organic compounds
(3R,4Z)-1,3-Diethyl-4-(2-oxopropylidene)-2,3,4,5-tetrahydro-1H-1,5-benzodiazepin-2-one
aLaboratoire de Chimie Organique Hétérocyclique, Centre de Recherche des Sciences des Médicaments, URAC 21, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: elfoujji.laila18@gmail.com
In the title compound, C16H20N2O2, the seven-membered ring adopts a bowl-shaped conformation while the orientation of the 2-oxopropylidene substituent is determined by an intramolecular N—H⋯O hydrogen bond, which generates an S(6) ring. In the crystal, inversion dimers linked by pairs of very weak C—H⋯O interactions occur, which generate R22(8) loops.
Keywords: crystal structure; benzodiazepine; hydrogen bond.
CCDC reference: 1833967
Structure description
1,4- and 1,5-Benzodiazepines are commonly used as anxiolytic and anticonvulsive drugs: these effects are primarily mediated via the benzodiazepine receptors located in the central nervous system (Tallman et al., 1980). In a continuation on our studies (Sebhaoui et al., 2017; Samba et al., 2018) of benzodiazepine derivatives, we report here the alkylation of (4Z)-4-(2-oxopropylidene)-2,3,4,5-tetrahydro-1,5-benzodiazepin-2-one with ethyl iodide under solid–liquid phase-transfer catalytic conditions leading to the title compound.
The seven-membered ring adopts a bowl-shaped conformation with puckering parameters Q(2) = 0.8767 (13) Å, Q(3) = 0.2633 (13) Å, φ(2) = 203.90 (8)° and φ(3) = 309.7 (3)°. The total puckering is 0.9154 (13) Å. The orientation of the 2-oxopropylidene substituent is largely determined by the intramolecular N1—H1⋯O2 hydrogen bond (Table 1 and Fig. 1). Apart from a possible weak C12—H12A⋯O2 hydrogen bond (H⋯O is 0.09 Å less than the sum of the van der Walls' radii), the packing is determined by van der Waals contacts (Fig. 2).
Synthesis and crystallization
To a solution of (4Z)-4-(2-oxopropylidene)-2,3,4,5-tetrahydro-1,5-benzodiazepin-2-one (1 mmol) and potassium carbonate K2CO3 (1.5 mmol) in 30 ml of N,N-dimethylformamide, were added ethyl iodide (0.02 mol) and tetra-n-butylammonium bromide as a phase-transfer catalyst. The reaction mixture was stirred at room temperature for 10 h. The residue obtained, after evaporation of the solvent, was chromatographed on a silica gel column using a hexane/ethyl acetate 4:1 mixture as The solid obtained was recrystallized from ethanol solution to afford colourless plates of the title compound.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1833967
https://doi.org/10.1107/S2414314618005151/hb4224sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314618005151/hb4224Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314618005151/hb4224Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2414314618005151/hb4224Isup4.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C16H20N2O2 | Z = 2 |
Mr = 272.34 | F(000) = 292 |
Triclinic, P1 | Dx = 1.274 Mg m−3 |
a = 8.8546 (2) Å | Cu Kα radiation, λ = 1.54178 Å |
b = 8.9841 (2) Å | Cell parameters from 4659 reflections |
c = 9.5523 (2) Å | θ = 5.2–72.4° |
α = 98.481 (1)° | µ = 0.68 mm−1 |
β = 96.412 (1)° | T = 150 K |
γ = 106.772 (1)° | Plate, colourless |
V = 710.00 (3) Å3 | 0.31 × 0.15 × 0.07 mm |
Bruker D8 VENTURE PHOTON 100 CMOS diffractometer | 2616 independent reflections |
Radiation source: INCOATEC IµS micro-focus source | 2387 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.023 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 72.4°, θmin = 5.2° |
ω scans | h = −10→10 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −11→10 |
Tmin = 0.88, Tmax = 0.96 | l = −11→11 |
5416 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | All H-atom parameters refined |
wR(F2) = 0.091 | w = 1/[σ2(Fo2) + (0.0377P)2 + 0.2722P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
2616 reflections | Δρmax = 0.21 e Å−3 |
262 parameters | Δρmin = −0.22 e Å−3 |
0 restraints | Extinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0107 (11) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.20343 (11) | 0.41685 (11) | 0.35492 (10) | 0.0288 (2) | |
O2 | 0.41944 (11) | 0.99801 (11) | 0.76940 (9) | 0.0286 (2) | |
N1 | 0.26316 (12) | 0.87183 (13) | 0.50781 (11) | 0.0207 (2) | |
H1 | 0.282 (2) | 0.940 (2) | 0.590 (2) | 0.040 (5)* | |
N2 | 0.06087 (12) | 0.58264 (12) | 0.31111 (11) | 0.0216 (2) | |
C1 | 0.05091 (14) | 0.73584 (15) | 0.29983 (13) | 0.0206 (3) | |
C2 | −0.06584 (15) | 0.74986 (17) | 0.19536 (14) | 0.0272 (3) | |
H2 | −0.131 (2) | 0.655 (2) | 0.1266 (18) | 0.036 (4)* | |
C3 | −0.09068 (16) | 0.89355 (17) | 0.18786 (15) | 0.0301 (3) | |
H3 | −0.175 (2) | 0.902 (2) | 0.1165 (19) | 0.042 (5)* | |
C4 | 0.00296 (16) | 1.02877 (16) | 0.28445 (15) | 0.0272 (3) | |
H4 | −0.0131 (19) | 1.1329 (19) | 0.2803 (17) | 0.031 (4)* | |
C5 | 0.12020 (15) | 1.01790 (15) | 0.38658 (14) | 0.0231 (3) | |
H5 | 0.1877 (19) | 1.1120 (19) | 0.4583 (17) | 0.031 (4)* | |
C6 | 0.14635 (14) | 0.87331 (15) | 0.39597 (12) | 0.0196 (3) | |
C7 | 0.36913 (13) | 0.78969 (14) | 0.49951 (13) | 0.0192 (3) | |
C8 | 0.35391 (14) | 0.68791 (15) | 0.35474 (13) | 0.0203 (3) | |
H8 | 0.3357 (17) | 0.7520 (17) | 0.2802 (16) | 0.022 (3)* | |
C9 | 0.20103 (14) | 0.54911 (15) | 0.33985 (13) | 0.0211 (3) | |
C10 | 0.48033 (14) | 0.79991 (15) | 0.61585 (13) | 0.0213 (3) | |
H10 | 0.5525 (18) | 0.7358 (17) | 0.6064 (16) | 0.023 (4)* | |
C11 | 0.50091 (14) | 0.90620 (15) | 0.74916 (13) | 0.0225 (3) | |
C12 | 0.62834 (17) | 0.9093 (2) | 0.86900 (15) | 0.0311 (3) | |
H12A | 0.585 (3) | 0.902 (2) | 0.958 (2) | 0.059 (6)* | |
H12B | 0.713 (3) | 1.014 (3) | 0.883 (2) | 0.071 (7)* | |
H12C | 0.680 (2) | 0.828 (2) | 0.8474 (19) | 0.042 (5)* | |
C13 | −0.08886 (15) | 0.44886 (16) | 0.28977 (15) | 0.0261 (3) | |
H13A | −0.175 (2) | 0.4960 (19) | 0.3099 (17) | 0.031 (4)* | |
H13B | −0.0722 (18) | 0.3840 (19) | 0.3624 (17) | 0.028 (4)* | |
C14 | −0.12777 (18) | 0.34639 (18) | 0.14073 (16) | 0.0338 (3) | |
H14A | −0.221 (2) | 0.253 (2) | 0.136 (2) | 0.050 (5)* | |
H14B | −0.155 (2) | 0.406 (2) | 0.067 (2) | 0.051 (5)* | |
H14C | −0.034 (2) | 0.3101 (19) | 0.1212 (17) | 0.034 (4)* | |
C15 | 0.49743 (15) | 0.63217 (16) | 0.32949 (13) | 0.0245 (3) | |
H15A | 0.5090 (17) | 0.5527 (18) | 0.3921 (16) | 0.024 (4)* | |
H15B | 0.598 (2) | 0.7274 (19) | 0.3576 (17) | 0.030 (4)* | |
C16 | 0.48269 (18) | 0.5586 (2) | 0.17249 (15) | 0.0331 (3) | |
H16A | 0.380 (2) | 0.468 (2) | 0.1413 (19) | 0.044 (5)* | |
H16B | 0.574 (2) | 0.512 (2) | 0.157 (2) | 0.046 (5)* | |
H16C | 0.479 (2) | 0.638 (2) | 0.111 (2) | 0.050 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0290 (5) | 0.0216 (5) | 0.0362 (5) | 0.0095 (4) | 0.0027 (4) | 0.0058 (4) |
O2 | 0.0321 (5) | 0.0323 (5) | 0.0228 (4) | 0.0156 (4) | 0.0017 (4) | 0.0006 (4) |
N1 | 0.0210 (5) | 0.0230 (5) | 0.0181 (5) | 0.0095 (4) | 0.0002 (4) | 0.0011 (4) |
N2 | 0.0179 (5) | 0.0203 (5) | 0.0246 (5) | 0.0040 (4) | 0.0015 (4) | 0.0037 (4) |
C1 | 0.0188 (5) | 0.0227 (6) | 0.0217 (6) | 0.0081 (5) | 0.0039 (4) | 0.0049 (5) |
C2 | 0.0234 (6) | 0.0307 (7) | 0.0260 (6) | 0.0093 (5) | −0.0015 (5) | 0.0028 (6) |
C3 | 0.0271 (6) | 0.0376 (8) | 0.0289 (7) | 0.0159 (6) | −0.0005 (5) | 0.0085 (6) |
C4 | 0.0279 (6) | 0.0289 (7) | 0.0309 (7) | 0.0152 (5) | 0.0073 (5) | 0.0099 (6) |
C5 | 0.0218 (6) | 0.0240 (6) | 0.0251 (6) | 0.0089 (5) | 0.0058 (5) | 0.0044 (5) |
C6 | 0.0179 (5) | 0.0238 (6) | 0.0189 (6) | 0.0081 (5) | 0.0044 (4) | 0.0048 (5) |
C7 | 0.0178 (5) | 0.0187 (6) | 0.0210 (6) | 0.0047 (4) | 0.0046 (4) | 0.0044 (5) |
C8 | 0.0190 (6) | 0.0224 (6) | 0.0192 (6) | 0.0067 (5) | 0.0025 (4) | 0.0031 (5) |
C9 | 0.0212 (6) | 0.0224 (6) | 0.0192 (6) | 0.0075 (5) | 0.0017 (4) | 0.0019 (5) |
C10 | 0.0194 (6) | 0.0238 (6) | 0.0211 (6) | 0.0077 (5) | 0.0027 (5) | 0.0040 (5) |
C11 | 0.0215 (6) | 0.0259 (6) | 0.0202 (6) | 0.0065 (5) | 0.0039 (5) | 0.0063 (5) |
C12 | 0.0305 (7) | 0.0427 (8) | 0.0207 (6) | 0.0151 (6) | −0.0002 (5) | 0.0032 (6) |
C13 | 0.0197 (6) | 0.0242 (6) | 0.0314 (7) | 0.0020 (5) | 0.0039 (5) | 0.0057 (6) |
C14 | 0.0318 (7) | 0.0271 (7) | 0.0341 (8) | 0.0014 (6) | −0.0035 (6) | 0.0022 (6) |
C15 | 0.0221 (6) | 0.0300 (7) | 0.0225 (6) | 0.0114 (5) | 0.0031 (5) | 0.0017 (6) |
C16 | 0.0311 (7) | 0.0428 (9) | 0.0259 (7) | 0.0154 (7) | 0.0066 (6) | −0.0016 (6) |
O1—C9 | 1.2237 (15) | C8—C9 | 1.5291 (17) |
O2—C11 | 1.2513 (15) | C8—H8 | 1.007 (15) |
N1—C7 | 1.3529 (15) | C10—C11 | 1.4338 (17) |
N1—C6 | 1.4059 (15) | C10—H10 | 0.978 (15) |
N1—H1 | 0.887 (19) | C11—C12 | 1.5061 (17) |
N2—C9 | 1.3676 (15) | C12—H12A | 0.98 (2) |
N2—C1 | 1.4232 (15) | C12—H12B | 1.00 (3) |
N2—C13 | 1.4804 (15) | C12—H12C | 0.980 (19) |
C1—C2 | 1.4008 (17) | C13—C14 | 1.5212 (19) |
C1—C6 | 1.4045 (17) | C13—H13A | 0.993 (16) |
C2—C3 | 1.3811 (19) | C13—H13B | 0.994 (16) |
C2—H2 | 0.978 (18) | C14—H14A | 0.99 (2) |
C3—C4 | 1.390 (2) | C14—H14B | 1.00 (2) |
C3—H3 | 0.979 (18) | C14—H14C | 0.999 (17) |
C4—C5 | 1.3781 (18) | C15—C16 | 1.5222 (18) |
C4—H4 | 0.991 (16) | C15—H15A | 1.016 (15) |
C5—C6 | 1.3973 (17) | C15—H15B | 1.017 (17) |
C5—H5 | 0.993 (17) | C16—H16A | 1.01 (2) |
C7—C10 | 1.3734 (17) | C16—H16B | 1.025 (19) |
C7—C8 | 1.5103 (16) | C16—H16C | 0.99 (2) |
C8—C15 | 1.5245 (16) | ||
C7—N1—C6 | 126.56 (10) | C7—C10—C11 | 122.91 (11) |
C7—N1—H1 | 113.3 (12) | C7—C10—H10 | 118.9 (9) |
C6—N1—H1 | 119.5 (11) | C11—C10—H10 | 118.2 (9) |
C9—N2—C1 | 124.31 (10) | O2—C11—C10 | 122.89 (11) |
C9—N2—C13 | 116.88 (10) | O2—C11—C12 | 118.70 (11) |
C1—N2—C13 | 118.80 (10) | C10—C11—C12 | 118.40 (11) |
C2—C1—C6 | 118.27 (12) | C11—C12—H12A | 110.3 (13) |
C2—C1—N2 | 119.06 (11) | C11—C12—H12B | 107.1 (13) |
C6—C1—N2 | 122.52 (10) | H12A—C12—H12B | 107.8 (18) |
C3—C2—C1 | 121.58 (12) | C11—C12—H12C | 113.4 (11) |
C3—C2—H2 | 119.7 (10) | H12A—C12—H12C | 110.9 (16) |
C1—C2—H2 | 118.8 (10) | H12B—C12—H12C | 107.0 (17) |
C2—C3—C4 | 119.82 (12) | N2—C13—C14 | 113.09 (11) |
C2—C3—H3 | 121.0 (10) | N2—C13—H13A | 106.4 (9) |
C4—C3—H3 | 119.2 (10) | C14—C13—H13A | 111.7 (9) |
C5—C4—C3 | 119.49 (12) | N2—C13—H13B | 105.9 (9) |
C5—C4—H4 | 119.7 (9) | C14—C13—H13B | 109.3 (9) |
C3—C4—H4 | 120.8 (9) | H13A—C13—H13B | 110.3 (13) |
C4—C5—C6 | 121.39 (12) | C13—C14—H14A | 109.5 (11) |
C4—C5—H5 | 121.4 (9) | C13—C14—H14B | 110.6 (11) |
C6—C5—H5 | 117.2 (9) | H14A—C14—H14B | 107.8 (16) |
C5—C6—C1 | 119.44 (11) | C13—C14—H14C | 109.2 (10) |
C5—C6—N1 | 117.53 (11) | H14A—C14—H14C | 108.8 (14) |
C1—C6—N1 | 122.94 (11) | H14B—C14—H14C | 111.0 (15) |
N1—C7—C10 | 121.37 (11) | C16—C15—C8 | 110.84 (10) |
N1—C7—C8 | 114.87 (10) | C16—C15—H15A | 109.6 (8) |
C10—C7—C8 | 123.76 (11) | C8—C15—H15A | 111.1 (8) |
C7—C8—C15 | 115.57 (10) | C16—C15—H15B | 109.4 (9) |
C7—C8—C9 | 105.80 (9) | C8—C15—H15B | 108.3 (9) |
C15—C8—C9 | 111.94 (10) | H15A—C15—H15B | 107.5 (12) |
C7—C8—H8 | 107.0 (8) | C15—C16—H16A | 110.4 (10) |
C15—C8—H8 | 108.7 (8) | C15—C16—H16B | 111.0 (10) |
C9—C8—H8 | 107.4 (8) | H16A—C16—H16B | 106.7 (14) |
O1—C9—N2 | 121.94 (11) | C15—C16—H16C | 110.0 (11) |
O1—C9—C8 | 122.29 (11) | H16A—C16—H16C | 106.9 (15) |
N2—C9—C8 | 115.77 (10) | H16B—C16—H16C | 111.7 (15) |
C9—N2—C1—C2 | 141.65 (12) | C10—C7—C8—C15 | −16.89 (18) |
C13—N2—C1—C2 | −37.92 (16) | N1—C7—C8—C9 | −72.16 (13) |
C9—N2—C1—C6 | −42.92 (17) | C10—C7—C8—C9 | 107.58 (13) |
C13—N2—C1—C6 | 137.50 (12) | C1—N2—C9—O1 | 176.65 (11) |
C6—C1—C2—C3 | −1.59 (19) | C13—N2—C9—O1 | −3.77 (17) |
N2—C1—C2—C3 | 174.03 (12) | C1—N2—C9—C8 | −2.22 (16) |
C1—C2—C3—C4 | 0.8 (2) | C13—N2—C9—C8 | 177.36 (10) |
C2—C3—C4—C5 | 0.2 (2) | C7—C8—C9—O1 | −103.76 (13) |
C3—C4—C5—C6 | −0.50 (19) | C15—C8—C9—O1 | 22.94 (16) |
C4—C5—C6—C1 | −0.26 (18) | C7—C8—C9—N2 | 75.10 (13) |
C4—C5—C6—N1 | −176.96 (11) | C15—C8—C9—N2 | −158.19 (10) |
C2—C1—C6—C5 | 1.28 (17) | N1—C7—C10—C11 | −5.14 (19) |
N2—C1—C6—C5 | −174.19 (11) | C8—C7—C10—C11 | 175.13 (11) |
C2—C1—C6—N1 | 177.79 (11) | C7—C10—C11—O2 | −0.2 (2) |
N2—C1—C6—N1 | 2.32 (18) | C7—C10—C11—C12 | −179.09 (12) |
C7—N1—C6—C5 | −140.34 (12) | C9—N2—C13—C14 | −79.55 (14) |
C7—N1—C6—C1 | 43.09 (18) | C1—N2—C13—C14 | 100.05 (13) |
C6—N1—C7—C10 | 178.73 (12) | C7—C8—C15—C16 | −169.08 (11) |
C6—N1—C7—C8 | −1.52 (17) | C9—C8—C15—C16 | 69.70 (14) |
N1—C7—C8—C15 | 163.37 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2 | 0.887 (19) | 1.897 (19) | 2.6326 (13) | 139.2 (16) |
C12—H12A···O2i | 0.98 (2) | 2.63 (2) | 3.5334 (17) | 153.4 (17) |
Symmetry code: (i) −x+1, −y+2, −z+2. |
Funding information
The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.
References
Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Samba, M., Minnih, M. S., El Bakri, Y., Essassi, E. M. & &Mague, J. T. (2018). IUCrData, 3, x180326. Google Scholar
Sebhaoui, J., El Bakri, Y., Rayni, I., El Bourakadi, K., Essassi, E. M. & Mague, J. T. (2017). IUCrData, 2, x170493. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Tallman, J. F., Paul, S. M., Skolnick, P. & Gallager, D. W. (1980). Science, 207, 274–281. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.