organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(3R,4Z)-1,3-Di­ethyl-4-(2-oxo­propyl­­idene)-2,3,4,5-tetra­hydro-1H-1,5-benzodiazepin-2-one

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique, Centre de Recherche des Sciences des Médicaments, URAC 21, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: elfoujji.laila18@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 30 March 2018; accepted 31 March 2018; online 17 April 2018)

In the title compound, C16H20N2O2, the seven-membered ring adopts a bowl-shaped conformation while the orientation of the 2-oxo­propyl­idene substituent is determined by an intra­molecular N—H⋯O hydrogen bond, which generates an S(6) ring. In the crystal, inversion dimers linked by pairs of very weak C—H⋯O inter­actions occur, which generate R22(8) loops.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

1,4- and 1,5-Benzodiazepines are commonly used as anxiolytic and anti­convulsive drugs: these effects are primarily mediated via the benzodiazepine receptors located in the central nervous system (Tallman et al., 1980[Tallman, J. F., Paul, S. M., Skolnick, P. & Gallager, D. W. (1980). Science, 207, 274-281.]). In a continuation on our studies (Sebhaoui et al., 2017[Sebhaoui, J., El Bakri, Y., Rayni, I., El Bourakadi, K., Essassi, E. M. & Mague, J. T. (2017). IUCrData, 2, x170493.]; Samba et al., 2018[Samba, M., Minnih, M. S., El Bakri, Y., Essassi, E. M. & &Mague, J. T. (2018). IUCrData, 3, x180326.]) of benzodiazepine derivatives, we report here the alkyl­ation of (4Z)-4-(2-oxo­propyl­idene)-2,3,4,5-tetra­hydro-1,5-benzodiazepin-2-one with ethyl iodide under solid–liquid phase-transfer catalytic conditions leading to the title compound.

The seven-membered ring adopts a bowl-shaped conformation with puckering parameters Q(2) = 0.8767 (13) Å, Q(3) = 0.2633 (13) Å, φ(2) = 203.90 (8)° and φ(3) = 309.7 (3)°. The total puckering is 0.9154 (13) Å. The orientation of the 2-oxo­propyl­idene substituent is largely determined by the intra­molecular N1—H1⋯O2 hydrogen bond (Table 1[link] and Fig. 1[link]). Apart from a possible weak C12—H12A⋯O2 hydrogen bond (H⋯O is 0.09 Å less than the sum of the van der Walls' radii), the packing is determined by van der Waals contacts (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.887 (19) 1.897 (19) 2.6326 (13) 139.2 (16)
C12—H12A⋯O2i 0.98 (2) 2.63 (2) 3.5334 (17) 153.4 (17)
Symmetry code: (i) -x+1, -y+2, -z+2.
[Figure 1]
Figure 1
The title mol­ecule with 50% probability ellipsoids.
[Figure 2]
Figure 2
Packing viewed along the c-axis direction.

Synthesis and crystallization

To a solution of (4Z)-4-(2-oxo­propyl­idene)-2,3,4,5-tetra­hydro-1,5-benzodiazepin-2-one (1 mmol) and potassium carbonate K2CO3 (1.5 mmol) in 30 ml of N,N-di­methyl­formamide, were added ethyl iodide (0.02 mol) and tetra-n-butyl­ammonium bromide as a phase-transfer catalyst. The reaction mixture was stirred at room temperature for 10 h. The residue obtained, after evaporation of the solvent, was chromatographed on a silica gel column using a hexa­ne/ethyl acetate 4:1 mixture as eluent. The solid obtained was recrystallized from ethanol solution to afford colourless plates of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C16H20N2O2
Mr 272.34
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 8.8546 (2), 8.9841 (2), 9.5523 (2)
α, β, γ (°) 98.481 (1), 96.412 (1), 106.772 (1)
V3) 710.00 (3)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.68
Crystal size (mm) 0.31 × 0.15 × 0.07
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.88, 0.96
No. of measured, independent and observed [I > 2σ(I)] reflections 5416, 2616, 2387
Rint 0.023
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.091, 1.05
No. of reflections 2616
No. of parameters 262
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.21, −0.22
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(3R,4Z)-1,3-Diethyl-4-(2-oxopropylidene)-2,3,4,5-tetrahydro-1H-1,5-benzodiazepin-2-one top
Crystal data top
C16H20N2O2Z = 2
Mr = 272.34F(000) = 292
Triclinic, P1Dx = 1.274 Mg m3
a = 8.8546 (2) ÅCu Kα radiation, λ = 1.54178 Å
b = 8.9841 (2) ÅCell parameters from 4659 reflections
c = 9.5523 (2) Åθ = 5.2–72.4°
α = 98.481 (1)°µ = 0.68 mm1
β = 96.412 (1)°T = 150 K
γ = 106.772 (1)°Plate, colourless
V = 710.00 (3) Å30.31 × 0.15 × 0.07 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2616 independent reflections
Radiation source: INCOATEC IµS micro-focus source2387 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.023
Detector resolution: 10.4167 pixels mm-1θmax = 72.4°, θmin = 5.2°
ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1110
Tmin = 0.88, Tmax = 0.96l = 1111
5416 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037All H-atom parameters refined
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0377P)2 + 0.2722P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2616 reflectionsΔρmax = 0.21 e Å3
262 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0107 (11)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.20343 (11)0.41685 (11)0.35492 (10)0.0288 (2)
O20.41944 (11)0.99801 (11)0.76940 (9)0.0286 (2)
N10.26316 (12)0.87183 (13)0.50781 (11)0.0207 (2)
H10.282 (2)0.940 (2)0.590 (2)0.040 (5)*
N20.06087 (12)0.58264 (12)0.31111 (11)0.0216 (2)
C10.05091 (14)0.73584 (15)0.29983 (13)0.0206 (3)
C20.06584 (15)0.74986 (17)0.19536 (14)0.0272 (3)
H20.131 (2)0.655 (2)0.1266 (18)0.036 (4)*
C30.09068 (16)0.89355 (17)0.18786 (15)0.0301 (3)
H30.175 (2)0.902 (2)0.1165 (19)0.042 (5)*
C40.00296 (16)1.02877 (16)0.28445 (15)0.0272 (3)
H40.0131 (19)1.1329 (19)0.2803 (17)0.031 (4)*
C50.12020 (15)1.01790 (15)0.38658 (14)0.0231 (3)
H50.1877 (19)1.1120 (19)0.4583 (17)0.031 (4)*
C60.14635 (14)0.87331 (15)0.39597 (12)0.0196 (3)
C70.36913 (13)0.78969 (14)0.49951 (13)0.0192 (3)
C80.35391 (14)0.68791 (15)0.35474 (13)0.0203 (3)
H80.3357 (17)0.7520 (17)0.2802 (16)0.022 (3)*
C90.20103 (14)0.54911 (15)0.33985 (13)0.0211 (3)
C100.48033 (14)0.79991 (15)0.61585 (13)0.0213 (3)
H100.5525 (18)0.7358 (17)0.6064 (16)0.023 (4)*
C110.50091 (14)0.90620 (15)0.74916 (13)0.0225 (3)
C120.62834 (17)0.9093 (2)0.86900 (15)0.0311 (3)
H12A0.585 (3)0.902 (2)0.958 (2)0.059 (6)*
H12B0.713 (3)1.014 (3)0.883 (2)0.071 (7)*
H12C0.680 (2)0.828 (2)0.8474 (19)0.042 (5)*
C130.08886 (15)0.44886 (16)0.28977 (15)0.0261 (3)
H13A0.175 (2)0.4960 (19)0.3099 (17)0.031 (4)*
H13B0.0722 (18)0.3840 (19)0.3624 (17)0.028 (4)*
C140.12777 (18)0.34639 (18)0.14073 (16)0.0338 (3)
H14A0.221 (2)0.253 (2)0.136 (2)0.050 (5)*
H14B0.155 (2)0.406 (2)0.067 (2)0.051 (5)*
H14C0.034 (2)0.3101 (19)0.1212 (17)0.034 (4)*
C150.49743 (15)0.63217 (16)0.32949 (13)0.0245 (3)
H15A0.5090 (17)0.5527 (18)0.3921 (16)0.024 (4)*
H15B0.598 (2)0.7274 (19)0.3576 (17)0.030 (4)*
C160.48269 (18)0.5586 (2)0.17249 (15)0.0331 (3)
H16A0.380 (2)0.468 (2)0.1413 (19)0.044 (5)*
H16B0.574 (2)0.512 (2)0.157 (2)0.046 (5)*
H16C0.479 (2)0.638 (2)0.111 (2)0.050 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0290 (5)0.0216 (5)0.0362 (5)0.0095 (4)0.0027 (4)0.0058 (4)
O20.0321 (5)0.0323 (5)0.0228 (4)0.0156 (4)0.0017 (4)0.0006 (4)
N10.0210 (5)0.0230 (5)0.0181 (5)0.0095 (4)0.0002 (4)0.0011 (4)
N20.0179 (5)0.0203 (5)0.0246 (5)0.0040 (4)0.0015 (4)0.0037 (4)
C10.0188 (5)0.0227 (6)0.0217 (6)0.0081 (5)0.0039 (4)0.0049 (5)
C20.0234 (6)0.0307 (7)0.0260 (6)0.0093 (5)0.0015 (5)0.0028 (6)
C30.0271 (6)0.0376 (8)0.0289 (7)0.0159 (6)0.0005 (5)0.0085 (6)
C40.0279 (6)0.0289 (7)0.0309 (7)0.0152 (5)0.0073 (5)0.0099 (6)
C50.0218 (6)0.0240 (6)0.0251 (6)0.0089 (5)0.0058 (5)0.0044 (5)
C60.0179 (5)0.0238 (6)0.0189 (6)0.0081 (5)0.0044 (4)0.0048 (5)
C70.0178 (5)0.0187 (6)0.0210 (6)0.0047 (4)0.0046 (4)0.0044 (5)
C80.0190 (6)0.0224 (6)0.0192 (6)0.0067 (5)0.0025 (4)0.0031 (5)
C90.0212 (6)0.0224 (6)0.0192 (6)0.0075 (5)0.0017 (4)0.0019 (5)
C100.0194 (6)0.0238 (6)0.0211 (6)0.0077 (5)0.0027 (5)0.0040 (5)
C110.0215 (6)0.0259 (6)0.0202 (6)0.0065 (5)0.0039 (5)0.0063 (5)
C120.0305 (7)0.0427 (8)0.0207 (6)0.0151 (6)0.0002 (5)0.0032 (6)
C130.0197 (6)0.0242 (6)0.0314 (7)0.0020 (5)0.0039 (5)0.0057 (6)
C140.0318 (7)0.0271 (7)0.0341 (8)0.0014 (6)0.0035 (6)0.0022 (6)
C150.0221 (6)0.0300 (7)0.0225 (6)0.0114 (5)0.0031 (5)0.0017 (6)
C160.0311 (7)0.0428 (9)0.0259 (7)0.0154 (7)0.0066 (6)0.0016 (6)
Geometric parameters (Å, º) top
O1—C91.2237 (15)C8—C91.5291 (17)
O2—C111.2513 (15)C8—H81.007 (15)
N1—C71.3529 (15)C10—C111.4338 (17)
N1—C61.4059 (15)C10—H100.978 (15)
N1—H10.887 (19)C11—C121.5061 (17)
N2—C91.3676 (15)C12—H12A0.98 (2)
N2—C11.4232 (15)C12—H12B1.00 (3)
N2—C131.4804 (15)C12—H12C0.980 (19)
C1—C21.4008 (17)C13—C141.5212 (19)
C1—C61.4045 (17)C13—H13A0.993 (16)
C2—C31.3811 (19)C13—H13B0.994 (16)
C2—H20.978 (18)C14—H14A0.99 (2)
C3—C41.390 (2)C14—H14B1.00 (2)
C3—H30.979 (18)C14—H14C0.999 (17)
C4—C51.3781 (18)C15—C161.5222 (18)
C4—H40.991 (16)C15—H15A1.016 (15)
C5—C61.3973 (17)C15—H15B1.017 (17)
C5—H50.993 (17)C16—H16A1.01 (2)
C7—C101.3734 (17)C16—H16B1.025 (19)
C7—C81.5103 (16)C16—H16C0.99 (2)
C8—C151.5245 (16)
C7—N1—C6126.56 (10)C7—C10—C11122.91 (11)
C7—N1—H1113.3 (12)C7—C10—H10118.9 (9)
C6—N1—H1119.5 (11)C11—C10—H10118.2 (9)
C9—N2—C1124.31 (10)O2—C11—C10122.89 (11)
C9—N2—C13116.88 (10)O2—C11—C12118.70 (11)
C1—N2—C13118.80 (10)C10—C11—C12118.40 (11)
C2—C1—C6118.27 (12)C11—C12—H12A110.3 (13)
C2—C1—N2119.06 (11)C11—C12—H12B107.1 (13)
C6—C1—N2122.52 (10)H12A—C12—H12B107.8 (18)
C3—C2—C1121.58 (12)C11—C12—H12C113.4 (11)
C3—C2—H2119.7 (10)H12A—C12—H12C110.9 (16)
C1—C2—H2118.8 (10)H12B—C12—H12C107.0 (17)
C2—C3—C4119.82 (12)N2—C13—C14113.09 (11)
C2—C3—H3121.0 (10)N2—C13—H13A106.4 (9)
C4—C3—H3119.2 (10)C14—C13—H13A111.7 (9)
C5—C4—C3119.49 (12)N2—C13—H13B105.9 (9)
C5—C4—H4119.7 (9)C14—C13—H13B109.3 (9)
C3—C4—H4120.8 (9)H13A—C13—H13B110.3 (13)
C4—C5—C6121.39 (12)C13—C14—H14A109.5 (11)
C4—C5—H5121.4 (9)C13—C14—H14B110.6 (11)
C6—C5—H5117.2 (9)H14A—C14—H14B107.8 (16)
C5—C6—C1119.44 (11)C13—C14—H14C109.2 (10)
C5—C6—N1117.53 (11)H14A—C14—H14C108.8 (14)
C1—C6—N1122.94 (11)H14B—C14—H14C111.0 (15)
N1—C7—C10121.37 (11)C16—C15—C8110.84 (10)
N1—C7—C8114.87 (10)C16—C15—H15A109.6 (8)
C10—C7—C8123.76 (11)C8—C15—H15A111.1 (8)
C7—C8—C15115.57 (10)C16—C15—H15B109.4 (9)
C7—C8—C9105.80 (9)C8—C15—H15B108.3 (9)
C15—C8—C9111.94 (10)H15A—C15—H15B107.5 (12)
C7—C8—H8107.0 (8)C15—C16—H16A110.4 (10)
C15—C8—H8108.7 (8)C15—C16—H16B111.0 (10)
C9—C8—H8107.4 (8)H16A—C16—H16B106.7 (14)
O1—C9—N2121.94 (11)C15—C16—H16C110.0 (11)
O1—C9—C8122.29 (11)H16A—C16—H16C106.9 (15)
N2—C9—C8115.77 (10)H16B—C16—H16C111.7 (15)
C9—N2—C1—C2141.65 (12)C10—C7—C8—C1516.89 (18)
C13—N2—C1—C237.92 (16)N1—C7—C8—C972.16 (13)
C9—N2—C1—C642.92 (17)C10—C7—C8—C9107.58 (13)
C13—N2—C1—C6137.50 (12)C1—N2—C9—O1176.65 (11)
C6—C1—C2—C31.59 (19)C13—N2—C9—O13.77 (17)
N2—C1—C2—C3174.03 (12)C1—N2—C9—C82.22 (16)
C1—C2—C3—C40.8 (2)C13—N2—C9—C8177.36 (10)
C2—C3—C4—C50.2 (2)C7—C8—C9—O1103.76 (13)
C3—C4—C5—C60.50 (19)C15—C8—C9—O122.94 (16)
C4—C5—C6—C10.26 (18)C7—C8—C9—N275.10 (13)
C4—C5—C6—N1176.96 (11)C15—C8—C9—N2158.19 (10)
C2—C1—C6—C51.28 (17)N1—C7—C10—C115.14 (19)
N2—C1—C6—C5174.19 (11)C8—C7—C10—C11175.13 (11)
C2—C1—C6—N1177.79 (11)C7—C10—C11—O20.2 (2)
N2—C1—C6—N12.32 (18)C7—C10—C11—C12179.09 (12)
C7—N1—C6—C5140.34 (12)C9—N2—C13—C1479.55 (14)
C7—N1—C6—C143.09 (18)C1—N2—C13—C14100.05 (13)
C6—N1—C7—C10178.73 (12)C7—C8—C15—C16169.08 (11)
C6—N1—C7—C81.52 (17)C9—C8—C15—C1669.70 (14)
N1—C7—C8—C15163.37 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.887 (19)1.897 (19)2.6326 (13)139.2 (16)
C12—H12A···O2i0.98 (2)2.63 (2)3.5334 (17)153.4 (17)
Symmetry code: (i) x+1, y+2, z+2.
 

Funding information

The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSamba, M., Minnih, M. S., El Bakri, Y., Essassi, E. M. & &Mague, J. T. (2018). IUCrData, 3, x180326.  Google Scholar
First citationSebhaoui, J., El Bakri, Y., Rayni, I., El Bourakadi, K., Essassi, E. M. & Mague, J. T. (2017). IUCrData, 2, x170493.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTallman, J. F., Paul, S. M., Skolnick, P. & Gallager, D. W. (1980). Science, 207, 274–281.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds