rigaku OD Xcalibur Eos Gemini
diffractometer
2887 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source2257 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 16.0416 pixels mm-1θmax = 71.4°, θmin = 5.0°
ω scansh = 1918
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
k = 129
Tmin = 0.794, Tmax = 1.000l = 119
5580 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.157 w = 1/[σ2(Fo2) + (0.0798P)2 + 0.4446P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2887 reflectionsΔρmax = 0.24 e Å3
201 parametersΔρmin = 0.21 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.74544 (10)0.55020 (16)0.66870 (14)0.0596 (4)
N10.48881 (13)0.3093 (2)0.2446 (2)0.0697 (6)
N20.54195 (14)0.2443 (2)0.3387 (2)0.0693 (6)
N30.59408 (11)0.32718 (18)0.41696 (19)0.0546 (5)
N40.70864 (9)0.57241 (14)0.42118 (16)0.0392 (4)
N50.88308 (10)0.58729 (16)0.39979 (17)0.0463 (4)
C10.50794 (14)0.4318 (2)0.2624 (3)0.0588 (6)
H10.4796620.4970790.2085300.071*
C20.57542 (12)0.4464 (2)0.3720 (2)0.0482 (5)
C30.61758 (12)0.56295 (19)0.4363 (2)0.0470 (5)
H3A0.5880350.6353250.3892800.056*
H3B0.6117190.5662530.5397600.056*
C40.76751 (12)0.56566 (18)0.54693 (19)0.0424 (4)
C50.85801 (12)0.57422 (18)0.5260 (2)0.0440 (4)
C60.82194 (12)0.59686 (17)0.27565 (19)0.0410 (4)
C70.85021 (14)0.6119 (2)0.1395 (2)0.0510 (5)
H70.9083900.6151560.1340560.061*
C80.79259 (16)0.6219 (2)0.0140 (2)0.0562 (5)
H80.8117290.6306470.0765270.067*
C90.70609 (15)0.6191 (2)0.0220 (2)0.0550 (5)
H90.6673590.6266320.0633950.066*
C100.67642 (13)0.60513 (19)0.1549 (2)0.0468 (5)
H100.6180710.6046920.1591950.056*
C110.73449 (12)0.59165 (16)0.28335 (19)0.0385 (4)
C120.66329 (15)0.2808 (2)0.5264 (2)0.0588 (6)
H12A0.6443170.2058720.5725960.071*
H12B0.6769920.3441620.6019570.071*
C130.74284 (15)0.2501 (2)0.4584 (2)0.0566 (5)
H13A0.7318880.1768460.3957420.068*
H13B0.7558780.3200890.3977120.068*
C140.81893 (16)0.2243 (2)0.5732 (3)0.0644 (6)
H14A0.8073790.1504010.6290410.077*
H14B0.8269640.2949310.6404920.077*
C150.90023 (18)0.2033 (3)0.5077 (3)0.0875 (9)
H15A0.9112470.2752420.4501460.131*
H15B0.8941220.1299020.4463670.131*
H15C0.9469300.1914700.5851210.131*
C160.92225 (14)0.5652 (2)0.6610 (2)0.0594 (6)
H16A0.9123180.4899230.7137390.089*
H16B0.9171220.6371330.7222380.089*
H16C0.9785850.5627210.6337810.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0602 (9)0.0843 (11)0.0344 (7)0.0058 (8)0.0071 (6)0.0005 (7)
N10.0594 (11)0.0780 (14)0.0691 (12)0.0220 (11)0.0001 (9)0.0034 (11)
N20.0713 (13)0.0620 (12)0.0736 (13)0.0227 (10)0.0067 (10)0.0045 (10)
N30.0539 (10)0.0579 (10)0.0521 (10)0.0120 (8)0.0080 (8)0.0005 (8)
N40.0398 (8)0.0417 (8)0.0353 (7)0.0011 (6)0.0023 (6)0.0029 (6)
N50.0421 (8)0.0525 (9)0.0439 (9)0.0014 (7)0.0046 (7)0.0046 (7)
C10.0438 (10)0.0697 (14)0.0614 (13)0.0123 (10)0.0018 (9)0.0015 (11)
C20.0405 (9)0.0574 (12)0.0480 (10)0.0045 (9)0.0103 (8)0.0004 (9)
C30.0435 (10)0.0525 (11)0.0455 (10)0.0004 (9)0.0078 (8)0.0040 (8)
C40.0471 (10)0.0445 (10)0.0347 (9)0.0004 (8)0.0022 (7)0.0034 (7)
C50.0449 (10)0.0443 (10)0.0409 (9)0.0020 (8)0.0005 (8)0.0039 (8)
C60.0464 (10)0.0381 (9)0.0382 (9)0.0005 (8)0.0049 (7)0.0032 (7)
C70.0557 (11)0.0526 (11)0.0472 (10)0.0012 (9)0.0157 (9)0.0019 (9)
C80.0788 (15)0.0545 (12)0.0367 (9)0.0053 (11)0.0124 (9)0.0018 (9)
C90.0744 (14)0.0495 (11)0.0372 (9)0.0046 (10)0.0060 (9)0.0050 (8)
C100.0482 (10)0.0472 (10)0.0429 (10)0.0026 (8)0.0012 (8)0.0029 (8)
C110.0469 (10)0.0334 (8)0.0346 (8)0.0007 (7)0.0033 (7)0.0015 (6)
C120.0709 (14)0.0569 (12)0.0488 (11)0.0055 (11)0.0087 (10)0.0092 (9)
C130.0723 (14)0.0498 (11)0.0465 (11)0.0008 (10)0.0039 (10)0.0035 (9)
C140.0789 (16)0.0565 (13)0.0548 (12)0.0086 (11)0.0009 (11)0.0046 (10)
C150.0768 (18)0.096 (2)0.0858 (19)0.0122 (16)0.0010 (15)0.0102 (17)
C160.0489 (11)0.0771 (15)0.0488 (11)0.0032 (11)0.0049 (9)0.0002 (10)
Geometric parameters (Å, º) top
O1—C41.231 (2)C8—H80.9300
N1—N21.316 (3)C8—C91.382 (3)
N1—C11.342 (3)C9—H90.9300
N2—N31.345 (3)C9—C101.379 (3)
N3—C21.353 (3)C10—H100.9300
N3—C121.466 (3)C10—C111.399 (3)
N4—C31.471 (2)C12—H12A0.9700
N4—C41.382 (2)C12—H12B0.9700
N4—C111.402 (2)C12—C131.518 (3)
N5—C51.287 (2)C13—H13A0.9700
N5—C61.393 (2)C13—H13B0.9700
C1—H10.9300C13—C141.511 (3)
C1—C21.371 (3)C14—H14A0.9700
C2—C31.489 (3)C14—H14B0.9700
C3—H3A0.9700C14—C151.512 (4)
C3—H3B0.9700C15—H15A0.9600
C4—C51.475 (3)C15—H15B0.9600
C5—C161.494 (3)C15—H15C0.9600
C6—C71.397 (3)C16—H16A0.9600
C6—C111.397 (3)C16—H16B0.9600
C7—H70.9300C16—H16C0.9600
C7—C81.372 (3)
N2—N1—C1108.45 (19)C10—C9—H9119.5
N1—N2—N3107.2 (2)C9—C10—H10120.2
N2—N3—C2111.02 (19)C9—C10—C11119.69 (19)
N2—N3—C12119.4 (2)C11—C10—H10120.2
C2—N3—C12129.44 (19)C6—C11—N4117.98 (15)
C4—N4—C3118.12 (15)C6—C11—C10119.42 (17)
C4—N4—C11121.15 (15)C10—C11—N4122.60 (17)
C11—N4—C3120.70 (15)N3—C12—H12A109.2
C5—N5—C6118.76 (16)N3—C12—H12B109.2
N1—C1—H1125.1N3—C12—C13111.84 (17)
N1—C1—C2109.8 (2)H12A—C12—H12B107.9
C2—C1—H1125.1C13—C12—H12A109.2
N3—C2—C1103.48 (19)C13—C12—H12B109.2
N3—C2—C3126.22 (18)C12—C13—H13A109.2
C1—C2—C3130.2 (2)C12—C13—H13B109.2
N4—C3—C2114.17 (15)H13A—C13—H13B107.9
N4—C3—H3A108.7C14—C13—C12112.13 (18)
N4—C3—H3B108.7C14—C13—H13A109.2
C2—C3—H3A108.7C14—C13—H13B109.2
C2—C3—H3B108.7C13—C14—H14A109.0
H3A—C3—H3B107.6C13—C14—H14B109.0
O1—C4—N4121.69 (17)C13—C14—C15112.8 (2)
O1—C4—C5122.16 (17)H14A—C14—H14B107.8
N4—C4—C5116.12 (15)C15—C14—H14A109.0
N5—C5—C4123.58 (16)C15—C14—H14B109.0
N5—C5—C16119.83 (18)C14—C15—H15A109.5
C4—C5—C16116.58 (17)C14—C15—H15B109.5
N5—C6—C7118.05 (17)C14—C15—H15C109.5
N5—C6—C11122.31 (16)H15A—C15—H15B109.5
C11—C6—C7119.64 (17)H15A—C15—H15C109.5
C6—C7—H7119.8H15B—C15—H15C109.5
C8—C7—C6120.3 (2)C5—C16—H16A109.5
C8—C7—H7119.8C5—C16—H16B109.5
C7—C8—H8120.0C5—C16—H16C109.5
C7—C8—C9119.95 (18)H16A—C16—H16B109.5
C9—C8—H8120.0H16A—C16—H16C109.5
C8—C9—H9119.5H16B—C16—H16C109.5
C10—C9—C8120.92 (19)
O1—C4—C5—N5178.3 (2)C3—N4—C11—C101.2 (3)
O1—C4—C5—C160.9 (3)C4—N4—C3—C2112.54 (19)
N1—N2—N3—C20.8 (2)C4—N4—C11—C63.5 (2)
N1—N2—N3—C12176.99 (18)C4—N4—C11—C10176.77 (17)
N1—C1—C2—N30.3 (2)C5—N5—C6—C7179.55 (18)
N1—C1—C2—C3177.2 (2)C5—N5—C6—C110.6 (3)
N2—N1—C1—C20.2 (3)C6—N5—C5—C41.5 (3)
N2—N3—C2—C10.7 (2)C6—N5—C5—C16179.32 (18)
N2—N3—C2—C3177.76 (18)C6—C7—C8—C91.0 (3)
N2—N3—C12—C1385.6 (2)C7—C6—C11—N4177.98 (17)
N3—C2—C3—N463.9 (3)C7—C6—C11—C101.8 (3)
N3—C12—C13—C14169.95 (19)C7—C8—C9—C100.6 (3)
N4—C4—C5—N50.0 (3)C8—C9—C10—C111.0 (3)
N4—C4—C5—C16179.16 (18)C9—C10—C11—N4177.55 (17)
N5—C6—C7—C8179.93 (19)C9—C10—C11—C62.2 (3)
N5—C6—C11—N41.9 (3)C11—N4—C3—C269.4 (2)
N5—C6—C11—C10178.35 (17)C11—N4—C4—O1179.18 (17)
C1—N1—N2—N30.6 (3)C11—N4—C4—C52.6 (2)
C1—C2—C3—N4119.8 (2)C11—C6—C7—C80.2 (3)
C2—N3—C12—C1389.8 (3)C12—N3—C2—C1176.3 (2)
C3—N4—C4—O11.1 (3)C12—N3—C2—C36.6 (3)
C3—N4—C4—C5179.36 (15)C12—C13—C14—C15175.6 (2)
C3—N4—C11—C6178.52 (15)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the N1–N3/C1/C2, N4/N5/C4–C6/C11 and C6–C11 rings respectively.
D—H···AD—HH···AD···AD—H···A
C12—H12B···O10.972.483.335 (3)147
C3—H3A···N1i0.972.453.416 (3)176
C8—H8···O1ii0.932.583.251 (2)130
C3—H3B···Cg1iii0.973.003.670 (2)127
C13—H13B···Cg20.972.853.661 (2)142
C14—H14A···Cg3iv0.972.843.724 (2)152
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y, z1; (iii) x+1, y+1, z+1; (iv) x, y1/2, z1/2.
 

Funding information

JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationCaleb, A. A., Ramli, Y., Benabdelkamel, H., Bouhfid, R., Es-Safi, N., Kandri Rodi, Y., Essassi, E. M. & Banoub, J. (2016). J. Maroc. Chim. Hétérocycl. 15, 109–123.  CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEllouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015). Acta Cryst. E71, o1022–o1023.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMissioui, M., Mague, J. T., El Fal, M., Taoufik, J., Essassi, E. M. & Ramli, Y. (2017). IUCrData, 2, x171763.  Google Scholar
First citationRamli, Y., Benzeid, H., Bouhfid, R., Kandri Rodi, Y., Ferfra, S. & Essassi, E. M. (2010a). Sci. Study Res. Chem. Chem. Eng. Biotechnol. Food Ind. 11, 67–90.  CAS Google Scholar
First citationRamli, Y. & Essassi, E. M. (2015). Adv. Chem. Res. 27, 109–160.  Google Scholar
First citationRamli, Y., Karrouchi, K., Essassi, E. M. & El Ammari, L. (2013). Acta Cryst. E69, o1320–o1321.  CSD CrossRef IUCr Journals Google Scholar
First citationRamli, Y., Missioui, M., El Fal, M., Ouhcine, M., Essassi, E. M. & Mague, J. T. (2017). IUCrData, 2, x171424.  Google Scholar
First citationRamli, Y., Moussaif, A., Karrouchi, K. & Essassi, E. M. (2014). J. Chem. Article ID 563406, 1–21.  Google Scholar
First citationRamli, Y., Moussaif, A., Zouihri, H., Bourichi, H. & Essassi, E. M. (2011). Acta Cryst. E67, o1374.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRamli, Y., Slimani, R., Zouihri, H., Lazar, S. & Essassi, E. M. (2010b). Acta Cryst. E66, o992.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Americas, The Woodlands, Texas, USA.  Google Scholar
First citationSebbar, N. K., Mekhzoum, M. E. M., Essassi, E. M., Abdelfettah, Z., Ouzidan, Y., Kandri Rodi, Y., Talbaoui, A. & Bakri, Y. (2016). J. Maroc. Chim. Hétérocycl. 15, 1–11.  CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds