organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1,3-Bis(4-bromo­phen­yl)propane

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry & Chemistry Research Center, United States Air Force Academy, USAF Academy, Colorado 80840, USA, bAir Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Dayton, OH 45433-7750, USA, and cRose-Hulman Institute of Technology, 5500 Wabach Ave, Terre Haute, IN 47803, USA
*Correspondence e-mail: scott.iacono@usafa.edu

Edited by R. J. Butcher, Howard University, USA (Received 23 March 2018; accepted 10 April 2018; online 17 April 2018)

The title compound, C15H14Br2, obtained through the reduction of 4,4′-di­bromo­chalcone, has monoclinic P21 symmetry at 100 K. No directional inter­actions could be identified in the crystal.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound (Fig. 1[link]) crystallizes in the monoclinic space group P21 with one mol­ecule per asymmetric unit. The 4-bromo­phenyl substituents are located in the anti positions of the propane linker, with C4—C1—C2—C3 and C1—C2—C3–C10 torsion angles of −174.5 (3) and 179.5 (3)°, respectively. The phenyl rings are oriented in a nearly perpendicular arrangement to the propane chain as shown by the dihedral angles between the C1–C2–C3 plane and the phenyl rings of 74.7 (3)° (C4–C9) and 87.6 (3)° (C10–C15).

[Figure 1]
Figure 1
The mol­ecular structure of 1,3-bis­(4-bromo­phen­yl)propane. Displacement ellipsoids are shown at the 50% probability level.

Despite the presence of multiple aromatic rings within the mol­ecule, there are no obvious π-stacking inter­actions due to the kinked arrangement of the propane linker. The only inter­actions present are typical van der Waals inter­actions.

A search in the Cambridge Structural Database (CSD, Version 5.38, last update November 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed that a structurally similar 1,3-bis­(4-bromo­phen­yl)acetone has been reported (Varughese & Draper, 2010[Varughese, S. & Draper, S. M. (2010). Cryst. Growth Des. 10, 2298-2305.])

Synthesis and crystallization

The title compound was prepared via a modified literature procedure (Murata et al., 2004[Murata, T., Umeda, M., Yoshikawa, S., Urbahns, K., Gupta, J. & Sakurai, O. (2004). Int. Patent WO 2004/043926 A1.]). Tri­ethyl­silane (14.1 ml, 87.4 mmol) was added dropwise to a stirring suspension of 1,3-bis­(4-bromo­phen­yl)-2-propen-1-one (7.99 g, 21.9 mmol) in tri­fluoro­acetic acid (20 ml) under N2 at 0°C. The reaction mixture was stirred and slowly warmed to room temperature over 18 h. The resulting white precipitate was filtered, taken up in di­chloro­methane (50 ml), dried over anhydrous MgSO4, filtered, and residual solvent was removed in vacuo. The crude, oily product solidified upon standing over 48 h. The waxy solid was recrystallized by dissolving in boiling hexa­nes (25 ml) and cooling (5°C). Vacuum filtration, washing with cold hexa­nes (10 ml), and removal of residual solvent in vacuo afforded the title compound as a pale yellow solid (4.57 g, 59.1%). Crystals suitable for single-crystal X-ray diffraction were obtained from the slow evaporation of methanol. 1H NMR (500 MHz, CDCl3): δ 7.41 (d, 4H, J = 8.0 Hz), 7.05 (d, 4H, J = 8.0 Hz), 2.59 (t, 4H, J = 7.5 Hz), 1.91 (p, 2H, J = 8.0 Hz). 13C NMR (500 MHz, CDCl3): δ 141.0, 131.5, 130.3, 119.7, 34.8, 32.7.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C15H14Br2
Mr 354.08
Crystal system, space group Monoclinic, P21
Temperature (K) 100
a, b, c (Å) 7.4526 (13), 5.8441 (10), 16.278 (3)
β (°) 101.808 (2)
V3) 694.0 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 5.82
Crystal size (mm) 0.47 × 0.25 × 0.12
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2017[Bruker (2017). SADABS, APEX3 and SAINT. Bruker-Nonius AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.25, 0.55
No. of measured, independent and observed [I > 2σ(I)] reflections 14936, 3562, 3421
Rint 0.034
(sin θ/λ)max−1) 0.676
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.055, 1.38
No. of reflections 3562
No. of parameters 154
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.68, −0.35
Absolute structure Flack x determined using 1492 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.019 (9)
Computer programs: APEX3 and SAINT (Bruker, 2017[Bruker (2017). SADABS, APEX3 and SAINT. Bruker-Nonius AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and SHELXL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2017); cell refinement: SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL (Sheldrick, 2008).

1,3-Bis(4-bromophenyl)propane top
Crystal data top
C15H14Br2F(000) = 348
Mr = 354.08Dx = 1.694 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 7.4526 (13) ÅCell parameters from 9704 reflections
b = 5.8441 (10) Åθ = 2.6–29.7°
c = 16.278 (3) ŵ = 5.82 mm1
β = 101.808 (2)°T = 100 K
V = 694.0 (2) Å3Flat prism, clear colourless
Z = 20.47 × 0.25 × 0.12 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3562 independent reflections
Radiation source: fine focus sealed tube3421 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 8.3333 pixels mm-1θmax = 28.7°, θmin = 2.6°
ω Scans scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2017)
k = 77
Tmin = 0.25, Tmax = 0.55l = 2121
14936 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.023 w = 1/[σ2(Fo2)]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.055(Δ/σ)max = 0.001
S = 1.38Δρmax = 0.68 e Å3
3562 reflectionsΔρmin = 0.35 e Å3
154 parametersAbsolute structure: Flack x determined using 1492 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.019 (9)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The hydrogen atoms were included in calculated positions and refined with a riding model: C–H = 0.95 and 0.98 Å for aromatic and methyl H atoms, respectively, and and Uiso(H) = 1.2 Ueq(C-aromatic) and Uiso(H) = 1.5 Ueq(C-methyl).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.72512 (6)0.64324 (6)0.32150 (2)0.02990 (11)
Br20.07038 (4)0.07332 (6)0.93844 (2)0.01940 (9)
C10.7965 (5)0.8018 (7)0.7041 (2)0.0203 (7)
H1A0.7734350.9613470.7148010.024*
H1B0.918940.7643180.7344970.024*
C20.6578 (4)0.6530 (7)0.73599 (18)0.0185 (6)
H2A0.6883040.4934610.729720.022*
H2B0.537220.6799540.7015330.022*
C30.6507 (5)0.6981 (6)0.8280 (2)0.0186 (7)
H3A0.7707090.6694570.8627310.022*
H3B0.6208350.8577250.8345650.022*
C40.7860 (5)0.7678 (6)0.6108 (2)0.0172 (7)
C50.6973 (5)0.9269 (6)0.5527 (2)0.0194 (7)
H50.6497931.059450.5716180.023*
C60.6785 (5)0.8907 (6)0.4664 (2)0.0205 (7)
H60.6193880.9979360.427980.025*
C70.7494 (5)0.6922 (6)0.43923 (19)0.0191 (7)
C80.8384 (5)0.5303 (6)0.4947 (2)0.0203 (8)
H80.8852310.3978120.4754420.024*
C90.8562 (4)0.5710 (7)0.5808 (2)0.0193 (6)
H90.9164310.4638470.6188860.023*
C100.5111 (4)0.5499 (6)0.85791 (18)0.0157 (6)
C110.5604 (5)0.3371 (6)0.8952 (2)0.0165 (7)
H110.681880.2895130.9034940.02*
C120.4309 (4)0.1948 (6)0.92003 (19)0.0162 (7)
H120.4654090.0545460.9453710.019*
C130.2489 (4)0.2666 (6)0.90622 (19)0.0154 (6)
C140.1967 (5)0.4775 (6)0.8701 (2)0.0192 (7)
H140.0752570.5251360.8620570.023*
C150.3282 (4)0.6167 (6)0.84615 (19)0.0195 (7)
H150.2932750.7578950.8216710.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0370 (2)0.0355 (2)0.01707 (16)0.00535 (17)0.00528 (14)0.00373 (15)
Br20.01583 (15)0.01890 (15)0.02574 (17)0.00157 (13)0.00954 (12)0.00104 (12)
C10.0195 (18)0.0252 (19)0.0174 (15)0.0039 (14)0.0069 (14)0.0002 (14)
C20.0182 (16)0.0209 (16)0.0183 (14)0.0031 (14)0.0080 (12)0.0013 (14)
C30.0183 (17)0.0195 (19)0.0196 (15)0.0027 (14)0.0074 (13)0.0016 (12)
C40.0133 (16)0.0207 (17)0.0189 (15)0.0030 (13)0.0063 (13)0.0019 (13)
C50.0191 (18)0.0160 (16)0.0243 (17)0.0020 (13)0.0076 (14)0.0006 (13)
C60.0187 (17)0.0202 (18)0.0215 (17)0.0020 (14)0.0016 (14)0.0052 (14)
C70.0194 (17)0.0236 (19)0.0152 (14)0.0042 (14)0.0054 (12)0.0007 (12)
C80.0207 (17)0.017 (2)0.0266 (18)0.0016 (13)0.0123 (14)0.0007 (13)
C90.0185 (15)0.0197 (16)0.0209 (16)0.0021 (16)0.0069 (13)0.0069 (15)
C100.0158 (14)0.0184 (17)0.0140 (14)0.0026 (13)0.0055 (12)0.0041 (12)
C110.0135 (16)0.0200 (17)0.0164 (15)0.0015 (13)0.0045 (13)0.0024 (13)
C120.0173 (16)0.0161 (18)0.0159 (14)0.0020 (13)0.0052 (12)0.0004 (12)
C130.0142 (16)0.0189 (17)0.0147 (14)0.0004 (12)0.0070 (12)0.0014 (12)
C140.0145 (16)0.0224 (17)0.0218 (16)0.0044 (14)0.0066 (13)0.0020 (14)
C150.0196 (16)0.0171 (19)0.0226 (15)0.0021 (13)0.0061 (13)0.0035 (13)
Geometric parameters (Å, º) top
Br1—C71.909 (3)C6—C71.384 (5)
Br2—C131.899 (3)C6—H60.93
C1—C41.519 (4)C7—C81.380 (5)
C1—C21.521 (5)C8—C91.400 (5)
C1—H1A0.97C8—H80.93
C1—H1B0.97C9—H90.93
C2—C31.532 (4)C10—C151.392 (4)
C2—H2A0.97C10—C111.400 (5)
C2—H2B0.97C11—C121.395 (5)
C3—C101.509 (5)C11—H110.93
C3—H3A0.97C12—C131.393 (4)
C3—H3B0.97C12—H120.93
C4—C91.392 (5)C13—C141.387 (5)
C4—C51.393 (5)C14—C151.390 (5)
C5—C61.399 (5)C14—H140.93
C5—H50.93C15—H150.93
C4—C1—C2111.5 (3)C8—C7—C6121.9 (3)
C4—C1—H1A109.3C8—C7—Br1119.2 (3)
C2—C1—H1A109.3C6—C7—Br1118.8 (3)
C4—C1—H1B109.3C7—C8—C9118.2 (3)
C2—C1—H1B109.3C7—C8—H8120.9
H1A—C1—H1B108.0C9—C8—H8120.9
C1—C2—C3113.4 (3)C4—C9—C8121.7 (3)
C1—C2—H2A108.9C4—C9—H9119.1
C3—C2—H2A108.9C8—C9—H9119.1
C1—C2—H2B108.9C15—C10—C11118.1 (3)
C3—C2—H2B108.9C15—C10—C3121.0 (3)
H2A—C2—H2B107.7C11—C10—C3120.8 (3)
C10—C3—C2112.4 (3)C12—C11—C10121.3 (3)
C10—C3—H3A109.1C12—C11—H11119.4
C2—C3—H3A109.1C10—C11—H11119.4
C10—C3—H3B109.1C13—C12—C11118.8 (3)
C2—C3—H3B109.1C13—C12—H12120.6
H3A—C3—H3B107.9C11—C12—H12120.6
C9—C4—C5118.3 (3)C14—C13—C12121.0 (3)
C9—C4—C1120.9 (3)C14—C13—Br2119.6 (3)
C5—C4—C1120.8 (3)C12—C13—Br2119.4 (2)
C4—C5—C6121.1 (3)C13—C14—C15119.1 (3)
C4—C5—H5119.4C13—C14—H14120.4
C6—C5—H5119.4C15—C14—H14120.4
C7—C6—C5118.8 (3)C14—C15—C10121.6 (3)
C7—C6—H6120.6C14—C15—H15119.2
C5—C6—H6120.6C10—C15—H15119.2
 

Funding information

Funding for this research was provided by: Defense Threat Reduction Agency (DTRA) - Joint Science and Technology Transfer Office for Chemical and Biological Defense (award No. HDTRA13964); Air Force Office of Scientific Research .

References

First citationBruker (2017). SADABS, APEX3 and SAINT. Bruker–Nonius AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMurata, T., Umeda, M., Yoshikawa, S., Urbahns, K., Gupta, J. & Sakurai, O. (2004). Int. Patent WO 2004/043926 A1Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVarughese, S. & Draper, S. M. (2010). Cryst. Growth Des. 10, 2298–2305.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds