organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1,3-Bis(2,6-diiso­propyl­phen­yl)imidazolium perchlorate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, St. Francis Xavier University, PO Box 5000, Antigonish, Nova Scotia, B2G 2W5, Canada, and bDepartment of Chemistry, Xi'an Jiaotong-Liverpool University, 111 Renai Road, Suzhou, Jiangsu 215123, People's Republic of China
*Correspondence e-mail: maquino@stfx.ca

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 30 March 2018; accepted 31 March 2018; online 17 April 2018)

The title salt, C27H37N2+·ClO4, arose as an unexpected oxidation product of the carbene 1,3-bis­(2,6-diiso­propyl­phen­yl)-1,3-di­hydro-2H-imidazol-2-yl­idene in methanol. The five-membered cationic imidazolium ring is planar by symmetry and the complete cation is generated by a crystallographic twofold axis passing through the central N-bonded C atom and the mid-point of the C=C bond; the Cl atom of the perchlorate anion also lies on the rotation axis. The phenyl rings of the 2,6-diiso­propyl­phenyl groups are each perpendicular to the imidazolium ring [dihedral angle = 90.0 (3)°]. In the crystal, weak C—H⋯O and bifurcated C—H⋯(O,O) inter­actions between the imidazolium ring H atoms and the perchlorate O atoms lead to [001] chains.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Our ongoing research into the chemistry of diruthenium(II,III) tetra­carboxyl­ates led us to attempt axial coordination of N-heterocyclic carbenes to the diruthenium(II,III) core, as had successfully been accomplished on the analogous dirhodium(II,II) core (André et al., 2008[André, V., Duarte, M. T., Trindade, A. F., Góis, P. M. P. & Afonso, C. A. M. (2008). Acta Cryst. C64, m345-m348.]). Our attempts have been unsuccessful but we were able to isolate crystals of an oxidized imidizolium species as its title perchlorate salt in the course of one of our reactions.

The mol­ecule consists of an imidazolium core with iso­propyl­phenyl substituents attached to each heterocyclic nitro­gen atom (Fig. 1[link]). The bond lengths in the heterocycle: C2—C2([3\over2] − x, [1\over2] − y, z) = 1.340 (4), N1—C1 = 1.326 (2) and N1—C2 = 1.378 (3) Å, are consistent with a double bond between the C2 carbon atoms and bond delocalization over the N—C—N part of the ring, similar to other iso­propyl­phenyl derivatives (e.g. Arduengo et al., 1999[Arduengo, A. J., Krafczyk, R. & Schmutzler, R. (1999). Tetrahedron, 55, 14523-14534.]; Berger et al., 2012[Berger, M., Auner, N. & Bolte, M. (2012). Acta Cryst. E68, o1844.]; Blue et al., 2006[Blue, E. D., Gunnoe, T. B., Peterson, J. L. & Boyle, P. D. (2006). J. Organomet. Chem. 691, 5988-5993.]). In the crystal, extensive C—H⋯O hydrogen bonding is seen (Table 1[link]) involving the C1—H1 grouping and the perchlorate anion (symmetrically bifurcating two of the perchlorate oxygen atoms) as well as the C2—H2A grouping and the other perchlorate oxygen atom, leading to [001] chains (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O1 0.95 2.37 3.232 (3) 151
C1—H1A⋯O1i 0.95 2.37 3.232 (3) 151
C2—H2A⋯O2ii 0.95 2.32 3.096 (3) 138
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, z]; (ii) [-x+{\script{3\over 2}}, y, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids at the 50% probability level. H atoms are omitted for clarity and unlabelled atoms are generated by the symmetry operator (−x + [{3\over 2}], −y + [{1\over 2}], z).
[Figure 2]
Figure 2
Packing diagram viewed along the [010] axis showing the hydrogen-bonding inter­actions.

Crystal structures of perchlorate salts of imidazolium deriv­atives are rare (Crees et al., 2010[Crees, R. S., Cole, M. L., Hanton, L. R. & Sumby, C. J. (2010). Inorg. Chem. 49, 1712-1719.]; Pesch et al., 2004[Pesch, J., Harms, K. & Bach, T. (2004). Eur. J. Org. Chem. pp. 2025-2035.]; Fürstner et al., 2006[Fürstner, A., Alcarazo, M., César, V. & Lehmann, C. W. (2006). Chem. Commun. 2176-2178.]) and there are none for the iso­propyl­phenyl derivative.

Synthesis and crystallization

Crystals of the title compound were isolated as a byproduct of the reaction of [Ru2(μ-O2CCH3)4(MeOH)2](ClO4) (0.100 g, 0.166 mmol) in 10 ml of methanol with a twofold excess of the carbene 1,3-bis­(2,6-diiso­propyl­phen­yl)-1,3-di­hydro-2H-imidazol-2-yl­idene (0.131 g, 0.333 mmol) in 5 ml of methanol. This solution was stirred for 2 h and after slow evaporation yielded a brown powder (ruthenium complex) and crystals of the de-protonated, oxidized, imidazolium, 1,3-bis­(2,6-diiso­propyl­phen­yl)imidazolium, as a perchlorate salt.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C27H37N2+·ClO4
Mr 489.04
Crystal system, space group Orthorhombic, Pccn
Temperature (K) 180
a, b, c (Å) 11.0729 (12), 12.6284 (13), 19.6141 (19)
V3) 2742.7 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.17
Crystal size (mm) 0.15 × 0.10 × 0.08
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2010[Bruker (2010). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.975, 0.986
No. of measured, independent and observed [I > 2σ(I)] reflections 7718, 2695, 1759
Rint 0.042
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.150, 1.04
No. of reflections 2695
No. of parameters 159
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.31, −0.42
Computer programs: APEX2 and SAINT (Bruker, 2010[Bruker (2010). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/1 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXT2018/1 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

1,3-Bis(2,6-diisopropylphenyl)imidazolium perchlorate top
Crystal data top
C27H37N2+·ClO4Dx = 1.184 Mg m3
Mr = 489.04Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PccnCell parameters from 1213 reflections
a = 11.0729 (12) Åθ = 2.5–21.3°
b = 12.6284 (13) ŵ = 0.17 mm1
c = 19.6141 (19) ÅT = 180 K
V = 2742.7 (5) Å3Block, colourless
Z = 40.15 × 0.10 × 0.08 mm
F(000) = 1048
Data collection top
Bruker APEXII CCD
diffractometer
2695 independent reflections
Radiation source: fine-focus sealed tube1759 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
φ and ω scansθmax = 26.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
h = 1013
Tmin = 0.975, Tmax = 0.986k = 1510
7718 measured reflectionsl = 1824
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0691P)2 + 0.6803P]
where P = (Fo2 + 2Fc2)/3
2695 reflections(Δ/σ)max < 0.001
159 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.42 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All of the H atoms were placed in geometrically calculated positions, with C—H = 0.95 (aromatic), 1.00 (CH, aliphatic) and 0.98 Å (CH3), and refined as riding atoms, with Uiso(H) = 1.5 UeqC(methyl), or 1.2 Ueq(other C). In addition, the methyl groups were refined with AFIX 137, which allowed the rotation of the methyl groups whilst keeping the C—H distances and X—C—H angles fixed.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.78014 (16)0.33094 (13)0.41998 (9)0.0274 (4)
Cl10.75000.25000.18392 (4)0.0497 (3)
O10.85386 (16)0.24115 (18)0.22649 (9)0.0646 (6)
O20.75960 (19)0.34257 (19)0.14182 (10)0.0745 (7)
C10.75000.25000.38038 (16)0.0275 (7)
H1A0.75000.25000.33190.033*
C20.7687 (2)0.30046 (17)0.48715 (11)0.0336 (5)
H2A0.78450.34300.52610.040*
C30.8224 (2)0.43217 (16)0.39426 (11)0.0303 (5)
C40.7371 (2)0.51047 (17)0.38081 (12)0.0347 (5)
C50.7810 (2)0.60378 (19)0.35238 (14)0.0470 (7)
H5A0.72610.65890.34110.056*
C60.9023 (2)0.61800 (19)0.34024 (15)0.0506 (7)
H6A0.93000.68250.32090.061*
C70.9836 (2)0.53943 (19)0.35594 (14)0.0467 (7)
H7A1.06710.55090.34770.056*
C80.9462 (2)0.44387 (17)0.38346 (12)0.0361 (6)
C90.6034 (2)0.49721 (19)0.39413 (13)0.0399 (6)
H9A0.59250.43110.42150.048*
C100.5331 (3)0.4840 (3)0.32793 (16)0.0674 (9)
H10A0.56740.42530.30160.101*
H10B0.53820.54940.30120.101*
H10C0.44830.46870.33840.101*
C110.5522 (3)0.5888 (2)0.43552 (15)0.0548 (7)
H11A0.59880.59690.47770.082*
H11B0.46760.57430.44670.082*
H11C0.55730.65420.40880.082*
C121.0364 (2)0.35671 (19)0.39863 (14)0.0440 (6)
H12A0.99180.29780.42160.053*
C131.0910 (3)0.3128 (3)0.33389 (16)0.0695 (10)
H13A1.02640.29590.30150.104*
H13B1.13670.24840.34450.104*
H13C1.14510.36560.31370.104*
C141.1353 (3)0.3938 (3)0.44702 (17)0.0696 (9)
H14A1.18770.33390.45860.104*
H14B1.09860.42210.48870.104*
H14C1.18320.44930.42490.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0325 (9)0.0239 (9)0.0257 (9)0.0005 (7)0.0004 (8)0.0008 (8)
Cl10.0373 (5)0.0842 (7)0.0277 (5)0.0176 (5)0.0000.000
O10.0438 (11)0.1088 (17)0.0412 (11)0.0205 (11)0.0120 (9)0.0006 (11)
O20.0759 (15)0.1031 (17)0.0445 (11)0.0105 (13)0.0023 (11)0.0287 (12)
C10.0312 (15)0.0269 (16)0.0244 (15)0.0015 (13)0.0000.000
C20.0446 (13)0.0339 (11)0.0224 (11)0.0038 (10)0.0015 (10)0.0053 (10)
C30.0377 (12)0.0236 (11)0.0295 (12)0.0040 (9)0.0038 (10)0.0027 (10)
C40.0406 (13)0.0277 (11)0.0358 (13)0.0009 (10)0.0062 (11)0.0003 (10)
C50.0529 (15)0.0279 (12)0.0602 (18)0.0054 (11)0.0120 (13)0.0086 (13)
C60.0573 (17)0.0284 (13)0.0660 (19)0.0074 (12)0.0207 (14)0.0056 (13)
C70.0431 (14)0.0384 (14)0.0585 (18)0.0084 (11)0.0150 (13)0.0054 (13)
C80.0367 (13)0.0317 (12)0.0400 (14)0.0008 (10)0.0050 (10)0.0076 (11)
C90.0369 (13)0.0338 (13)0.0488 (16)0.0047 (10)0.0041 (11)0.0082 (12)
C100.0490 (16)0.081 (2)0.072 (2)0.0045 (16)0.0060 (15)0.0132 (19)
C110.0513 (16)0.0511 (17)0.0620 (18)0.0074 (13)0.0158 (14)0.0025 (15)
C120.0354 (13)0.0371 (13)0.0596 (17)0.0017 (10)0.0020 (12)0.0050 (13)
C130.0500 (17)0.082 (2)0.076 (2)0.0255 (16)0.0133 (15)0.0375 (19)
C140.068 (2)0.069 (2)0.071 (2)0.0156 (17)0.0245 (18)0.0213 (18)
Geometric parameters (Å, º) top
N1—C11.326 (2)C7—H7A0.9500
N1—C21.378 (3)C8—C121.516 (3)
N1—C31.452 (3)C9—C111.523 (3)
Cl1—O11.4255 (17)C9—C101.523 (4)
Cl1—O1i1.4255 (17)C9—H9A1.0000
Cl1—O21.435 (2)C10—H10A0.9800
Cl1—O2i1.435 (2)C10—H10B0.9800
C1—N1i1.327 (2)C10—H10C0.9800
C1—H1A0.9500C11—H11A0.9800
C2—C2i1.340 (4)C11—H11B0.9800
C2—H2A0.9500C11—H11C0.9800
C3—C41.393 (3)C12—C131.512 (4)
C3—C81.395 (3)C12—C141.523 (4)
C4—C51.391 (3)C12—H12A1.0000
C4—C91.512 (3)C13—H13A0.9800
C5—C61.375 (3)C13—H13B0.9800
C5—H5A0.9500C13—H13C0.9800
C6—C71.375 (4)C14—H14A0.9800
C6—H6A0.9500C14—H14B0.9800
C7—C81.385 (3)C14—H14C0.9800
C1—N1—C2108.75 (18)C11—C9—C10110.3 (2)
C1—N1—C3123.79 (18)C4—C9—H9A107.7
C2—N1—C3127.41 (17)C11—C9—H9A107.7
O1—Cl1—O1i108.30 (16)C10—C9—H9A107.7
O1—Cl1—O2109.94 (12)C9—C10—H10A109.5
O1i—Cl1—O2109.44 (12)C9—C10—H10B109.5
O1—Cl1—O2i109.44 (12)H10A—C10—H10B109.5
O1i—Cl1—O2i109.94 (12)C9—C10—H10C109.5
O2—Cl1—O2i109.75 (19)H10A—C10—H10C109.5
N1—C1—N1i108.3 (3)H10B—C10—H10C109.5
N1—C1—H1A125.8C9—C11—H11A109.5
N1i—C1—H1A125.8C9—C11—H11B109.5
C2i—C2—N1107.09 (11)H11A—C11—H11B109.5
C2i—C2—H2A126.5C9—C11—H11C109.5
N1—C2—H2A126.5H11A—C11—H11C109.5
C4—C3—C8124.2 (2)H11B—C11—H11C109.5
C4—C3—N1118.17 (19)C13—C12—C8111.4 (2)
C8—C3—N1117.58 (19)C13—C12—C14110.4 (2)
C5—C4—C3116.1 (2)C8—C12—C14111.9 (2)
C5—C4—C9120.4 (2)C13—C12—H12A107.6
C3—C4—C9123.5 (2)C8—C12—H12A107.6
C6—C5—C4121.4 (2)C14—C12—H12A107.6
C6—C5—H5A119.3C12—C13—H13A109.5
C4—C5—H5A119.3C12—C13—H13B109.5
C7—C6—C5120.4 (2)H13A—C13—H13B109.5
C7—C6—H6A119.8C12—C13—H13C109.5
C5—C6—H6A119.8H13A—C13—H13C109.5
C6—C7—C8121.4 (2)H13B—C13—H13C109.5
C6—C7—H7A119.3C12—C14—H14A109.5
C8—C7—H7A119.3C12—C14—H14B109.5
C7—C8—C3116.4 (2)H14A—C14—H14B109.5
C7—C8—C12120.8 (2)C12—C14—H14C109.5
C3—C8—C12122.7 (2)H14A—C14—H14C109.5
C4—C9—C11111.9 (2)H14B—C14—H14C109.5
C4—C9—C10111.4 (2)
C2—N1—C1—N1i0.03 (11)C5—C6—C7—C80.8 (4)
C3—N1—C1—N1i177.7 (2)C6—C7—C8—C30.1 (4)
C1—N1—C2—C2i0.1 (3)C6—C7—C8—C12178.2 (3)
C3—N1—C2—C2i177.6 (2)C4—C3—C8—C71.7 (4)
C1—N1—C3—C490.2 (2)N1—C3—C8—C7177.1 (2)
C2—N1—C3—C492.5 (3)C4—C3—C8—C12179.9 (2)
C1—N1—C3—C888.6 (2)N1—C3—C8—C121.1 (3)
C2—N1—C3—C888.7 (3)C5—C4—C9—C1152.5 (3)
C8—C3—C4—C52.5 (3)C3—C4—C9—C11128.8 (2)
N1—C3—C4—C5176.2 (2)C5—C4—C9—C1071.5 (3)
C8—C3—C4—C9178.8 (2)C3—C4—C9—C10107.1 (3)
N1—C3—C4—C92.5 (3)C7—C8—C12—C1366.9 (3)
C3—C4—C5—C61.7 (4)C3—C8—C12—C13111.3 (3)
C9—C4—C5—C6179.5 (3)C7—C8—C12—C1457.3 (3)
C4—C5—C6—C70.1 (4)C3—C8—C12—C14124.6 (3)
Symmetry code: (i) x+3/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O10.952.373.232 (3)151
C1—H1A···O1i0.952.373.232 (3)151
C2—H2A···O2ii0.952.323.096 (3)138
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) x+3/2, y, z+1/2.
 

Funding information

Funding for this research was provided by: Natural Sciences and Engineering Research Council of Canada (grant to Manuel Aquino).

References

First citationAndré, V., Duarte, M. T., Trindade, A. F., Góis, P. M. P. & Afonso, C. A. M. (2008). Acta Cryst. C64, m345–m348.  CSD CrossRef IUCr Journals Google Scholar
First citationArduengo, A. J., Krafczyk, R. & Schmutzler, R. (1999). Tetrahedron, 55, 14523–14534.  CSD CrossRef CAS Google Scholar
First citationBerger, M., Auner, N. & Bolte, M. (2012). Acta Cryst. E68, o1844.  CSD CrossRef IUCr Journals Google Scholar
First citationBlue, E. D., Gunnoe, T. B., Peterson, J. L. & Boyle, P. D. (2006). J. Organomet. Chem. 691, 5988–5993.  CSD CrossRef CAS Google Scholar
First citationBruker (2010). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCrees, R. S., Cole, M. L., Hanton, L. R. & Sumby, C. J. (2010). Inorg. Chem. 49, 1712–1719.  CSD CrossRef CAS Google Scholar
First citationFürstner, A., Alcarazo, M., César, V. & Lehmann, C. W. (2006). Chem. Commun. 2176–2178.  Google Scholar
First citationPesch, J., Harms, K. & Bach, T. (2004). Eur. J. Org. Chem. pp. 2025–2035.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds