organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

S-Phenethyl (2R,3R)-3-{[(R)-tert-butyl­sulfin­yl]amino}-2-fluoro-3-phenyl­propane­thio­ate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, People's Republic of China
*Correspondence e-mail: ya.li@sues.edu.cn

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 2 April 2018; accepted 16 April 2018; online 19 April 2018)

The title compound, C21H26FNO2S2, contains two chiral carbon centres and the absolute configuration has been confirmed as (2R,3R). The dihedral angle between the phenyl rings is 87.1 (2) and the O—C—C—F and F—C—C—N torsion angles are −175.4 (4) and 62.7 (4)°, respectively. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into C(4) [010] chains and weak C—H⋯O and C—H⋯F inter­actions cross-link the chains, generating a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

A chiral carbon atom bearing a fluorine substituent is an important structural motif in many bioactive mol­ecules (Wang et al., 2014[Wang, J., Sánchez-Roselló, M., Aceña, J. L., del Pozo, C., Sorochinsky, A. E., Fustero, S., Soloshonok, V. A. & Liu, H. (2014). Chem. Rev. 114, 2432-2506.]; Purser et al., 2008[Purser, S., Moore, P. R., Swallow, S. & Gouverneur, V. (2008). Chem. Soc. Rev. 37, 320-330.]). Not surprisingly, the synthesis of chiral mol­ecules with a fluorinated carbon center has attracted recent attention (Shang et al., 2015[Shang, H., Li, Y., Li, X. & Ren, X. (2015). J. Org. Chem. 80, 8739-8747.]; Chen et al., 2017[Chen, X., Li, Y., Zhao, J., Zheng, B., Lu, Q. & Ren, X. (2017). Adv. Synth. Catal. 359, 3057-3062.]). As part of our work in this area, we now describe the synthesis and structure of the title compound (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

The fluoro and amino substituents adopt a gauche conformation [F1—C2—C3—N1 = 62.7 (4)°] and the absolute configuration of the chiral carbon centres, C2 and C3, has been confirmed as (R,R). In the crystal, mol­ecules are connected by N—H⋯O hydrogen bonds (Table 1[link], Fig. 2[link]), generating C(4) [010] chains, with adjacent mol­ecules related by the 21 screw axis. Weak C—H⋯O and C—H⋯F inter­actions cross-link the chains to generate a three-dimensional network.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.80 (2) 2.32 (2) 3.079 (4) 159 (3)
C2—H2⋯O2i 0.98 2.42 3.265 (4) 144
C10—H10B⋯O1ii 0.97 2.58 3.473 (7) 153
C21—H21B⋯O2iii 0.96 2.57 3.475 (5) 157
C21—H21A⋯F1iv 0.96 2.55 3.465 (5) 159
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+2]; (ii) [-x, y+{\script{1\over 2}}, -z+1]; (iii) x, y+1, z; (iv) [-x, y-{\script{1\over 2}}, -z+2].
[Figure 2]
Figure 2
Partial packing diagram showing N—H⋯O hydrogen bonds as dashed lines.

Synthesis and crystallization

Potassium bis­(tri­methyl­sil­yl)amide (1.2 mmol, 1M in toluene) was added slowly to a reaction mixture of (R)-N-benzyl­idene- 2-methyl­propane-2-sulfinamide (209 mg, 1.0 mmol) and S-phenethyl 2-fluoro­ethane­thio­ate (198 mg, 1.0 mmol) in toluene at 213 K. The reaction mixture was stirred for 1 h at this temperature and then quenched with saturated NH4Cl/H2O. The quenched mixture was extracted with EtOAc (20 ml × 3) and the combined organic layers were dried with Na2SO4. After removal of the solvent under reduced pressure, the residue was subjected to flash column chromatography to give the title compound (253 mg: yield, 62%). The obtained compound was recrystallized from mixed solvents of ethyl acetate/n-hexane (1:2) to give colorless prisms.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C21H26FNO2S2
Mr 407.55
Crystal system, space group Monoclinic, P21
Temperature (K) 293
a, b, c (Å) 13.282 (2), 5.8005 (9), 14.622 (2)
β (°) 106.418 (3)
V3) 1080.6 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.27
Crystal size (mm) 0.20 × 0.16 × 0.13
 
Data collection
Diffractometer Bruker SMART CCD
Absorption correction Multi-scan (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.641, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 6235, 3783, 3464
Rint 0.023
(sin θ/λ)max−1) 0.605
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.121, 1.07
No. of reflections 3783
No. of parameters 239
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.42, −0.20
Absolute structure Flack x determined using 1338 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.04 (5)
Computer programs: SMART and SAINT (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

S-Phenethyl (2R,3R)-3-{[(R)-tert-butylsulfinyl]amino}-2-fluoro-3-phenylpropanethioate top
Crystal data top
C21H26FNO2S2F(000) = 432
Mr = 407.55Dx = 1.253 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 13.282 (2) ÅCell parameters from 2551 reflections
b = 5.8005 (9) Åθ = 5.8–51.0°
c = 14.622 (2) ŵ = 0.27 mm1
β = 106.418 (3)°T = 293 K
V = 1080.6 (3) Å3Prism, colorless
Z = 20.20 × 0.16 × 0.13 mm
Data collection top
Bruker SMART CCD
diffractometer
3464 reflections with I > 2σ(I)
phi and ω scansRint = 0.023
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
θmax = 25.5°, θmin = 1.5°
Tmin = 0.641, Tmax = 0.746h = 1516
6235 measured reflectionsk = 76
3783 independent reflectionsl = 1715
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + (0.070P)2 + 0.1132P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.121(Δ/σ)max = 0.001
S = 1.07Δρmax = 0.42 e Å3
3783 reflectionsΔρmin = 0.20 e Å3
239 parametersAbsolute structure: Flack x determined using 1338 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
2 restraintsAbsolute structure parameter: 0.04 (5)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.11978 (11)0.2731 (3)0.64914 (8)0.0787 (5)
S20.17919 (6)0.19558 (15)1.06022 (6)0.0398 (2)
F10.12082 (17)0.3427 (4)0.83432 (15)0.0532 (6)
N10.1447 (2)0.0152 (5)0.9803 (2)0.0408 (7)
O10.0356 (3)0.1192 (8)0.6793 (2)0.0896 (13)
O20.0869 (2)0.3401 (5)1.06159 (19)0.0532 (7)
C10.0733 (3)0.0590 (9)0.7120 (3)0.0539 (11)
C20.0821 (3)0.1211 (7)0.8147 (3)0.0445 (9)
H20.01160.11650.82330.053*
C30.1505 (3)0.0470 (7)0.8839 (2)0.0392 (8)
H30.12100.20190.86880.047*
C40.2636 (3)0.0500 (7)0.8796 (2)0.0411 (8)
C50.2989 (3)0.2268 (8)0.8348 (3)0.0541 (10)
H50.25400.34790.80880.065*
C60.4009 (4)0.2276 (10)0.8276 (3)0.0693 (14)
H60.42420.34920.79740.083*
C70.4669 (4)0.0499 (11)0.8648 (3)0.0666 (13)
H70.53520.05040.86000.080*
C80.4333 (3)0.1275 (10)0.9090 (3)0.0611 (12)
H80.47860.24870.93390.073*
C90.3317 (3)0.1294 (8)0.9172 (3)0.0484 (9)
H90.30930.25110.94800.058*
C100.0993 (5)0.1323 (18)0.5367 (3)0.108 (3)
H10A0.04310.02090.52900.129*
H10B0.07690.24590.48630.129*
C110.1951 (6)0.0108 (14)0.5253 (4)0.099 (2)
H11A0.21470.11000.57290.119*
H11B0.17780.06180.46300.119*
C120.2864 (3)0.1658 (7)0.5349 (3)0.0712 (13)
C130.3702 (3)0.1569 (8)0.6172 (2)0.096 (2)
H130.37160.04530.66330.116*
C140.4518 (3)0.3147 (10)0.6308 (3)0.113 (2)
H140.50790.30860.68590.135*
C150.4497 (3)0.4814 (9)0.5620 (4)0.111 (2)
H150.50430.58700.57110.134*
C160.3659 (4)0.4904 (8)0.4797 (3)0.115 (2)
H160.36450.60200.43370.138*
C170.2843 (3)0.3326 (8)0.4662 (2)0.0908 (18)
H170.22820.33860.41110.109*
C180.2062 (3)0.0176 (7)1.1688 (3)0.0450 (9)
C190.3005 (4)0.1355 (11)1.1702 (4)0.0706 (13)
H19A0.32460.21091.23090.106*
H19B0.28010.24931.12070.106*
H19C0.35600.04241.15970.106*
C200.2345 (3)0.1915 (11)1.2502 (3)0.0635 (11)
H20A0.25460.11121.31000.095*
H20B0.29200.28531.24440.095*
H20C0.17490.28771.24740.095*
C210.1111 (3)0.1219 (8)1.1702 (3)0.0541 (10)
H21A0.05040.02411.15490.081*
H21B0.10140.24351.12400.081*
H21C0.12110.18701.23240.081*
H10.091 (2)0.077 (6)0.981 (2)0.031 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0949 (9)0.0960 (12)0.0526 (6)0.0127 (8)0.0327 (6)0.0105 (7)
S20.0388 (4)0.0394 (5)0.0433 (4)0.0024 (4)0.0148 (3)0.0068 (4)
F10.0646 (13)0.0437 (15)0.0552 (12)0.0092 (11)0.0232 (10)0.0062 (10)
N10.0428 (17)0.0433 (18)0.0416 (16)0.0072 (14)0.0208 (13)0.0072 (14)
O10.110 (3)0.101 (3)0.0525 (18)0.042 (2)0.0156 (17)0.0191 (19)
O20.0562 (16)0.0516 (17)0.0524 (15)0.0134 (14)0.0161 (12)0.0060 (13)
C10.042 (2)0.075 (3)0.042 (2)0.002 (2)0.0075 (16)0.002 (2)
C20.0374 (18)0.053 (2)0.0455 (19)0.0031 (17)0.0153 (15)0.0010 (18)
C30.0439 (19)0.038 (2)0.0407 (18)0.0002 (15)0.0194 (15)0.0000 (15)
C40.0423 (19)0.043 (2)0.0397 (18)0.0060 (16)0.0144 (14)0.0072 (16)
C50.063 (2)0.048 (3)0.056 (2)0.010 (2)0.0252 (18)0.001 (2)
C60.075 (3)0.069 (3)0.076 (3)0.032 (3)0.041 (2)0.013 (3)
C70.047 (2)0.090 (4)0.069 (3)0.022 (3)0.027 (2)0.021 (3)
C80.043 (2)0.081 (3)0.059 (2)0.003 (2)0.0139 (18)0.011 (2)
C90.046 (2)0.054 (2)0.049 (2)0.0002 (18)0.0198 (16)0.0007 (19)
C100.094 (4)0.183 (8)0.046 (3)0.024 (5)0.020 (3)0.004 (4)
C110.133 (5)0.102 (5)0.070 (3)0.008 (4)0.042 (3)0.019 (3)
C120.083 (3)0.078 (4)0.061 (3)0.011 (3)0.033 (2)0.005 (3)
C130.095 (4)0.127 (6)0.067 (3)0.030 (4)0.024 (3)0.026 (4)
C140.084 (4)0.162 (7)0.089 (4)0.010 (6)0.020 (3)0.011 (6)
C150.092 (5)0.126 (6)0.124 (6)0.009 (5)0.042 (4)0.003 (5)
C160.119 (5)0.119 (6)0.111 (5)0.011 (5)0.041 (4)0.046 (5)
C170.096 (4)0.112 (5)0.064 (3)0.009 (4)0.020 (2)0.017 (4)
C180.0420 (19)0.050 (2)0.0416 (19)0.0077 (17)0.0099 (15)0.0011 (17)
C190.056 (3)0.082 (4)0.070 (3)0.027 (3)0.012 (2)0.008 (3)
C200.066 (2)0.073 (3)0.0447 (19)0.000 (3)0.0049 (16)0.012 (2)
C210.062 (2)0.052 (2)0.053 (2)0.003 (2)0.0226 (18)0.003 (2)
Geometric parameters (Å, º) top
S1—C11.758 (5)C10—H10B0.9700
S1—C101.787 (7)C11—C121.484 (8)
S2—O21.489 (3)C11—H11A0.9700
S2—N11.664 (3)C11—H11B0.9700
S2—C181.843 (4)C12—C131.3900
F1—C21.384 (5)C12—C171.3900
N1—C31.477 (4)C13—C141.3900
N1—H10.80 (2)C13—H130.9300
O1—C11.188 (6)C14—C151.3900
C1—C21.516 (5)C14—H140.9300
C2—C31.510 (5)C15—C161.3900
C2—H20.9800C15—H150.9300
C3—C41.522 (5)C16—C171.3900
C3—H30.9800C16—H160.9300
C4—C51.370 (6)C17—H170.9300
C4—C91.387 (6)C18—C211.504 (6)
C5—C61.388 (6)C18—C201.523 (6)
C5—H50.9300C18—C191.531 (6)
C6—C71.363 (8)C19—H19A0.9600
C6—H60.9300C19—H19B0.9600
C7—C81.355 (7)C19—H19C0.9600
C7—H70.9300C20—H20A0.9600
C8—C91.389 (5)C20—H20B0.9600
C8—H80.9300C20—H20C0.9600
C9—H90.9300C21—H21A0.9600
C10—C111.504 (9)C21—H21B0.9600
C10—H10A0.9700C21—H21C0.9600
C1—S1—C10100.0 (3)C12—C11—H11A108.9
O2—S2—N1111.01 (15)C10—C11—H11A108.9
O2—S2—C18105.33 (16)C12—C11—H11B108.9
N1—S2—C1898.15 (17)C10—C11—H11B108.9
C3—N1—S2114.4 (2)H11A—C11—H11B107.7
C3—N1—H1114 (3)C13—C12—C17120.0
S2—N1—H1113 (3)C13—C12—C11119.5 (4)
O1—C1—C2120.8 (4)C17—C12—C11120.3 (4)
O1—C1—S1125.0 (4)C12—C13—C14120.0
C2—C1—S1114.2 (3)C12—C13—H13120.0
F1—C2—C3110.1 (3)C14—C13—H13120.0
F1—C2—C1110.3 (3)C15—C14—C13120.0
C3—C2—C1112.0 (3)C15—C14—H14120.0
F1—C2—H2108.1C13—C14—H14120.0
C3—C2—H2108.1C14—C15—C16120.0
C1—C2—H2108.1C14—C15—H15120.0
N1—C3—C2107.3 (3)C16—C15—H15120.0
N1—C3—C4111.1 (3)C17—C16—C15120.0
C2—C3—C4113.1 (3)C17—C16—H16120.0
N1—C3—H3108.4C15—C16—H16120.0
C2—C3—H3108.4C16—C17—C12120.0
C4—C3—H3108.4C16—C17—H17120.0
C5—C4—C9118.6 (4)C12—C17—H17120.0
C5—C4—C3120.3 (4)C21—C18—C20111.7 (3)
C9—C4—C3121.1 (3)C21—C18—C19112.0 (4)
C4—C5—C6120.9 (5)C20—C18—C19110.7 (3)
C4—C5—H5119.6C21—C18—S2110.6 (2)
C6—C5—H5119.6C20—C18—S2104.3 (3)
C7—C6—C5119.9 (5)C19—C18—S2107.2 (3)
C7—C6—H6120.1C18—C19—H19A109.5
C5—C6—H6120.1C18—C19—H19B109.5
C8—C7—C6120.2 (4)H19A—C19—H19B109.5
C8—C7—H7119.9C18—C19—H19C109.5
C6—C7—H7119.9H19A—C19—H19C109.5
C7—C8—C9120.4 (5)H19B—C19—H19C109.5
C7—C8—H8119.8C18—C20—H20A109.5
C9—C8—H8119.8C18—C20—H20B109.5
C4—C9—C8120.0 (4)H20A—C20—H20B109.5
C4—C9—H9120.0C18—C20—H20C109.5
C8—C9—H9120.0H20A—C20—H20C109.5
C11—C10—S1113.7 (4)H20B—C20—H20C109.5
C11—C10—H10A108.8C18—C21—H21A109.5
S1—C10—H10A108.8C18—C21—H21B109.5
C11—C10—H10B108.8H21A—C21—H21B109.5
S1—C10—H10B108.8C18—C21—H21C109.5
H10A—C10—H10B107.7H21A—C21—H21C109.5
C12—C11—C10113.5 (6)H21B—C21—H21C109.5
O2—S2—N1—C389.5 (3)C6—C7—C8—C90.4 (7)
C18—S2—N1—C3160.6 (3)C5—C4—C9—C80.1 (6)
C10—S1—C1—O13.1 (5)C3—C4—C9—C8177.3 (3)
C10—S1—C1—C2178.4 (3)C7—C8—C9—C40.5 (6)
O1—C1—C2—F1175.4 (4)C1—S1—C10—C1195.7 (6)
S1—C1—C2—F13.2 (4)S1—C10—C11—C1259.0 (7)
O1—C1—C2—C361.6 (5)C10—C11—C12—C13106.0 (5)
S1—C1—C2—C3119.8 (3)C10—C11—C12—C1768.3 (5)
S2—N1—C3—C2159.9 (2)C17—C12—C13—C140.0
S2—N1—C3—C475.9 (3)C11—C12—C13—C14174.4 (4)
F1—C2—C3—N162.7 (4)C12—C13—C14—C150.0
C1—C2—C3—N1174.2 (3)C13—C14—C15—C160.0
F1—C2—C3—C460.2 (4)C14—C15—C16—C170.0
C1—C2—C3—C462.8 (4)C15—C16—C17—C120.0
N1—C3—C4—C5135.5 (4)C13—C12—C17—C160.0
C2—C3—C4—C5103.6 (4)C11—C12—C17—C16174.3 (4)
N1—C3—C4—C947.1 (4)O2—S2—C18—C2157.3 (3)
C2—C3—C4—C973.7 (4)N1—S2—C18—C2157.2 (3)
C9—C4—C5—C60.4 (6)O2—S2—C18—C2062.9 (3)
C3—C4—C5—C6177.8 (4)N1—S2—C18—C20177.4 (3)
C4—C5—C6—C70.5 (7)O2—S2—C18—C19179.7 (3)
C5—C6—C7—C80.1 (7)N1—S2—C18—C1965.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.80 (2)2.32 (2)3.079 (4)159 (3)
C2—H2···O2i0.982.423.265 (4)144
C10—H10B···O1ii0.972.583.473 (7)153
C21—H21B···O2iii0.962.573.475 (5)157
C21—H21A···F1iv0.962.553.465 (5)159
Symmetry codes: (i) x, y+1/2, z+2; (ii) x, y+1/2, z+1; (iii) x, y+1, z; (iv) x, y1/2, z+2.
 

Funding information

The authors thank the Innovation Program of Shanghai University Students (cx1704001) for financial support.

References

First citationBruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, X., Li, Y., Zhao, J., Zheng, B., Lu, Q. & Ren, X. (2017). Adv. Synth. Catal. 359, 3057–3062.  CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPurser, S., Moore, P. R., Swallow, S. & Gouverneur, V. (2008). Chem. Soc. Rev. 37, 320–330.  Web of Science CrossRef PubMed CAS Google Scholar
First citationShang, H., Li, Y., Li, X. & Ren, X. (2015). J. Org. Chem. 80, 8739–8747.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, J., Sánchez-Roselló, M., Aceña, J. L., del Pozo, C., Sorochinsky, A. E., Fustero, S., Soloshonok, V. A. & Liu, H. (2014). Chem. Rev. 114, 2432–2506.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds