organic compounds
N-(4-Acetylphenyl)-N′-(4-fluorophenyl)urea
aDepartment of Physics, Faculty of Sciences, Cumhuriyet University, 58140 Sivas, Turkey, bİlke Education and Health Foundation, Cappadocia University, Cappadocia Vocational College, The Medical Imaging Techniques Program, 50420 Mustafapaşa, Ürgüp, Nevşehir, Turkey, cCumhuriyet University, Institute of Science, Department of Physics, 58140 Sivas, Turkey, dDepartment of Nutrition and Dietetics, Faculty of Health Sciences, Cumhuriyet University, 58140 Sivas, Turkey, and eDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr
In the title compound, C15H13FN2O2, the fluorophenyl and 4-acetylphenyl rings are twisted from each other by a dihedral angle of 11.6 (2)°. In the crystal, molecules are packed into layers parallel to (010). Each layer contains the molecules linked by a pair of strong N—H⋯O hydrogen bonds, with an R22(14) ring motif, while strong C—H⋯F hydrogen bonds forming R42(26) ring motifs connect molecules into a two-dimensional network. The intermolecular interactions have been investigated using Hirshfeld surface studies and two-dimensional fingerprint plots.
CCDC reference: 1835898
Structure description
Acetophenones having different substituents in synthetic organic chemistry are used as an important building block (Bing-Wei, 2010). In particular, they are frequently used in conjunction with in the synthesis of chalcone derivatives (Kocyigit et al., 2018; Karaman et al., 2010; Ceylan et al., 2011), which are used as starting materials in the preparation of useful and multifunctional heterocyclic and bioactive compounds (Gürdere, Gümüş et al., 2017; Gürdere, Kamo et al., 2017; Gezegen et al., 2013). In this article we report the of 4-fluorophenylurea-substituted acetophenone, namely N-(4-acetylphenyl)-N′-(4-fluorophenyl)urea.
In the title molecule (Fig. 1), the fluorophenyl ring (C1–C6) and the 4-acetylphenyl ring (C8–C13) are twisted from each other, making a dihedral angle of 11.6 (2)°. The mean plane of the four essentially planar atoms of the urea moiety (C7/N1/N2/O1; r.m.s deviation = 0.004 Å) forms dihedral angles of 35.9 (3) and 29.2 (2)°, respectively, with the mean planes of the fluorophenyl and 4-acetylphenyl rings. The molecular conformation is stabilized by two weak intramolecular C—H⋯O interactions (Table 1). In the crystal (Figs. 2 and 3), N—H⋯O and C—H⋯F hydrogen bonds (Table 1) link the adjacent molecules into layers parallel to (010) forming R22(14) and R42(26) ring motifs. C—H⋯π and π–π interactions are not observed.
The values of the geometric parameters of the title structure are comparable to those in the related structures N,N′-bis(pentafluorophenyl)urea (Jai-nhuknan et al., 1997), N,N′-bis(4-fluorophenyl)urea (Loh et al., 2010) and polymorphs of 1,3-bis(3-fluorophenyl) urea (Capacci-Daniel et al., 2016) and 1-(3-fluorophenyl)-3-(4-nitrophenyl)urea (Lin et al., 2012).
The three-dimensional dnorm surface is a useful tool to analyse and visualize the inter-molecular interactions. dnorm takes negative or positive values depending on whether the intermolecular contact is shorter or longer than the van der Waals radii (Spackman & Jayatilaka, 2009). It is evident from the bright-red spots appearing near the oxygen atom on the Hirshfeld surface mapped over dnorm in Fig. 4 that these atoms play a significant role in the molecular packing. The donors and acceptors of N—H⋯O and C—H⋯F interactions are also represented with blue (positive potential) and red regions (negative potential), respectively, on the Hirshfeld surface mapped over the dnorm in Fig. 5. The red points, which represent closer contacts and negative dnorm values on the surface, correspond to the N—H⋯O, C—H⋯F and C—H⋯O interactions. The percentage contributions of various contacts to the total Hirshfeld surface are as follows: H⋯H (36.5%), F⋯H/H⋯F (13.3%), O⋯H/H⋯O (15.4%), C⋯H/H⋯C (24.7%), N⋯H/H⋯N (2.3%), C⋯C (3.1%), O⋯C/C⋯O (1.7%), C⋯N/N⋯C (1.5%) and F⋯C/C⋯F (0.7%), as shown in the two-dimensional fingerprint plots in Fig. 5. The three-dimensional shape-index surface of the title compound is shown in Fig. 6.
Synthesis and crystallization
For the synthesis of 1-(4-acetylphenyl)-3-(4-fluorophenyl)urea, see Gezegen et al. (2017).
Refinement
Crystal data, data collection and structure . Seventeen reflections (3 1 23), ( 5 3), (0 8 0), (3 3 ), (4 0 20), (1 5 ), ( 4 ), (1 4 13), ( 4 11), (2 5 ), (0 6 7), (6 3 ), ( 3 10), ( 6 ), (0 6 ), (5 1 ) and (0 1 14) were omitted from the because of large differences between observed and calculated intensities.
details are summarized in Table 2
|
Structural data
CCDC reference: 1835898
https://doi.org/10.1107/S2414314618005540/rz4022sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314618005540/rz4022Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314618005540/rz4022Isup3.cml
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).C15H13FN2O2 | F(000) = 284 |
Mr = 272.27 | Dx = 1.397 Mg m−3 |
Monoclinic, Pn | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P -2yac | Cell parameters from 9977 reflections |
a = 4.8061 (15) Å | θ = 3.0–28.3° |
b = 6.617 (2) Å | µ = 0.10 mm−1 |
c = 20.364 (7) Å | T = 296 K |
β = 91.417 (10)° | Block, bronze |
V = 647.4 (4) Å3 | 0.15 × 0.12 × 0.11 mm |
Z = 2 |
Bruker APEXII CCD diffractometer | 2573 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.053 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | θmax = 28.3°, θmin = 3.1° |
Tmin = 0.547, Tmax = 0.746 | h = −6→6 |
15964 measured reflections | k = −8→8 |
2991 independent reflections | l = −27→27 |
Refinement on F2 | 2 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.062 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.134 | W = 1/[Σ2(FO2) + 0.564P] WHERE P = (FO2 + 2FC2)/3 |
S = 1.11 | (Δ/σ)max < 0.001 |
2991 reflections | Δρmax = 0.18 e Å−3 |
191 parameters | Δρmin = −0.20 e Å−3 |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. H atoms of NH groups were located in difference Fourier maps [N1—H1N = 0.79 (6) and N2—H2N = 0.88 (6) Å] and refined freely. All H atoms attached to carbon were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 0.93 - 0.96 Å and Uiso(H) = 1.2 or 1.5Ueq(C). |
x | y | z | Uiso*/Ueq | ||
C1 | 0.4143 (11) | 0.6742 (8) | 0.0165 (2) | 0.0579 (13) | |
H1 | 0.5055 | 0.5510 | 0.0124 | 0.069* | |
C2 | 0.4738 (12) | 0.8333 (10) | −0.0252 (3) | 0.0686 (16) | |
H2 | 0.6100 | 0.8186 | −0.0565 | 0.082* | |
C3 | 0.3346 (13) | 1.0090 (8) | −0.0204 (3) | 0.0620 (14) | |
C4 | 0.1366 (12) | 1.0392 (9) | 0.0249 (3) | 0.0667 (15) | |
H4 | 0.0419 | 1.1615 | 0.0272 | 0.080* | |
C5 | 0.0800 (12) | 0.8832 (8) | 0.0676 (3) | 0.0627 (14) | |
H5 | −0.0538 | 0.9017 | 0.0992 | 0.075* | |
C6 | 0.2168 (8) | 0.7011 (7) | 0.0643 (2) | 0.0430 (10) | |
C7 | 0.3297 (8) | 0.4208 (7) | 0.1394 (2) | 0.0448 (10) | |
C8 | 0.3199 (8) | 0.1346 (6) | 0.2184 (2) | 0.0390 (9) | |
C9 | 0.2016 (9) | 0.0633 (7) | 0.2753 (2) | 0.0497 (11) | |
H9 | 0.0585 | 0.1364 | 0.2940 | 0.060* | |
C10 | 0.2898 (10) | −0.1112 (7) | 0.3044 (2) | 0.0519 (12) | |
H10 | 0.2057 | −0.1544 | 0.3426 | 0.062* | |
C11 | 0.5022 (9) | −0.2266 (6) | 0.2785 (2) | 0.0395 (9) | |
C12 | 0.6243 (10) | −0.1525 (7) | 0.2220 (2) | 0.0512 (12) | |
H12 | 0.7700 | −0.2244 | 0.2040 | 0.061* | |
C13 | 0.5364 (10) | 0.0236 (8) | 0.1921 (3) | 0.0547 (12) | |
H13 | 0.6217 | 0.0684 | 0.1543 | 0.066* | |
C14 | 0.6020 (9) | −0.4180 (7) | 0.3072 (2) | 0.0483 (11) | |
C15 | 0.4600 (13) | −0.5012 (9) | 0.3662 (3) | 0.0676 (15) | |
H15A | 0.4963 | −0.4147 | 0.4032 | 0.101* | |
H15B | 0.5298 | −0.6343 | 0.3756 | 0.101* | |
H15C | 0.2630 | −0.5079 | 0.3574 | 0.101* | |
F1 | 0.3976 (9) | 1.1663 (6) | −0.06090 (19) | 0.1009 (14) | |
N1 | 0.1477 (8) | 0.5458 (6) | 0.1088 (2) | 0.0486 (10) | |
N2 | 0.2112 (7) | 0.3066 (6) | 0.1886 (2) | 0.0467 (9) | |
O1 | 0.5754 (6) | 0.4085 (5) | 0.12620 (19) | 0.0573 (9) | |
O2 | 0.7956 (8) | −0.5106 (6) | 0.2841 (2) | 0.0702 (11) | |
H1N | −0.016 (12) | 0.538 (8) | 0.112 (3) | 0.054 (15)* | |
H2N | 0.057 (12) | 0.366 (9) | 0.200 (3) | 0.074 (18)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
F1 | 0.130 (3) | 0.089 (3) | 0.086 (3) | 0.004 (3) | 0.044 (2) | 0.039 (2) |
O1 | 0.0299 (14) | 0.058 (2) | 0.085 (2) | −0.0003 (15) | 0.0178 (15) | 0.0140 (18) |
O2 | 0.065 (2) | 0.052 (2) | 0.094 (3) | 0.0236 (18) | 0.015 (2) | 0.006 (2) |
N1 | 0.0310 (18) | 0.048 (2) | 0.068 (3) | −0.0002 (17) | 0.0132 (17) | 0.0142 (19) |
N2 | 0.0319 (18) | 0.041 (2) | 0.068 (2) | 0.0071 (15) | 0.0196 (17) | 0.0078 (18) |
C1 | 0.064 (3) | 0.053 (3) | 0.058 (3) | 0.008 (2) | 0.022 (2) | −0.002 (2) |
C2 | 0.076 (4) | 0.073 (4) | 0.059 (3) | 0.009 (3) | 0.031 (3) | 0.008 (3) |
C3 | 0.075 (3) | 0.056 (3) | 0.057 (3) | −0.004 (3) | 0.021 (3) | 0.014 (3) |
C4 | 0.084 (4) | 0.053 (3) | 0.063 (3) | 0.014 (3) | 0.025 (3) | 0.013 (3) |
C5 | 0.067 (3) | 0.057 (3) | 0.066 (3) | 0.015 (3) | 0.032 (3) | 0.016 (3) |
C6 | 0.036 (2) | 0.043 (2) | 0.050 (2) | −0.0046 (18) | 0.0094 (18) | 0.0023 (19) |
C7 | 0.032 (2) | 0.039 (2) | 0.064 (3) | 0.0008 (18) | 0.0083 (19) | 0.001 (2) |
C8 | 0.0322 (18) | 0.034 (2) | 0.052 (2) | 0.0072 (17) | 0.0109 (16) | −0.0025 (18) |
C9 | 0.048 (2) | 0.044 (2) | 0.058 (3) | 0.014 (2) | 0.018 (2) | 0.004 (2) |
C10 | 0.053 (3) | 0.049 (3) | 0.055 (3) | 0.012 (2) | 0.022 (2) | 0.003 (2) |
C11 | 0.0349 (19) | 0.036 (2) | 0.047 (2) | 0.0022 (17) | 0.0024 (17) | −0.0004 (17) |
C12 | 0.044 (2) | 0.047 (3) | 0.063 (3) | 0.019 (2) | 0.020 (2) | 0.000 (2) |
C13 | 0.052 (3) | 0.053 (3) | 0.060 (3) | 0.014 (2) | 0.021 (2) | 0.009 (2) |
C14 | 0.044 (2) | 0.040 (2) | 0.060 (3) | 0.007 (2) | −0.004 (2) | −0.004 (2) |
C15 | 0.074 (4) | 0.055 (3) | 0.074 (4) | 0.010 (3) | 0.003 (3) | 0.015 (3) |
F1—C3 | 1.367 (7) | C9—C10 | 1.361 (6) |
O1—C7 | 1.220 (5) | C10—C11 | 1.389 (6) |
O2—C14 | 1.218 (6) | C11—C12 | 1.394 (6) |
N1—C6 | 1.415 (6) | C11—C14 | 1.470 (6) |
N1—C7 | 1.346 (6) | C12—C13 | 1.376 (7) |
N2—C7 | 1.388 (6) | C14—C15 | 1.501 (7) |
N2—C8 | 1.386 (6) | C1—H1 | 0.9300 |
C1—C2 | 1.387 (8) | C2—H2 | 0.9300 |
C1—C6 | 1.388 (6) | C4—H4 | 0.9300 |
N1—H1N | 0.79 (6) | C5—H5 | 0.9300 |
C2—C3 | 1.346 (8) | C9—H9 | 0.9300 |
N2—H2N | 0.88 (6) | C10—H10 | 0.9300 |
C3—C4 | 1.356 (9) | C12—H12 | 0.9300 |
C4—C5 | 1.381 (8) | C13—H13 | 0.9300 |
C5—C6 | 1.375 (7) | C15—H15A | 0.9600 |
C8—C9 | 1.386 (6) | C15—H15B | 0.9600 |
C8—C13 | 1.392 (6) | C15—H15C | 0.9600 |
C6—N1—C7 | 125.7 (4) | C11—C12—C13 | 122.2 (4) |
C7—N2—C8 | 127.3 (4) | C8—C13—C12 | 120.1 (5) |
C2—C1—C6 | 119.2 (5) | O2—C14—C15 | 119.4 (4) |
C6—N1—H1N | 110 (4) | C11—C14—C15 | 118.9 (4) |
C7—N1—H1N | 124 (4) | O2—C14—C11 | 121.6 (4) |
C7—N2—H2N | 108 (4) | C2—C1—H1 | 120.00 |
C1—C2—C3 | 120.1 (5) | C6—C1—H1 | 120.00 |
C8—N2—H2N | 124 (4) | C1—C2—H2 | 120.00 |
F1—C3—C2 | 119.7 (5) | C3—C2—H2 | 120.00 |
F1—C3—C4 | 117.9 (5) | C3—C4—H4 | 121.00 |
C2—C3—C4 | 122.3 (6) | C5—C4—H4 | 121.00 |
C3—C4—C5 | 118.1 (5) | C4—C5—H5 | 119.00 |
C4—C5—C6 | 121.5 (5) | C6—C5—H5 | 119.00 |
N1—C6—C5 | 119.0 (4) | C8—C9—H9 | 119.00 |
C1—C6—C5 | 118.9 (5) | C10—C9—H9 | 119.00 |
N1—C6—C1 | 122.1 (4) | C9—C10—H10 | 119.00 |
O1—C7—N1 | 124.1 (4) | C11—C10—H10 | 119.00 |
O1—C7—N2 | 122.6 (4) | C11—C12—H12 | 119.00 |
N1—C7—N2 | 113.3 (3) | C13—C12—H12 | 119.00 |
C9—C8—C13 | 117.9 (4) | C8—C13—H13 | 120.00 |
N2—C8—C9 | 119.2 (4) | C12—C13—H13 | 120.00 |
N2—C8—C13 | 122.8 (4) | C14—C15—H15A | 109.00 |
C8—C9—C10 | 121.5 (4) | C14—C15—H15B | 109.00 |
C9—C10—C11 | 121.7 (4) | C14—C15—H15C | 109.00 |
C10—C11—C12 | 116.6 (4) | H15A—C15—H15B | 110.00 |
C10—C11—C14 | 123.9 (4) | H15A—C15—H15C | 109.00 |
C12—C11—C14 | 119.4 (4) | H15B—C15—H15C | 109.00 |
C7—N1—C6—C1 | 42.0 (7) | C4—C5—C6—N1 | −179.2 (5) |
C7—N1—C6—C5 | −139.4 (5) | C4—C5—C6—C1 | −0.5 (8) |
C6—N1—C7—O1 | −9.9 (7) | N2—C8—C9—C10 | 176.2 (4) |
C6—N1—C7—N2 | 169.5 (4) | C13—C8—C9—C10 | −1.0 (7) |
C7—N2—C8—C9 | 167.2 (4) | N2—C8—C13—C12 | −176.2 (4) |
C7—N2—C8—C13 | −15.8 (7) | C9—C8—C13—C12 | 0.9 (7) |
C8—N2—C7—N1 | 163.8 (4) | C8—C9—C10—C11 | −0.1 (7) |
C8—N2—C7—O1 | −16.8 (7) | C9—C10—C11—C12 | 1.3 (7) |
C6—C1—C2—C3 | −2.1 (8) | C9—C10—C11—C14 | −178.8 (4) |
C2—C1—C6—N1 | −179.5 (5) | C10—C11—C12—C13 | −1.4 (7) |
C2—C1—C6—C5 | 1.9 (7) | C14—C11—C12—C13 | 178.7 (4) |
C1—C2—C3—C4 | 0.8 (9) | C10—C11—C14—O2 | −177.4 (4) |
C1—C2—C3—F1 | 178.9 (5) | C10—C11—C14—C15 | 3.0 (7) |
F1—C3—C4—C5 | −177.5 (5) | C12—C11—C14—O2 | 2.5 (7) |
C2—C3—C4—C5 | 0.6 (9) | C12—C11—C14—C15 | −177.2 (4) |
C3—C4—C5—C6 | −0.7 (9) | C11—C12—C13—C8 | 0.4 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1i | 0.79 (6) | 2.17 (6) | 2.927 (5) | 160 (5) |
N2—H2N···O2ii | 0.88 (6) | 2.30 (6) | 3.070 (6) | 147 (5) |
C1—H1···O1 | 0.93 | 2.52 | 2.932 (6) | 107 |
C10—H10···F1iii | 0.93 | 2.49 | 3.386 (6) | 162 |
C13—H13···O1 | 0.93 | 2.33 | 2.887 (7) | 118 |
Symmetry codes: (i) x−1, y, z; (ii) x−1, y+1, z; (iii) x−1/2, −y+1, z+1/2. |
Funding information
The authors are indebted to the Technical Research Council of Turkey (Grant TUBİTAK-114Z634) for financial support of this work.
References
Bing-Wei, X. (2010). Synth. Commun. 38, 2826–2837. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Capacci-Daniel, C. A., Bertke, J. A., Dehghan, S., Hiremath-Darji, R. & Swift, J. A. (2016). Acta Cryst. C72, 692–696. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ceylan, M., Gürdere, M. B., Karaman, İ. & Gezegen, H. (2011). Med. Chem. Res. 20, 109–115. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gezegen, H., Ceylan, M., Karaman, İ. & Şahin, E. (2013). Synth. Commun. 44, 1084–1093. Web of Science CSD CrossRef Google Scholar
Gezegen, H., Hepokur, C., Tutar, U. & Ceylan, M. (2017). Chem. Biodivers. 14, e1700223. doi: 10.1002/cbdv. 201700223. Web of Science CrossRef Google Scholar
Gürdere, M. B., Gümüş, O., Yaglioglu, A. S., Budak, Y. & Ceylan, M. (2017). Res. Chem. Intermed. 43, 1277–1289. Google Scholar
Gürdere, M. B., Kamo, E., Yağlıoğlu, A. Ş., Budak, Y. & Ceylan, M. (2017). Turk. J. Chem. 41, 263–271. Google Scholar
Jai-nhuknan, J., Karipides, A. G., Hughes, J. M. & Cantrell, J. S. (1997). Acta Cryst. C53, 455–457. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Karaman, İ., Gezegen, H., Gürdere, M. B., Dingil, A. & Ceylan, M. (2010). Chem. Biodivers. 7, 400–408. Web of Science CrossRef CAS Google Scholar
Kocyigit, U. M., Budak, Y., Gürdere, M. B., Ertürk, F., Yencilek, B., Taslimi, P., Gülçin, İ. & Ceylan, M. (2018). Arch. Physiol. Biochem. 124, 61–68. Web of Science CrossRef CAS Google Scholar
Lin, M.-S., Shi, Y., Zhang, S.-Y. & Li, Y.-L. (2012). Acta Cryst. E68, o2030. CSD CrossRef IUCr Journals Google Scholar
Loh, W.-S., Fun, H.-K., Sarveswari, S., Vijayakumar, V. & Ragavan, R. V. (2010). Acta Cryst. E66, o1319. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.