organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N-(4-Acetyl­phen­yl)-N′-(4-fluoro­phen­yl)urea

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Faculty of Sciences, Cumhuriyet University, 58140 Sivas, Turkey, bİlke Education and Health Foundation, Cappadocia University, Cappadocia Vocational College, The Medical Imaging Techniques Program, 50420 Mustafapaşa, Ürgüp, Nevşehir, Turkey, cCumhuriyet University, Institute of Science, Department of Physics, 58140 Sivas, Turkey, dDepartment of Nutrition and Dietetics, Faculty of Health Sciences, Cumhuriyet University, 58140 Sivas, Turkey, and eDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 2 April 2018; accepted 9 April 2018; online 12 April 2018)

In the title compound, C15H13FN2O2, the fluoro­phenyl and 4-acetyl­phenyl rings are twisted from each other by a dihedral angle of 11.6 (2)°. In the crystal, mol­ecules are packed into layers parallel to (010). Each layer contains the mol­ecules linked by a pair of strong N—H⋯O hydrogen bonds, with an R22(14) ring motif, while strong C—H⋯F hydrogen bonds forming R42(26) ring motifs connect mol­ecules into a two-dimensional network. The inter­molecular inter­actions have been investigated using Hirshfeld surface studies and two-dimensional fingerprint plots.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Aceto­phenones having different substituents in synthetic organic chemistry are used as an important building block (Bing-Wei, 2010[Bing-Wei, X. (2010). Synth. Commun. 38, 2826-2837.]). In particular, they are frequently used in conjunction with aldehydes in the synthesis of chalcone derivatives (Kocyigit et al., 2018[Kocyigit, U. M., Budak, Y., Gürdere, M. B., Ertürk, F., Yencilek, B., Taslimi, P., Gülçin, İ. & Ceylan, M. (2018). Arch. Physiol. Biochem. 124, 61-68.]; Karaman et al., 2010[Karaman, İ., Gezegen, H., Gürdere, M. B., Dingil, A. & Ceylan, M. (2010). Chem. Biodivers. 7, 400-408.]; Ceylan et al., 2011[Ceylan, M., Gürdere, M. B., Karaman, İ. & Gezegen, H. (2011). Med. Chem. Res. 20, 109-115.]), which are used as starting materials in the preparation of useful and multifunctional heterocyclic and bioactive compounds (Gürdere, Gümüş et al., 2017[Gürdere, M. B., Gümüş, O., Yaglioglu, A. S., Budak, Y. & Ceylan, M. (2017). Res. Chem. Intermed. 43, 1277-1289.]; Gürdere, Kamo et al., 2017[Gürdere, M. B., Kamo, E., Yağlıoğlu, A. Ş., Budak, Y. & Ceylan, M. (2017). Turk. J. Chem. 41, 263-271.]; Gezegen et al., 2013[Gezegen, H., Ceylan, M., Karaman, İ. & Şahin, E. (2013). Synth. Commun. 44, 1084-1093.]). In this article we report the crystal structure of 4-fluoro­phenyl­urea-substituted aceto­phenone, namely N-(4-acetyl­phen­yl)-N′-(4-fluoro­phen­yl)urea.

In the title mol­ecule (Fig. 1[link]), the fluoro­phenyl ring (C1–C6) and the 4-acetyl­phenyl ring (C8–C13) are twisted from each other, making a dihedral angle of 11.6 (2)°. The mean plane of the four essentially planar atoms of the urea moiety (C7/N1/N2/O1; r.m.s deviation = 0.004 Å) forms dihedral angles of 35.9 (3) and 29.2 (2)°, respectively, with the mean planes of the fluoro­phenyl and 4-acetyl­phenyl rings. The mol­ecular conformation is stabilized by two weak intra­molecular C—H⋯O inter­actions (Table 1[link]). In the crystal (Figs. 2[link] and 3[link]), N—H⋯O and C—H⋯F hydrogen bonds (Table 1[link]) link the adjacent mol­ecules into layers parallel to (010) forming R22(14) and R42(26) ring motifs. C—H⋯π and ππ inter­actions are not observed.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.79 (6) 2.17 (6) 2.927 (5) 160 (5)
N2—H2N⋯O2ii 0.88 (6) 2.30 (6) 3.070 (6) 147 (5)
C1—H1⋯O1 0.93 2.52 2.932 (6) 107
C10—H10⋯F1iii 0.93 2.49 3.386 (6) 162
C13—H13⋯O1 0.93 2.33 2.887 (7) 118
Symmetry codes: (i) x-1, y, z; (ii) x-1, y+1, z; (iii) [x-{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
A view along the a axis of the crystal packing of the title compound. H atoms not involved in hydrogen bonding (dotted lines) are omitted for clarity.
[Figure 3]
Figure 3
A view along the b axis of the crystal packing of the title compound. H atoms not involved in hydrogen bonding (dashed lines) are omitted for clarity.

The values of the geometric parameters of the title structure are comparable to those in the related structures N,N′-bis(penta­fluoro­phen­yl)urea (Jai-nhuknan et al., 1997[Jai-nhuknan, J., Karipides, A. G., Hughes, J. M. & Cantrell, J. S. (1997). Acta Cryst. C53, 455-457.]), N,N′-bis­(4-fluoro­phen­yl)urea (Loh et al., 2010[Loh, W.-S., Fun, H.-K., Sarveswari, S., Vijayakumar, V. & Ragavan, R. V. (2010). Acta Cryst. E66, o1319.]) and polymorphs of 1,3-bis­(3-fluoro­phen­yl) urea (Capacci-Daniel et al., 2016[Capacci-Daniel, C. A., Bertke, J. A., Dehghan, S., Hiremath-Darji, R. & Swift, J. A. (2016). Acta Cryst. C72, 692-696.]) and 1-(3-fluoro­phen­yl)-3-(4-nitro­phen­yl)urea (Lin et al., 2012[Lin, M.-S., Shi, Y., Zhang, S.-Y. & Li, Y.-L. (2012). Acta Cryst. E68, o2030.]).

The three-dimensional dnorm surface is a useful tool to analyse and visualize the inter-mol­ecular inter­actions. dnorm takes negative or positive values depending on whether the inter­molecular contact is shorter or longer than the van der Waals radii (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]). It is evident from the bright-red spots appearing near the oxygen atom on the Hirshfeld surface mapped over dnorm in Fig. 4[link] that these atoms play a significant role in the mol­ecular packing. The donors and acceptors of N—H⋯O and C—H⋯F inter­actions are also represented with blue (positive potential) and red regions (negative potential), respectively, on the Hirshfeld surface mapped over the dnorm in Fig. 5[link]. The red points, which represent closer contacts and negative dnorm values on the surface, correspond to the N—H⋯O, C—H⋯F and C—H⋯O inter­actions. The percentage contributions of various contacts to the total Hirshfeld surface are as follows: H⋯H (36.5%), F⋯H/H⋯F (13.3%), O⋯H/H⋯O (15.4%), C⋯H/H⋯C (24.7%), N⋯H/H⋯N (2.3%), C⋯C (3.1%), O⋯C/C⋯O (1.7%), C⋯N/N⋯C (1.5%) and F⋯C/C⋯F (0.7%), as shown in the two-dimensional fingerprint plots in Fig. 5[link]. The three-dimensional shape-index surface of the title compound is shown in Fig. 6[link].

[Figure 4]
Figure 4
View of the three-dimensional Hirshfeld surface of the title compound mapped with dnorm.
[Figure 5]
Figure 5
Two-dimensional fingerprint plots of the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H, (d) O⋯H, (e) F⋯H, (f) C⋯C, (g) N⋯H, (h) C⋯O and (i) C⋯N inter­actions [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].
[Figure 6]
Figure 6
Hirshfeld surface of the title complex plotted over shape-index.

Synthesis and crystallization

For the synthesis of 1-(4-acetyl­phen­yl)-3-(4-fluoro­phen­yl)urea, see Gezegen et al. (2017[Gezegen, H., Hepokur, C., Tutar, U. & Ceylan, M. (2017). Chem. Biodivers. 14, e1700223. doi: 10.1002/cbdv. 201700223.]).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Seventeen reflections (3 1 23), ([\overline{1}] 5 3), (0 8 0), (3 3 [\overline{10}]), (4 0 20), (1 5 [\overline{3}]), ([\overline{1}] 4 [\overline{13}]), (1 4 13), ([\overline{4}] 4 11), (2 5 [\overline{11}]), (0 6 7), (6 3 [\overline{1}]), ([\overline{3}] 3 10), ([\overline{2}] 6 [\overline{17}]), (0 6 [\overline{7}]), (5 1 [\overline{16}]) and (0 1 14) were omitted from the refinement because of large differences between observed and calculated intensities.

Table 2
Experimental details

Crystal data
Chemical formula C15H13FN2O2
Mr 272.27
Crystal system, space group Monoclinic, Pn
Temperature (K) 296
a, b, c (Å) 4.8061 (15), 6.617 (2), 20.364 (7)
β (°) 91.417 (10)
V3) 647.4 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.15 × 0.12 × 0.11
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.547, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 15964, 2991, 2573
Rint 0.053
(sin θ/λ)max−1) 0.666
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.134, 1.11
No. of reflections 2991
No. of parameters 191
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.18, −0.20
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

N-(4-Acetylphenyl)-N'-(4-fluorophenyl)urea top
Crystal data top
C15H13FN2O2F(000) = 284
Mr = 272.27Dx = 1.397 Mg m3
Monoclinic, PnMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2yacCell parameters from 9977 reflections
a = 4.8061 (15) Åθ = 3.0–28.3°
b = 6.617 (2) ŵ = 0.10 mm1
c = 20.364 (7) ÅT = 296 K
β = 91.417 (10)°Block, bronze
V = 647.4 (4) Å30.15 × 0.12 × 0.11 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
2573 reflections with I > 2σ(I)
φ and ω scansRint = 0.053
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
θmax = 28.3°, θmin = 3.1°
Tmin = 0.547, Tmax = 0.746h = 66
15964 measured reflectionsk = 88
2991 independent reflectionsl = 2727
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.062H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.134 W = 1/[Σ2(FO2) + 0.564P] WHERE P = (FO2 + 2FC2)/3
S = 1.11(Δ/σ)max < 0.001
2991 reflectionsΔρmax = 0.18 e Å3
191 parametersΔρmin = 0.20 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

H atoms of NH groups were located in difference Fourier maps [N1—H1N = 0.79 (6) and N2—H2N = 0.88 (6) Å] and refined freely. All H atoms attached to carbon were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 0.93 - 0.96 Å and Uiso(H) = 1.2 or 1.5Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4143 (11)0.6742 (8)0.0165 (2)0.0579 (13)
H10.50550.55100.01240.069*
C20.4738 (12)0.8333 (10)0.0252 (3)0.0686 (16)
H20.61000.81860.05650.082*
C30.3346 (13)1.0090 (8)0.0204 (3)0.0620 (14)
C40.1366 (12)1.0392 (9)0.0249 (3)0.0667 (15)
H40.04191.16150.02720.080*
C50.0800 (12)0.8832 (8)0.0676 (3)0.0627 (14)
H50.05380.90170.09920.075*
C60.2168 (8)0.7011 (7)0.0643 (2)0.0430 (10)
C70.3297 (8)0.4208 (7)0.1394 (2)0.0448 (10)
C80.3199 (8)0.1346 (6)0.2184 (2)0.0390 (9)
C90.2016 (9)0.0633 (7)0.2753 (2)0.0497 (11)
H90.05850.13640.29400.060*
C100.2898 (10)0.1112 (7)0.3044 (2)0.0519 (12)
H100.20570.15440.34260.062*
C110.5022 (9)0.2266 (6)0.2785 (2)0.0395 (9)
C120.6243 (10)0.1525 (7)0.2220 (2)0.0512 (12)
H120.77000.22440.20400.061*
C130.5364 (10)0.0236 (8)0.1921 (3)0.0547 (12)
H130.62170.06840.15430.066*
C140.6020 (9)0.4180 (7)0.3072 (2)0.0483 (11)
C150.4600 (13)0.5012 (9)0.3662 (3)0.0676 (15)
H15A0.49630.41470.40320.101*
H15B0.52980.63430.37560.101*
H15C0.26300.50790.35740.101*
F10.3976 (9)1.1663 (6)0.06090 (19)0.1009 (14)
N10.1477 (8)0.5458 (6)0.1088 (2)0.0486 (10)
N20.2112 (7)0.3066 (6)0.1886 (2)0.0467 (9)
O10.5754 (6)0.4085 (5)0.12620 (19)0.0573 (9)
O20.7956 (8)0.5106 (6)0.2841 (2)0.0702 (11)
H1N0.016 (12)0.538 (8)0.112 (3)0.054 (15)*
H2N0.057 (12)0.366 (9)0.200 (3)0.074 (18)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.130 (3)0.089 (3)0.086 (3)0.004 (3)0.044 (2)0.039 (2)
O10.0299 (14)0.058 (2)0.085 (2)0.0003 (15)0.0178 (15)0.0140 (18)
O20.065 (2)0.052 (2)0.094 (3)0.0236 (18)0.015 (2)0.006 (2)
N10.0310 (18)0.048 (2)0.068 (3)0.0002 (17)0.0132 (17)0.0142 (19)
N20.0319 (18)0.041 (2)0.068 (2)0.0071 (15)0.0196 (17)0.0078 (18)
C10.064 (3)0.053 (3)0.058 (3)0.008 (2)0.022 (2)0.002 (2)
C20.076 (4)0.073 (4)0.059 (3)0.009 (3)0.031 (3)0.008 (3)
C30.075 (3)0.056 (3)0.057 (3)0.004 (3)0.021 (3)0.014 (3)
C40.084 (4)0.053 (3)0.063 (3)0.014 (3)0.025 (3)0.013 (3)
C50.067 (3)0.057 (3)0.066 (3)0.015 (3)0.032 (3)0.016 (3)
C60.036 (2)0.043 (2)0.050 (2)0.0046 (18)0.0094 (18)0.0023 (19)
C70.032 (2)0.039 (2)0.064 (3)0.0008 (18)0.0083 (19)0.001 (2)
C80.0322 (18)0.034 (2)0.052 (2)0.0072 (17)0.0109 (16)0.0025 (18)
C90.048 (2)0.044 (2)0.058 (3)0.014 (2)0.018 (2)0.004 (2)
C100.053 (3)0.049 (3)0.055 (3)0.012 (2)0.022 (2)0.003 (2)
C110.0349 (19)0.036 (2)0.047 (2)0.0022 (17)0.0024 (17)0.0004 (17)
C120.044 (2)0.047 (3)0.063 (3)0.019 (2)0.020 (2)0.000 (2)
C130.052 (3)0.053 (3)0.060 (3)0.014 (2)0.021 (2)0.009 (2)
C140.044 (2)0.040 (2)0.060 (3)0.007 (2)0.004 (2)0.004 (2)
C150.074 (4)0.055 (3)0.074 (4)0.010 (3)0.003 (3)0.015 (3)
Geometric parameters (Å, º) top
F1—C31.367 (7)C9—C101.361 (6)
O1—C71.220 (5)C10—C111.389 (6)
O2—C141.218 (6)C11—C121.394 (6)
N1—C61.415 (6)C11—C141.470 (6)
N1—C71.346 (6)C12—C131.376 (7)
N2—C71.388 (6)C14—C151.501 (7)
N2—C81.386 (6)C1—H10.9300
C1—C21.387 (8)C2—H20.9300
C1—C61.388 (6)C4—H40.9300
N1—H1N0.79 (6)C5—H50.9300
C2—C31.346 (8)C9—H90.9300
N2—H2N0.88 (6)C10—H100.9300
C3—C41.356 (9)C12—H120.9300
C4—C51.381 (8)C13—H130.9300
C5—C61.375 (7)C15—H15A0.9600
C8—C91.386 (6)C15—H15B0.9600
C8—C131.392 (6)C15—H15C0.9600
C6—N1—C7125.7 (4)C11—C12—C13122.2 (4)
C7—N2—C8127.3 (4)C8—C13—C12120.1 (5)
C2—C1—C6119.2 (5)O2—C14—C15119.4 (4)
C6—N1—H1N110 (4)C11—C14—C15118.9 (4)
C7—N1—H1N124 (4)O2—C14—C11121.6 (4)
C7—N2—H2N108 (4)C2—C1—H1120.00
C1—C2—C3120.1 (5)C6—C1—H1120.00
C8—N2—H2N124 (4)C1—C2—H2120.00
F1—C3—C2119.7 (5)C3—C2—H2120.00
F1—C3—C4117.9 (5)C3—C4—H4121.00
C2—C3—C4122.3 (6)C5—C4—H4121.00
C3—C4—C5118.1 (5)C4—C5—H5119.00
C4—C5—C6121.5 (5)C6—C5—H5119.00
N1—C6—C5119.0 (4)C8—C9—H9119.00
C1—C6—C5118.9 (5)C10—C9—H9119.00
N1—C6—C1122.1 (4)C9—C10—H10119.00
O1—C7—N1124.1 (4)C11—C10—H10119.00
O1—C7—N2122.6 (4)C11—C12—H12119.00
N1—C7—N2113.3 (3)C13—C12—H12119.00
C9—C8—C13117.9 (4)C8—C13—H13120.00
N2—C8—C9119.2 (4)C12—C13—H13120.00
N2—C8—C13122.8 (4)C14—C15—H15A109.00
C8—C9—C10121.5 (4)C14—C15—H15B109.00
C9—C10—C11121.7 (4)C14—C15—H15C109.00
C10—C11—C12116.6 (4)H15A—C15—H15B110.00
C10—C11—C14123.9 (4)H15A—C15—H15C109.00
C12—C11—C14119.4 (4)H15B—C15—H15C109.00
C7—N1—C6—C142.0 (7)C4—C5—C6—N1179.2 (5)
C7—N1—C6—C5139.4 (5)C4—C5—C6—C10.5 (8)
C6—N1—C7—O19.9 (7)N2—C8—C9—C10176.2 (4)
C6—N1—C7—N2169.5 (4)C13—C8—C9—C101.0 (7)
C7—N2—C8—C9167.2 (4)N2—C8—C13—C12176.2 (4)
C7—N2—C8—C1315.8 (7)C9—C8—C13—C120.9 (7)
C8—N2—C7—N1163.8 (4)C8—C9—C10—C110.1 (7)
C8—N2—C7—O116.8 (7)C9—C10—C11—C121.3 (7)
C6—C1—C2—C32.1 (8)C9—C10—C11—C14178.8 (4)
C2—C1—C6—N1179.5 (5)C10—C11—C12—C131.4 (7)
C2—C1—C6—C51.9 (7)C14—C11—C12—C13178.7 (4)
C1—C2—C3—C40.8 (9)C10—C11—C14—O2177.4 (4)
C1—C2—C3—F1178.9 (5)C10—C11—C14—C153.0 (7)
F1—C3—C4—C5177.5 (5)C12—C11—C14—O22.5 (7)
C2—C3—C4—C50.6 (9)C12—C11—C14—C15177.2 (4)
C3—C4—C5—C60.7 (9)C11—C12—C13—C80.4 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.79 (6)2.17 (6)2.927 (5)160 (5)
N2—H2N···O2ii0.88 (6)2.30 (6)3.070 (6)147 (5)
C1—H1···O10.932.522.932 (6)107
C10—H10···F1iii0.932.493.386 (6)162
C13—H13···O10.932.332.887 (7)118
Symmetry codes: (i) x1, y, z; (ii) x1, y+1, z; (iii) x1/2, y+1, z+1/2.
 

Funding information

The authors are indebted to the Technical Research Council of Turkey (Grant TUBİTAK-114Z634) for financial support of this work.

References

First citationBing-Wei, X. (2010). Synth. Commun. 38, 2826–2837.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCapacci-Daniel, C. A., Bertke, J. A., Dehghan, S., Hiremath-Darji, R. & Swift, J. A. (2016). Acta Cryst. C72, 692–696.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCeylan, M., Gürdere, M. B., Karaman, İ. & Gezegen, H. (2011). Med. Chem. Res. 20, 109–115.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGezegen, H., Ceylan, M., Karaman, İ. & Şahin, E. (2013). Synth. Commun. 44, 1084–1093.  Web of Science CSD CrossRef Google Scholar
First citationGezegen, H., Hepokur, C., Tutar, U. & Ceylan, M. (2017). Chem. Biodivers. 14, e1700223. doi: 10.1002/cbdv. 201700223.  Web of Science CrossRef Google Scholar
First citationGürdere, M. B., Gümüş, O., Yaglioglu, A. S., Budak, Y. & Ceylan, M. (2017). Res. Chem. Intermed. 43, 1277–1289.  Google Scholar
First citationGürdere, M. B., Kamo, E., Yağlıoğlu, A. Ş., Budak, Y. & Ceylan, M. (2017). Turk. J. Chem. 41, 263–271.  Google Scholar
First citationJai-nhuknan, J., Karipides, A. G., Hughes, J. M. & Cantrell, J. S. (1997). Acta Cryst. C53, 455–457.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKaraman, İ., Gezegen, H., Gürdere, M. B., Dingil, A. & Ceylan, M. (2010). Chem. Biodivers. 7, 400–408.  Web of Science CrossRef CAS Google Scholar
First citationKocyigit, U. M., Budak, Y., Gürdere, M. B., Ertürk, F., Yencilek, B., Taslimi, P., Gülçin, İ. & Ceylan, M. (2018). Arch. Physiol. Biochem. 124, 61–68.  Web of Science CrossRef CAS Google Scholar
First citationLin, M.-S., Shi, Y., Zhang, S.-Y. & Li, Y.-L. (2012). Acta Cryst. E68, o2030.  CSD CrossRef IUCr Journals Google Scholar
First citationLoh, W.-S., Fun, H.-K., Sarveswari, S., Vijayakumar, V. & Ragavan, R. V. (2010). Acta Cryst. E66, o1319.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds