organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-(3-Chloro­phen­yl)-3,4-di­hydro­benzo[f][1,4]oxazepin-5(2H)-one

CROSSMARK_Color_square_no_text.svg

aSichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Hospital of the University of Electronic Science and Technology of China, Personalized Drug Therapy Key Laboratory of Sichuan Province, Chengdu, Sichuan Province 610072, People's Republic of China, and bDalian Lubricating Oil Research & Development Institute, PetroChina, Dalian 116032, People's Republic of China
*Correspondence e-mail: chengliang_rhy@petrochina.com.cn

Edited by A. J. Lough, University of Toronto, Canada (Received 14 January 2018; accepted 16 April 2018; online 27 April 2018)

In the title compound, C15H12ClNO2, the dihedral angle between the two benzene rings is 73.45 (11)°. The central seven-membered ring is in a psuedo-boat conformation. In the crystal, pairs of mol­ecules are linked by N—H⋯O hydrogen bonds, forming inversion dimers.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The development of benzo[f][1,4]oxazepinone derivatives for medical applications is a research topic of increasing inter­est because of their easy preparation, good stability and high nanomolar activity (Li et al., 2016[Li, F., Mu, M., Yang, N., Zhong, L., Hu, R., Li, J., Bai, L., Shi, J. & Zhang, M. (2016). Chin. J. Org. Chem. 36, 1419-1425.]). It is believed that the derivatives can be modified structurally by using different aldehydes and ketones (Krapcho & Turk, 1966[Krapcho, J. & Turk, C. F. (1966). J. Med. Chem. 9, 191-195.]). We report here the synthesis and the structure of the title compoun whose mol­ecular structure is shown in Fig. 1[link]. The dihedral angle between the two benzene rings (C2–C7 and C10–C15) is 73.45 (11)°. The central seven-membered ring is in a psuedo-boat conformation with C9 forming the prow and C2/C7 forming the stern. In the crystal, pairs of mol­ecules are linked by N—H⋯O hydrogen bonds, forming inversion dimers (Table 1[link], Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 1.15 (2) 1.78 (2) 2.849 (2) 153.9 (16)
Symmetry code: (i) -x+1, -y+2, -z.
[Figure 1]
Figure 1
Mol­ecular structure of the title compound with displacement ellipsoids drawn at 50% probability level.
[Figure 2]
Figure 2
An inversion dimer of the title compound. Hydrogen bonds are shown as dashed lines

Synthesis and crystallization

A 25 ml round-bottom flask was charged with 3-chloro­benzaldehyde (0.5 mmol), phenyl­amine (0.75 mmol), I2 (0.15 mmol) and 1-(2-hy­droxy­phen­yl)ethan-1-one (0.6 mmol) and methanol (10 mL) and stirred at 318 K. After the reaction was complete (as determined by TLC), the solvent was evaporated and 10 mL of saturated Na2S2O3 was added. The solution was extracted with CH2Cl2 (three × 10 mL). The organic layers were washed with saturated NaCl solution and then with ice–water. The solution was dried over Na2SO4 and concentrated under vacuum to a crude solid. The crude solid (6 mmol) and NaN3 (500 mg) were added to a round-bottom flask with 9 mL of CH3COOH and stirred at 273 K. 3 mL of concentrated H2SO4 was then added and stirred at 318 K. After the reaction was complete (as determined by TLC), the solvent was neutralized with NaHCO3. The solution was extracted with ethyl acetate. This was chromatographed on flash silica gel, eluting with 75% cyclo­hexane and 25% ethyl acetate and concentrated to a solid, giving 1.0 g of product (69% yield), m.p. 352.2–354.3 K. Crystals for X-ray crystallography were grown by slow evaporation of a solution of the title compound in methanol and water.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C15H12ClNO2
Mr 273.71
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 7.2162 (15), 8.0068 (14), 11.650 (3)
α, β, γ (°) 80.123 (17), 84.570 (18), 88.084 (15)
V3) 660.0 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.29
Crystal size (mm) 0.4 × 0.35 × 0.3
 
Data collection
Diffractometer Agilent Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.896, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 4864, 2678, 2002
Rint 0.016
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.118, 1.03
No. of reflections 2678
No. of parameters 176
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.29, −0.32
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

2-(3-Chlorophenyl)-3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-one top
Crystal data top
C15H12ClNO2Z = 2
Mr = 273.71F(000) = 284
Triclinic, P1Dx = 1.377 Mg m3
a = 7.2162 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.0068 (14) ÅCell parameters from 1590 reflections
c = 11.650 (3) Åθ = 3.5–27.6°
α = 80.123 (17)°µ = 0.29 mm1
β = 84.570 (18)°T = 293 K
γ = 88.084 (15)°, colorless
V = 660.0 (2) Å30.4 × 0.35 × 0.3 mm
Data collection top
Agilent Xcalibur, Eos
diffractometer
2678 independent reflections
Radiation source: Enhance (Mo) X-ray Source2002 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
Detector resolution: 16.0874 pixels mm-1θmax = 26.4°, θmin = 3.2°
ω scansh = 98
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 79
Tmin = 0.896, Tmax = 1.000l = 1414
4864 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0452P)2 + 0.2184P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2678 reflectionsΔρmax = 0.29 e Å3
176 parametersΔρmin = 0.32 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.11743 (9)0.53184 (10)0.26327 (7)0.0761 (3)
O10.52072 (19)0.63356 (16)0.32657 (12)0.0408 (4)
O20.3115 (2)1.0113 (2)0.10901 (13)0.0595 (5)
N10.5962 (3)0.8897 (2)0.13595 (14)0.0419 (4)
H10.668 (3)0.905 (2)0.0428 (18)0.045 (6)*
C10.4288 (3)0.9404 (3)0.17520 (17)0.0425 (5)
C20.3808 (3)0.9133 (3)0.30392 (17)0.0390 (5)
C30.2785 (3)1.0356 (3)0.3555 (2)0.0492 (5)
H30.24161.13530.30910.059*
C40.2312 (3)1.0108 (3)0.4745 (2)0.0507 (6)
H40.16461.09420.50830.061*
C50.2823 (3)0.8631 (3)0.54278 (19)0.0509 (6)
H50.24880.84600.62290.061*
C60.3830 (3)0.7394 (3)0.49404 (18)0.0450 (5)
H60.41710.63920.54100.054*
C70.4330 (3)0.7651 (2)0.37516 (17)0.0354 (4)
C80.7130 (3)0.6560 (2)0.28206 (16)0.0362 (4)
H80.79010.63890.34810.043*
C90.7429 (3)0.8348 (2)0.21354 (17)0.0406 (5)
H9A0.74670.91320.26810.049*
H9B0.86220.83830.16730.049*
C100.7614 (3)0.5194 (2)0.20902 (16)0.0342 (4)
C110.9417 (3)0.4563 (3)0.19450 (18)0.0426 (5)
C120.9891 (3)0.3338 (3)0.1260 (2)0.0522 (6)
H121.11120.29350.11790.063*
C130.8542 (4)0.2723 (3)0.0700 (2)0.0554 (6)
H130.88450.19000.02360.066*
C140.6739 (4)0.3327 (3)0.0825 (2)0.0551 (6)
H140.58260.29100.04430.066*
C150.6279 (3)0.4545 (3)0.15140 (19)0.0445 (5)
H150.50540.49390.15930.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0405 (4)0.0984 (6)0.0982 (6)0.0052 (3)0.0205 (3)0.0348 (4)
O10.0441 (8)0.0336 (7)0.0422 (8)0.0024 (6)0.0056 (6)0.0054 (6)
O20.0676 (11)0.0680 (11)0.0408 (9)0.0247 (9)0.0110 (8)0.0048 (8)
N10.0568 (11)0.0367 (9)0.0304 (9)0.0036 (8)0.0024 (8)0.0020 (7)
C10.0573 (14)0.0360 (11)0.0341 (10)0.0076 (10)0.0080 (10)0.0054 (9)
C20.0426 (11)0.0397 (11)0.0352 (10)0.0050 (9)0.0057 (9)0.0074 (8)
C30.0537 (14)0.0438 (12)0.0508 (13)0.0123 (10)0.0111 (11)0.0091 (10)
C40.0486 (13)0.0533 (14)0.0530 (13)0.0093 (11)0.0001 (11)0.0210 (11)
C50.0540 (14)0.0579 (14)0.0405 (12)0.0033 (11)0.0080 (11)0.0133 (11)
C60.0493 (13)0.0441 (12)0.0389 (11)0.0008 (10)0.0018 (10)0.0032 (9)
C70.0359 (10)0.0341 (10)0.0361 (10)0.0024 (8)0.0018 (8)0.0073 (8)
C80.0395 (11)0.0366 (11)0.0325 (10)0.0033 (8)0.0059 (8)0.0053 (8)
C90.0456 (12)0.0367 (11)0.0392 (11)0.0014 (9)0.0009 (9)0.0074 (9)
C100.0373 (10)0.0315 (10)0.0314 (9)0.0024 (8)0.0015 (8)0.0001 (8)
C110.0398 (11)0.0429 (12)0.0432 (11)0.0030 (9)0.0029 (9)0.0034 (9)
C120.0510 (14)0.0461 (13)0.0550 (14)0.0153 (11)0.0076 (11)0.0053 (11)
C130.0765 (18)0.0374 (12)0.0513 (13)0.0048 (12)0.0069 (13)0.0130 (10)
C140.0655 (16)0.0495 (14)0.0549 (14)0.0079 (12)0.0089 (12)0.0188 (11)
C150.0414 (12)0.0434 (12)0.0506 (12)0.0031 (9)0.0073 (10)0.0118 (10)
Geometric parameters (Å, º) top
Cl1—C111.739 (2)C6—C71.380 (3)
O1—C71.386 (2)C8—H80.9800
O1—C81.441 (2)C8—C91.527 (3)
O2—C11.255 (3)C8—C101.510 (3)
N1—H11.14 (2)C9—H9A0.9700
N1—C11.326 (3)C9—H9B0.9700
N1—C91.464 (3)C10—C111.386 (3)
C1—C21.487 (3)C10—C151.387 (3)
C2—C31.391 (3)C11—C121.383 (3)
C2—C71.389 (3)C12—H120.9300
C3—H30.9300C12—C131.370 (3)
C3—C41.378 (3)C13—H130.9300
C4—H40.9300C13—C141.376 (3)
C4—C51.368 (3)C14—H140.9300
C5—H50.9300C14—C151.380 (3)
C5—C61.378 (3)C15—H150.9300
C6—H60.9300
C7—O1—C8117.07 (14)C9—C8—H8108.8
C1—N1—H1130.6 (11)C10—C8—H8108.8
C1—N1—C9122.40 (17)C10—C8—C9113.14 (15)
C9—N1—H1105.8 (11)N1—C9—C8112.49 (16)
O2—C1—N1123.09 (19)N1—C9—H9A109.1
O2—C1—C2119.0 (2)N1—C9—H9B109.1
N1—C1—C2117.87 (19)C8—C9—H9A109.1
C3—C2—C1120.30 (19)C8—C9—H9B109.1
C7—C2—C1121.27 (18)H9A—C9—H9B107.8
C7—C2—C3118.42 (19)C11—C10—C8121.44 (18)
C2—C3—H3119.6C11—C10—C15117.21 (18)
C4—C3—C2120.8 (2)C15—C10—C8121.34 (18)
C4—C3—H3119.6C10—C11—Cl1120.02 (16)
C3—C4—H4120.1C12—C11—Cl1117.79 (18)
C5—C4—C3119.8 (2)C12—C11—C10122.2 (2)
C5—C4—H4120.1C11—C12—H12120.4
C4—C5—H5119.7C13—C12—C11119.3 (2)
C4—C5—C6120.7 (2)C13—C12—H12120.4
C6—C5—H5119.7C12—C13—H13120.0
C5—C6—H6120.2C12—C13—C14119.9 (2)
C5—C6—C7119.6 (2)C14—C13—H13120.0
C7—C6—H6120.2C13—C14—H14119.8
O1—C7—C2120.41 (17)C13—C14—C15120.4 (2)
C6—C7—O1118.60 (18)C15—C14—H14119.8
C6—C7—C2120.71 (19)C10—C15—H15119.5
O1—C8—H8108.8C14—C15—C10121.0 (2)
O1—C8—C9110.50 (16)C14—C15—H15119.5
O1—C8—C10106.64 (15)
Cl1—C11—C12—C13179.61 (17)C7—O1—C8—C10166.47 (15)
O1—C8—C9—N143.5 (2)C7—C2—C3—C40.4 (3)
O1—C8—C10—C11152.15 (17)C8—O1—C7—C274.4 (2)
O1—C8—C10—C1529.4 (2)C8—O1—C7—C6111.7 (2)
O2—C1—C2—C338.0 (3)C8—C10—C11—Cl11.2 (3)
O2—C1—C2—C7140.7 (2)C8—C10—C11—C12178.64 (19)
N1—C1—C2—C3141.2 (2)C8—C10—C15—C14178.42 (19)
N1—C1—C2—C740.1 (3)C9—N1—C1—O2168.99 (19)
C1—N1—C9—C876.9 (2)C9—N1—C1—C210.1 (3)
C1—C2—C3—C4179.2 (2)C9—C8—C10—C1186.2 (2)
C1—C2—C7—O14.4 (3)C9—C8—C10—C1592.3 (2)
C1—C2—C7—C6178.2 (2)C10—C8—C9—N176.0 (2)
C2—C3—C4—C51.1 (4)C10—C11—C12—C130.2 (3)
C3—C2—C7—O1174.33 (18)C11—C10—C15—C140.1 (3)
C3—C2—C7—C60.6 (3)C11—C12—C13—C140.1 (3)
C3—C4—C5—C60.8 (4)C12—C13—C14—C150.2 (4)
C4—C5—C6—C70.1 (3)C13—C14—C15—C100.2 (3)
C5—C6—C7—O1174.72 (19)C15—C10—C11—Cl1179.69 (15)
C5—C6—C7—C20.8 (3)C15—C10—C11—C120.1 (3)
C7—O1—C8—C943.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i1.15 (2)1.78 (2)2.849 (2)153.9 (16)
Symmetry code: (i) x+1, y+2, z.
 

Footnotes

Additional correspondance author: e-mail:blci@163.com. Lan Bai, Ling Zhong and Jianyou Shi contributed equally to this paper.

Funding information

Funding for this research was provided by: Construction of key specialty of national clinical pharmacy (award No. 30305030698); New type of antitumor drug molecular design and research based Triptolide as lead compound targeted TFIIH protein subunit XPB (award No. 2016QN08).

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKrapcho, J. & Turk, C. F. (1966). J. Med. Chem. 9, 191–195.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLi, F., Mu, M., Yang, N., Zhong, L., Hu, R., Li, J., Bai, L., Shi, J. & Zhang, M. (2016). Chin. J. Org. Chem. 36, 1419–1425.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds