organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-[(Oxiran-2-yl)meth­yl]-3-phenyl-1,2-di­hydro­quinoxalin-2-one

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique, Centre de Recherche des Sciences des Médicaments, URAC 21, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bLaboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco, and cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: ab.nadeem2018@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 17 April 2018; accepted 21 April 2018; online 27 April 2018)

The asymmetric unit of the title compound, C17H14N2O2, consists of two independent mol­ecules differing mainly in the orientations of the phenyl and oxirane substituents. In the first mol­ecule, the dihedral angle between the di­hydro­quinoxaline ring system and phenyl ring is 28.4 (2)° and the N—C—C—O torsion angle is 87.8 (5)°; corresponding data for the second mol­ecule are 23.1 (2) and −85.6 (5)°, respectively. In the crystal, offset π-stacking inter­actions between the di­hydro­quinoxaline moieties form oblique stacks, which are connected into layers parallel to the bc plane by C—H⋯O hydrogen bonds and C—H⋯π(ring) inter­actions. Additional C—H⋯π(ring) inter­actions tie the layers together. The model was refined as a two-component twin.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In a continuation of our previous work on the synthesis and biological properties of quinoxaline derivatives (Ramli & Essassi, 2015[Ramli, Y. & Essassi, E. M. (2015). Adv. Chem. Res. 27, 109-160.]; Abad et al., 2018[Abad, N., El Bakri, Y., Sebhaoui, J., Ramli, Y., Essassi, E. M. & Mague, J. T. (2018). IUCrData, 3, x180519.]), we report herein on the preparation and crystal structure of the title compound.

The asymmetric unit (Fig. 1[link]) consists of two independent mol­ecules differing in the orientation of the pendant phenyl and oxirane substituents. Thus the N1—C7—C9—C10 torsion angle is 27.8 (7)° while the N3—C24—C26—C27 angle is −22.8 (7)°. In addition, the C1—N2—C15—C16 torsion angle is −93.7 (5)° while the C18—N4—C32—C33 angle is 94.1 (5)°. The di­hydro­quinoxalone moieties are virtually planar (r.m.s. deviations for the C1 and C18 mol­ecules = 0.026 and 0.024 Å, respectively) with the largest deviation from the mean plane being the carbonyl carbon atoms C8 [0.038 (5) Å] and C25 [0.038 (5) Å]. The oxygen atoms O1 and O3 were not included in the mean-plane calculations and lie, respectively, 0.098 (4) and 0.109 (4) Å from the mean planes.

[Figure 1]
Figure 1
The asymmetric unit with the atom-labeling scheme and 50% probability ellipsoids. The inter­molecular C—H⋯O hydrogen bond is shown by a dashed line

In the crystal, the two independent mol­ecules form oblique stacks along the b-axis direction in an alternating head-to-tail fashion through offset π-stacking inter­actions between the di­hydro­quinoxalone moieties [centroid–centroid separations = 3.703 (3) and 3.546 (3) Å for the C1/C6/N1/C7/C8/N2 ring and the C18–C25 rings at (−x + 1, y − [{1\over 2}], −z + 1) and at (−x + 1, y + [{1\over 2}], −z + 1), respectively, and 3.620 (3) and 3.616 (3) Å for the C1–C6 ring and the C18/C23/N3/C24/C25/N4 rings at (−x + 1, y − [{1\over 2}], −z + 1) and (−x + 1, y + [{1\over 2}], −z + 1), respectively]. These inter­actions are accompanied by C—H⋯O hydrogen bonds as well as C17—H17ACg4 and C34—H34BCg9 C—H⋯π inter­actions (Table 1[link]), which reinforce and connect the stacks, forming layers parallel to the bc plane (Fig. 2[link]). The layers are weakly connected along the a-axis direction by complementary C28—H28⋯Cg9 inter­actions (Table 1[link] and Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 and Cg9 are the centroids of the C9–C14 and C26–C31 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O3i 0.95 2.45 3.263 (7) 143
C16—H16⋯O1ii 1.00 2.58 3.489 (7) 151
C20—H20⋯O1 0.95 2.46 3.258 (6) 142
C32—H32A⋯O2iii 0.99 2.55 3.520 (6) 168
C32—H32B⋯O3iv 0.99 2.58 3.465 (6) 149
C33—H33⋯O3v 1.00 2.59 3.504 (6) 152
C17—H17ACg4iii 0.99 2.91 3.556 (6) 123
C28—H28⋯Cg9vi 0.95 2.62 3.512 (2) 156
C34—H34BCg9iv 0.99 2.93 3.587 (6) 125
Symmetry codes: (i) x, y, z+1; (ii) [-x+1, y+{\script{1\over 2}}, -z+1]; (iii) [-x+1, y-{\script{1\over 2}}, -z+1]; (iv) [-x+1, y-{\script{1\over 2}}, -z]; (v) [-x+1, y+{\script{1\over 2}}, -z]; (vi) [-x+2, y+{\script{1\over 2}}, -z].
[Figure 2]
Figure 2
The packing viewed along the a-axis direction giving an elevation view of one layer. C—H⋯O hydrogen bonds and C—H⋯π(ring) and π-stacking inter­actions are shown, respectively, by black, green and orange dashed lines.
[Figure 3]
Figure 3
The packing viewed along the b-axis direction giving a view of portions of two layers. Inter­molecular inter­actions are depicted as in Fig. 2[link].

Synthesis and crystallization

To a solution of 2-oxo-3-phenyl-1,2-di­hydro­quinoxaline (0.5 g, 2.25 mmol) in di­chloro­methane (20 ml) were added 2-(chloro­meth­yl)oxirane (0.2 ml, 2.25 mmol), sodium hydroxide (0.1 g, 2.25 mmol) and a catalytic qu­antity of tetra-n-butyl­ammonium bromide. The reaction mixture was stirred at room temperature for 24 h. The solution was filtered and the solvent removed under reduced pressure. The residue thus obtained was chromatographed on a silica gel column using a hexa­ne/ethyl acetate 9:1 mixture as eluent. The solid obtained was recrystallized from ethanol solution to afford colourless plates of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The model was refined as a two-component twin.

Table 2
Experimental details

Crystal data
Chemical formula C17H14N2O2
Mr 278.30
Crystal system, space group Monoclinic, P21
Temperature (K) 200
a, b, c (Å) 12.7853 (3), 7.0167 (2), 15.4215 (4)
β (°) 95.718 (1)
V3) 1376.59 (6)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.72
Crystal size (mm) 0.32 × 0.09 × 0.02
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (TWINABS; Sheldrick, 2009[Sheldrick, G. M. (2009). TWINABS, University of Göttingen, Göttingen, Germany.])
Tmin, Tmax 0.80, 0.99
No. of measured, independent and observed [I > 2σ(I)] reflections 17578, 17578, 13057
Rint 0.053
(sin θ/λ)max−1) 0.619
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.147, 1.04
No. of reflections 17578
No. of parameters 381
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.20, −0.19
Absolute structure Flack x determined using 1479 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.32 (17)
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

1-[(Oxiran-2-yl)methyl]-3-phenyl-1,2-dihydroquinoxalin-2-one top
Crystal data top
C17H14N2O2F(000) = 584
Mr = 278.30Dx = 1.343 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
a = 12.7853 (3) ÅCell parameters from 9964 reflections
b = 7.0167 (2) Åθ = 3.5–72.5°
c = 15.4215 (4) ŵ = 0.72 mm1
β = 95.718 (1)°T = 200 K
V = 1376.59 (6) Å3Plate, colourless
Z = 40.32 × 0.09 × 0.02 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
17578 independent reflections
Radiation source: INCOATEC IµS micro-focus source13057 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.053
Detector resolution: 10.4167 pixels mm-1θmax = 72.5°, θmin = 2.9°
ω scansh = 1515
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2009)
k = 88
Tmin = 0.80, Tmax = 0.99l = 1617
17578 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.062 w = 1/[σ2(Fo2) + (0.0548P)2 + 0.1212P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.147(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.20 e Å3
17578 reflectionsΔρmin = 0.19 e Å3
381 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0029 (8)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack x determined using 1479 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.32 (17)
Special details top

Experimental. Analysis of 995 reflections having I/σ(I) > 12 and chosen from the full data set withCELL_NOW (Sheldrick, 2008) showed the crystal to belong to the monoclinic system and to be twinned by a 180° rotation about the c axis. The raw data were processed using the multi-component version of SAINT under control of the two-component orientation file generated by CELL_NOW.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 1.00 Å) and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4028 (3)0.3996 (6)0.4830 (2)0.0412 (10)
O20.6415 (3)0.5409 (6)0.7106 (2)0.0431 (10)
N10.2018 (3)0.4840 (6)0.6230 (3)0.0312 (10)
N20.4120 (3)0.3738 (6)0.6307 (3)0.0274 (9)
C10.3661 (4)0.3984 (7)0.7081 (3)0.0273 (11)
C20.4211 (4)0.3726 (7)0.7906 (3)0.0330 (12)
H20.4930270.3360820.7956270.040*
C30.3705 (4)0.4005 (8)0.8644 (4)0.0367 (13)
H30.4082320.3831060.9200660.044*
C40.2656 (4)0.4535 (8)0.8589 (3)0.0376 (12)
H40.2318700.4719550.9104370.045*
C50.2108 (4)0.4791 (7)0.7786 (3)0.0355 (12)
H50.1388390.5150340.7745950.043*
C60.2607 (4)0.4525 (7)0.7020 (3)0.0280 (10)
C70.2469 (4)0.4674 (7)0.5511 (3)0.0300 (11)
C80.3583 (4)0.4127 (7)0.5506 (3)0.0302 (11)
C90.1817 (4)0.5144 (7)0.4689 (3)0.0330 (12)
C100.1001 (4)0.6458 (8)0.4718 (4)0.0404 (13)
H100.0879950.7014490.5260220.049*
C110.0361 (5)0.6973 (10)0.3972 (4)0.0535 (17)
H110.0178170.7894380.4001770.064*
C120.0522 (5)0.6125 (11)0.3188 (4)0.0587 (19)
H120.0085540.6451940.2674470.070*
C130.1312 (5)0.4809 (11)0.3151 (4)0.0556 (18)
H130.1406630.4217090.2609830.067*
C140.1974 (4)0.4325 (9)0.3886 (4)0.0438 (14)
H140.2530440.3443510.3843180.053*
C150.5214 (4)0.3070 (7)0.6294 (4)0.0314 (11)
H15A0.5257810.2257480.5773980.038*
H15B0.5404490.2274760.6816030.038*
C160.5989 (4)0.4659 (7)0.6277 (3)0.0317 (11)
H160.5866260.5592890.5788040.038*
C170.7079 (4)0.4289 (9)0.6599 (4)0.0438 (14)
H17A0.7265940.2984820.6804930.053*
H17B0.7632980.4961500.6314210.053*
O30.5845 (3)0.3974 (6)0.0013 (2)0.0383 (9)
O40.3526 (3)0.5469 (6)0.1877 (2)0.0439 (10)
N30.7867 (3)0.4763 (6)0.1718 (3)0.0286 (9)
N40.5762 (3)0.3701 (6)0.1442 (3)0.0262 (9)
C180.6218 (4)0.3933 (7)0.2297 (3)0.0239 (10)
C190.5665 (4)0.3672 (7)0.3026 (3)0.0310 (11)
H190.4944280.3318800.2953670.037*
C200.6173 (4)0.3931 (7)0.3853 (3)0.0313 (11)
H200.5795650.3746200.4347180.038*
C210.7226 (4)0.4457 (8)0.3972 (3)0.0362 (12)
H210.7564290.4637350.4543270.043*
C220.7776 (4)0.4715 (7)0.3258 (3)0.0337 (12)
H220.8496950.5065720.3338270.040*
C230.7282 (4)0.4465 (7)0.2412 (3)0.0273 (10)
C240.7419 (4)0.4606 (7)0.0924 (3)0.0275 (10)
C250.6298 (4)0.4082 (7)0.0731 (3)0.0274 (11)
C260.8073 (4)0.5017 (7)0.0204 (3)0.0295 (11)
C270.8958 (4)0.6170 (7)0.0383 (4)0.0367 (12)
H270.9108570.6693150.0949840.044*
C280.9622 (5)0.6563 (9)0.0252 (4)0.0454 (14)
H281.0220130.7353420.0120940.054*
C290.9411 (5)0.5801 (9)0.1077 (4)0.0473 (15)
H290.9861840.6077130.1514850.057*
C300.8555 (4)0.4651 (10)0.1264 (4)0.0487 (15)
H300.8425630.4101860.1827700.058*
C310.7869 (4)0.4276 (8)0.0634 (3)0.0378 (12)
H310.7262400.3514520.0777860.045*
C320.4665 (4)0.3043 (7)0.1257 (3)0.0300 (11)
H32A0.4473430.2259150.1750540.036*
H32B0.4610790.2226810.0730540.036*
C330.3905 (4)0.4656 (7)0.1115 (3)0.0310 (11)
H330.4021670.5558370.0631560.037*
C340.2818 (4)0.4357 (9)0.1292 (4)0.0464 (14)
H34A0.2260850.5041440.0923280.056*
H34B0.2618030.3074480.1486350.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.036 (2)0.053 (3)0.036 (2)0.0029 (18)0.0109 (16)0.0019 (18)
O20.041 (2)0.042 (2)0.046 (2)0.0012 (17)0.0010 (17)0.0139 (18)
N10.028 (2)0.030 (2)0.036 (3)0.0024 (17)0.0041 (17)0.0001 (19)
N20.025 (2)0.024 (2)0.033 (2)0.0000 (16)0.0021 (16)0.0001 (18)
C10.032 (3)0.018 (2)0.033 (3)0.0050 (19)0.006 (2)0.001 (2)
C20.033 (3)0.029 (3)0.036 (3)0.004 (2)0.001 (2)0.003 (2)
C30.045 (3)0.030 (3)0.035 (3)0.008 (2)0.003 (2)0.002 (2)
C40.045 (3)0.037 (3)0.033 (3)0.009 (3)0.012 (2)0.001 (2)
C50.034 (3)0.032 (3)0.042 (3)0.003 (2)0.008 (2)0.000 (3)
C60.029 (2)0.023 (2)0.032 (3)0.003 (2)0.0060 (19)0.000 (2)
C70.029 (3)0.025 (3)0.036 (3)0.003 (2)0.000 (2)0.002 (2)
C80.029 (3)0.024 (3)0.037 (3)0.003 (2)0.004 (2)0.003 (2)
C90.032 (3)0.033 (3)0.033 (3)0.006 (2)0.000 (2)0.000 (2)
C100.029 (3)0.044 (3)0.048 (3)0.001 (2)0.001 (2)0.001 (3)
C110.031 (3)0.065 (4)0.062 (5)0.002 (3)0.004 (3)0.011 (3)
C120.037 (4)0.091 (6)0.046 (4)0.014 (3)0.007 (3)0.013 (4)
C130.046 (4)0.086 (5)0.035 (3)0.011 (3)0.000 (2)0.003 (3)
C140.039 (3)0.054 (4)0.038 (3)0.003 (3)0.003 (2)0.006 (3)
C150.028 (3)0.027 (3)0.039 (3)0.003 (2)0.003 (2)0.000 (2)
C160.031 (3)0.033 (3)0.031 (3)0.001 (2)0.0029 (19)0.001 (2)
C170.029 (3)0.045 (3)0.058 (4)0.002 (3)0.004 (2)0.011 (3)
O30.034 (2)0.047 (2)0.033 (2)0.0020 (17)0.0005 (15)0.0004 (18)
O40.044 (2)0.043 (2)0.046 (2)0.0040 (18)0.0080 (17)0.0128 (18)
N30.027 (2)0.027 (2)0.031 (2)0.0012 (17)0.0046 (16)0.0000 (18)
N40.023 (2)0.024 (2)0.032 (2)0.0003 (16)0.0036 (16)0.0003 (18)
C180.028 (3)0.017 (2)0.026 (3)0.0034 (19)0.0027 (18)0.0013 (19)
C190.029 (3)0.025 (3)0.039 (3)0.004 (2)0.007 (2)0.005 (2)
C200.037 (3)0.029 (3)0.029 (3)0.005 (2)0.008 (2)0.003 (2)
C210.044 (3)0.034 (3)0.031 (3)0.008 (3)0.004 (2)0.004 (2)
C220.031 (3)0.031 (3)0.038 (3)0.001 (2)0.000 (2)0.000 (2)
C230.032 (3)0.019 (2)0.031 (3)0.001 (2)0.005 (2)0.001 (2)
C240.029 (3)0.022 (2)0.032 (3)0.000 (2)0.0036 (19)0.000 (2)
C250.028 (2)0.022 (2)0.032 (3)0.0014 (19)0.004 (2)0.001 (2)
C260.026 (3)0.027 (3)0.037 (3)0.005 (2)0.006 (2)0.000 (2)
C270.038 (3)0.033 (3)0.041 (3)0.003 (2)0.013 (2)0.004 (2)
C280.038 (3)0.043 (3)0.057 (4)0.005 (3)0.016 (3)0.001 (3)
C290.044 (4)0.059 (4)0.042 (4)0.007 (3)0.019 (3)0.009 (3)
C300.045 (3)0.067 (4)0.035 (3)0.010 (3)0.007 (2)0.001 (3)
C310.037 (3)0.041 (3)0.035 (3)0.003 (3)0.004 (2)0.005 (2)
C320.027 (3)0.028 (3)0.035 (3)0.003 (2)0.004 (2)0.002 (2)
C330.029 (3)0.031 (3)0.033 (3)0.002 (2)0.0030 (19)0.000 (2)
C340.031 (3)0.044 (3)0.064 (4)0.002 (3)0.004 (2)0.005 (3)
Geometric parameters (Å, º) top
O1—C81.239 (6)O3—C251.235 (6)
O2—C161.438 (6)O4—C331.434 (6)
O2—C171.443 (6)O4—C341.442 (7)
N1—C71.304 (6)N3—C241.304 (6)
N1—C61.385 (6)N3—C231.381 (6)
N2—C81.380 (6)N4—C251.376 (6)
N2—C11.393 (6)N4—C181.397 (6)
N2—C151.476 (6)N4—C321.477 (6)
C1—C61.394 (7)C18—C191.398 (7)
C1—C21.403 (7)C18—C231.405 (6)
C2—C31.377 (7)C19—C201.385 (7)
C2—H20.9500C19—H190.9500
C3—C41.386 (8)C20—C211.391 (7)
C3—H30.9500C20—H200.9500
C4—C51.373 (7)C21—C221.377 (7)
C4—H40.9500C21—H210.9500
C5—C61.410 (7)C22—C231.402 (7)
C5—H50.9500C22—H220.9500
C7—C81.476 (7)C24—C251.481 (6)
C7—C91.484 (7)C24—C261.484 (7)
C9—C101.397 (7)C26—C311.393 (7)
C9—C141.397 (7)C26—C271.397 (7)
C10—C111.391 (8)C27—C281.386 (8)
C10—H100.9500C27—H270.9500
C11—C121.381 (9)C28—C291.381 (8)
C11—H110.9500C28—H280.9500
C12—C131.374 (10)C29—C301.368 (8)
C12—H120.9500C29—H290.9500
C13—C141.388 (8)C30—C311.397 (8)
C13—H130.9500C30—H300.9500
C14—H140.9500C31—H310.9500
C15—C161.494 (7)C32—C331.493 (7)
C15—H15A0.9900C32—H32A0.9900
C15—H15B0.9900C32—H32B0.9900
C16—C171.455 (7)C33—C341.459 (7)
C16—H161.0000C33—H331.0000
C17—H17A0.9900C34—H34A0.9900
C17—H17B0.9900C34—H34B0.9900
C16—O2—C1760.7 (3)C33—O4—C3461.0 (3)
C7—N1—C6119.1 (4)C24—N3—C23119.5 (4)
C8—N2—C1121.9 (4)C25—N4—C18122.3 (4)
C8—N2—C15116.0 (4)C25—N4—C32116.4 (4)
C1—N2—C15122.2 (4)C18—N4—C32121.2 (4)
N2—C1—C6117.6 (4)N4—C18—C19123.1 (4)
N2—C1—C2123.0 (5)N4—C18—C23117.2 (4)
C6—C1—C2119.4 (5)C19—C18—C23119.6 (4)
C3—C2—C1119.7 (5)C20—C19—C18119.7 (5)
C3—C2—H2120.1C20—C19—H19120.2
C1—C2—H2120.1C18—C19—H19120.2
C2—C3—C4121.3 (5)C19—C20—C21121.0 (5)
C2—C3—H3119.4C19—C20—H20119.5
C4—C3—H3119.4C21—C20—H20119.5
C5—C4—C3119.6 (5)C22—C21—C20119.6 (5)
C5—C4—H4120.2C22—C21—H21120.2
C3—C4—H4120.2C20—C21—H21120.2
C4—C5—C6120.4 (5)C21—C22—C23120.6 (5)
C4—C5—H5119.8C21—C22—H22119.7
C6—C5—H5119.8C23—C22—H22119.7
N1—C6—C1122.7 (4)N3—C23—C22118.2 (4)
N1—C6—C5117.7 (5)N3—C23—C18122.4 (4)
C1—C6—C5119.7 (5)C22—C23—C18119.4 (4)
N1—C7—C8122.4 (4)N3—C24—C25122.4 (4)
N1—C7—C9116.7 (4)N3—C24—C26117.3 (4)
C8—C7—C9120.9 (5)C25—C24—C26120.3 (4)
O1—C8—N2120.6 (4)O3—C25—N4120.2 (4)
O1—C8—C7123.2 (5)O3—C25—C24123.9 (4)
N2—C8—C7116.2 (4)N4—C25—C24115.9 (4)
C10—C9—C14118.2 (5)C31—C26—C27118.2 (5)
C10—C9—C7118.5 (5)C31—C26—C24123.7 (5)
C14—C9—C7123.3 (5)C27—C26—C24118.0 (5)
C11—C10—C9121.7 (6)C28—C27—C26121.1 (5)
C11—C10—H10119.2C28—C27—H27119.5
C9—C10—H10119.2C26—C27—H27119.5
C12—C11—C10119.1 (6)C29—C28—C27119.8 (6)
C12—C11—H11120.5C29—C28—H28120.1
C10—C11—H11120.5C27—C28—H28120.1
C13—C12—C11120.0 (6)C30—C29—C28120.1 (5)
C13—C12—H12120.0C30—C29—H29120.0
C11—C12—H12120.0C28—C29—H29120.0
C12—C13—C14121.4 (6)C29—C30—C31120.6 (5)
C12—C13—H13119.3C29—C30—H30119.7
C14—C13—H13119.3C31—C30—H30119.7
C13—C14—C9119.6 (6)C26—C31—C30120.2 (5)
C13—C14—H14120.2C26—C31—H31119.9
C9—C14—H14120.2C30—C31—H31119.9
N2—C15—C16113.2 (4)N4—C32—C33112.5 (4)
N2—C15—H15A108.9N4—C32—H32A109.1
C16—C15—H15A108.9C33—C32—H32A109.1
N2—C15—H15B108.9N4—C32—H32B109.1
C16—C15—H15B108.9C33—C32—H32B109.1
H15A—C15—H15B107.7H32A—C32—H32B107.8
O2—C16—C1759.8 (3)O4—C33—C3459.8 (3)
O2—C16—C15116.8 (4)O4—C33—C32116.7 (4)
C17—C16—C15118.4 (5)C34—C33—C32118.8 (5)
O2—C16—H16116.6O4—C33—H33116.5
C17—C16—H16116.6C34—C33—H33116.5
C15—C16—H16116.6C32—C33—H33116.5
O2—C17—C1659.5 (3)O4—C34—C3359.2 (3)
O2—C17—H17A117.8O4—C34—H34A117.8
C16—C17—H17A117.8C33—C34—H34A117.8
O2—C17—H17B117.8O4—C34—H34B117.8
C16—C17—H17B117.8C33—C34—H34B117.8
H17A—C17—H17B115.0H34A—C34—H34B115.0
C8—N2—C1—C64.0 (7)C25—N4—C18—C19175.7 (4)
C15—N2—C1—C6176.7 (4)C32—N4—C18—C193.8 (7)
C8—N2—C1—C2175.4 (4)C25—N4—C18—C233.8 (7)
C15—N2—C1—C23.8 (7)C32—N4—C18—C23176.7 (4)
N2—C1—C2—C3179.6 (4)N4—C18—C19—C20179.9 (4)
C6—C1—C2—C30.2 (7)C23—C18—C19—C200.3 (7)
C1—C2—C3—C40.1 (8)C18—C19—C20—C210.3 (8)
C2—C3—C4—C50.1 (8)C19—C20—C21—C220.4 (8)
C3—C4—C5—C60.2 (8)C20—C21—C22—C230.4 (8)
C7—N1—C6—C11.8 (7)C24—N3—C23—C22177.6 (4)
C7—N1—C6—C5177.4 (4)C24—N3—C23—C182.1 (7)
N2—C1—C6—N10.7 (7)C21—C22—C23—N3179.3 (5)
C2—C1—C6—N1178.8 (5)C21—C22—C23—C180.5 (8)
N2—C1—C6—C5180.0 (4)N4—C18—C23—N30.3 (7)
C2—C1—C6—C50.5 (7)C19—C18—C23—N3179.3 (4)
C4—C5—C6—N1178.8 (4)N4—C18—C23—C22180.0 (4)
C4—C5—C6—C10.5 (8)C19—C18—C23—C220.4 (7)
C6—N1—C7—C81.2 (7)C23—N3—C24—C251.1 (7)
C6—N1—C7—C9176.4 (4)C23—N3—C24—C26177.6 (4)
C1—N2—C8—O1176.1 (4)C18—N4—C25—O3175.4 (4)
C15—N2—C8—O13.2 (7)C32—N4—C25—O34.1 (7)
C1—N2—C8—C74.6 (7)C18—N4—C25—C244.7 (7)
C15—N2—C8—C7176.2 (4)C32—N4—C25—C24175.8 (4)
N1—C7—C8—O1178.7 (5)N3—C24—C25—O3177.9 (5)
C9—C7—C8—O11.3 (8)C26—C24—C25—O30.8 (7)
N1—C7—C8—N21.9 (7)N3—C24—C25—N42.2 (7)
C9—C7—C8—N2179.4 (4)C26—C24—C25—N4179.1 (4)
N1—C7—C9—C1027.8 (7)N3—C24—C26—C31155.4 (5)
C8—C7—C9—C10149.8 (5)C25—C24—C26—C3125.9 (7)
N1—C7—C9—C14151.7 (5)N3—C24—C26—C2722.8 (7)
C8—C7—C9—C1430.7 (8)C25—C24—C26—C27155.9 (5)
C14—C9—C10—C110.8 (8)C31—C26—C27—C280.3 (8)
C7—C9—C10—C11179.7 (5)C24—C26—C27—C28178.0 (5)
C9—C10—C11—C121.7 (9)C26—C27—C28—C290.2 (9)
C10—C11—C12—C130.7 (10)C27—C28—C29—C300.5 (9)
C11—C12—C13—C141.2 (10)C28—C29—C30—C311.8 (9)
C12—C13—C14—C92.1 (10)C27—C26—C31—C301.6 (8)
C10—C9—C14—C131.1 (9)C24—C26—C31—C30176.6 (5)
C7—C9—C14—C13178.4 (6)C29—C30—C31—C262.4 (9)
C8—N2—C15—C1685.6 (5)C25—N4—C32—C3385.4 (5)
C1—N2—C15—C1693.7 (5)C18—N4—C32—C3394.1 (5)
C17—O2—C16—C15108.8 (5)C34—O4—C33—C32109.3 (5)
N2—C15—C16—O287.8 (5)N4—C32—C33—O485.6 (5)
N2—C15—C16—C17156.3 (4)N4—C32—C33—C34154.1 (5)
C15—C16—C17—O2106.2 (5)C32—C33—C34—O4105.9 (5)
Hydrogen-bond geometry (Å, º) top
Cg4 and Cg9 are the centroids of the C9–C14 and C26–C31 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3···O3i0.952.453.263 (7)143
C16—H16···O1ii1.002.583.489 (7)151
C20—H20···O10.952.463.258 (6)142
C32—H32A···O2iii0.992.553.520 (6)168
C32—H32B···O3iv0.992.583.465 (6)149
C33—H33···O3v1.002.593.504 (6)152
C17—H17A···Cg4iii0.992.913.556 (6)123
C28—H28···Cg9vi0.952.623.512 (2)156
C34—H34B···Cg9iv0.992.933.587 (6)125
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1/2, z+1; (iii) x+1, y1/2, z+1; (iv) x+1, y1/2, z; (v) x+1, y+1/2, z; (vi) x+2, y+1/2, z.
 

Funding information

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationAbad, N., El Bakri, Y., Sebhaoui, J., Ramli, Y., Essassi, E. M. & Mague, J. T. (2018). IUCrData, 3, x180519.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRamli, Y. & Essassi, E. M. (2015). Adv. Chem. Res. 27, 109–160.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2009). TWINABS, University of Göttingen, Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds