organic compounds
1,3-Bis(4-bromophenyl)propane
aDepartment of Chemistry & Chemistry Research Center, United States Air Force Academy, USAF Academy, Colorado 80840, USA, bAir Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Dayton, OH 45433-7750, USA, and cRose-Hulman Institute of Technology, 5500 Wabach Ave, Terre Haute, IN 47803, USA
*Correspondence e-mail: scott.iacono@usafa.edu
The title compound, C15H14Br2, obtained through the reduction of 4,4′-dibromochalcone, has monoclinic P21 symmetry at 100 K. No directional interactions could be identified in the crystal.
Keywords: crystal structure; 4-bromophenyl; propane.
CCDC reference: 1836177
Structure description
The title compound (Fig. 1) crystallizes in the monoclinic P21 with one molecule per The 4-bromophenyl substituents are located in the anti positions of the propane linker, with C4—C1—C2—C3 and C1—C2—C3–C10 torsion angles of −174.5 (3) and 179.5 (3)°, respectively. The phenyl rings are oriented in a nearly perpendicular arrangement to the propane chain as shown by the dihedral angles between the C1–C2–C3 plane and the phenyl rings of 74.7 (3)° (C4–C9) and 87.6 (3)° (C10–C15).
Despite the presence of multiple aromatic rings within the molecule, there are no obvious π-stacking interactions due to the kinked arrangement of the propane linker. The only interactions present are typical van der Waals interactions.
A search in the Cambridge Structural Database (CSD, Version 5.38, last update November 2016; Groom et al., 2016) revealed that a structurally similar 1,3-bis(4-bromophenyl)acetone has been reported (Varughese & Draper, 2010)
Synthesis and crystallization
The title compound was prepared via a modified literature procedure (Murata et al., 2004). Triethylsilane (14.1 ml, 87.4 mmol) was added dropwise to a stirring suspension of 1,3-bis(4-bromophenyl)-2-propen-1-one (7.99 g, 21.9 mmol) in trifluoroacetic acid (20 ml) under N2 at 0°C. The reaction mixture was stirred and slowly warmed to room temperature over 18 h. The resulting white precipitate was filtered, taken up in dichloromethane (50 ml), dried over anhydrous MgSO4, filtered, and residual solvent was removed in vacuo. The crude, oily product solidified upon standing over 48 h. The waxy solid was recrystallized by dissolving in boiling hexanes (25 ml) and cooling (5°C). Vacuum filtration, washing with cold hexanes (10 ml), and removal of residual solvent in vacuo afforded the title compound as a pale yellow solid (4.57 g, 59.1%). Crystals suitable for single-crystal X-ray diffraction were obtained from the slow evaporation of methanol. 1H NMR (500 MHz, CDCl3): δ 7.41 (d, 4H, J = 8.0 Hz), 7.05 (d, 4H, J = 8.0 Hz), 2.59 (t, 4H, J = 7.5 Hz), 1.91 (p, 2H, J = 8.0 Hz). 13C NMR (500 MHz, CDCl3): δ 141.0, 131.5, 130.3, 119.7, 34.8, 32.7.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 1Structural data
CCDC reference: 1836177
https://doi.org/10.1107/S2414314618005631/bv4016sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314618005631/bv4016Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314618005631/bv4016Isup3.cml
Data collection: APEX3 (Bruker, 2017); cell
SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL (Sheldrick, 2008).C15H14Br2 | F(000) = 348 |
Mr = 354.08 | Dx = 1.694 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.4526 (13) Å | Cell parameters from 9704 reflections |
b = 5.8441 (10) Å | θ = 2.6–29.7° |
c = 16.278 (3) Å | µ = 5.82 mm−1 |
β = 101.808 (2)° | T = 100 K |
V = 694.0 (2) Å3 | Flat prism, clear colourless |
Z = 2 | 0.47 × 0.25 × 0.12 mm |
Bruker SMART APEX CCD diffractometer | 3562 independent reflections |
Radiation source: fine focus sealed tube | 3421 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 28.7°, θmin = 2.6° |
ω Scans scans | h = −10→10 |
Absorption correction: multi-scan (SADABS; Bruker, 2017) | k = −7→7 |
Tmin = 0.25, Tmax = 0.55 | l = −21→21 |
14936 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.023 | w = 1/[σ2(Fo2)] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.055 | (Δ/σ)max = 0.001 |
S = 1.38 | Δρmax = 0.68 e Å−3 |
3562 reflections | Δρmin = −0.35 e Å−3 |
154 parameters | Absolute structure: Flack x determined using 1492 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
1 restraint | Absolute structure parameter: 0.019 (9) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The hydrogen atoms were included in calculated positions and refined with a riding model: C–H = 0.95 and 0.98 Å for aromatic and methyl H atoms, respectively, and and Uiso(H) = 1.2 Ueq(C-aromatic) and Uiso(H) = 1.5 Ueq(C-methyl). |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.72512 (6) | 0.64324 (6) | 0.32150 (2) | 0.02990 (11) | |
Br2 | 0.07038 (4) | 0.07332 (6) | 0.93844 (2) | 0.01940 (9) | |
C1 | 0.7965 (5) | 0.8018 (7) | 0.7041 (2) | 0.0203 (7) | |
H1A | 0.773435 | 0.961347 | 0.714801 | 0.024* | |
H1B | 0.91894 | 0.764318 | 0.734497 | 0.024* | |
C2 | 0.6578 (4) | 0.6530 (7) | 0.73599 (18) | 0.0185 (6) | |
H2A | 0.688304 | 0.493461 | 0.72972 | 0.022* | |
H2B | 0.53722 | 0.679954 | 0.701533 | 0.022* | |
C3 | 0.6507 (5) | 0.6981 (6) | 0.8280 (2) | 0.0186 (7) | |
H3A | 0.770709 | 0.669457 | 0.862731 | 0.022* | |
H3B | 0.620835 | 0.857725 | 0.834565 | 0.022* | |
C4 | 0.7860 (5) | 0.7678 (6) | 0.6108 (2) | 0.0172 (7) | |
C5 | 0.6973 (5) | 0.9269 (6) | 0.5527 (2) | 0.0194 (7) | |
H5 | 0.649793 | 1.05945 | 0.571618 | 0.023* | |
C6 | 0.6785 (5) | 0.8907 (6) | 0.4664 (2) | 0.0205 (7) | |
H6 | 0.619388 | 0.997936 | 0.42798 | 0.025* | |
C7 | 0.7494 (5) | 0.6922 (6) | 0.43923 (19) | 0.0191 (7) | |
C8 | 0.8384 (5) | 0.5303 (6) | 0.4947 (2) | 0.0203 (8) | |
H8 | 0.885231 | 0.397812 | 0.475442 | 0.024* | |
C9 | 0.8562 (4) | 0.5710 (7) | 0.5808 (2) | 0.0193 (6) | |
H9 | 0.916431 | 0.463847 | 0.618886 | 0.023* | |
C10 | 0.5111 (4) | 0.5499 (6) | 0.85791 (18) | 0.0157 (6) | |
C11 | 0.5604 (5) | 0.3371 (6) | 0.8952 (2) | 0.0165 (7) | |
H11 | 0.68188 | 0.289513 | 0.903494 | 0.02* | |
C12 | 0.4309 (4) | 0.1948 (6) | 0.92003 (19) | 0.0162 (7) | |
H12 | 0.465409 | 0.054546 | 0.945371 | 0.019* | |
C13 | 0.2489 (4) | 0.2666 (6) | 0.90622 (19) | 0.0154 (6) | |
C14 | 0.1967 (5) | 0.4775 (6) | 0.8701 (2) | 0.0192 (7) | |
H14 | 0.075257 | 0.525136 | 0.862057 | 0.023* | |
C15 | 0.3282 (4) | 0.6167 (6) | 0.84615 (19) | 0.0195 (7) | |
H15 | 0.293275 | 0.757895 | 0.821671 | 0.023* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0370 (2) | 0.0355 (2) | 0.01707 (16) | −0.00535 (17) | 0.00528 (14) | −0.00373 (15) |
Br2 | 0.01583 (15) | 0.01890 (15) | 0.02574 (17) | −0.00157 (13) | 0.00954 (12) | 0.00104 (12) |
C1 | 0.0195 (18) | 0.0252 (19) | 0.0174 (15) | −0.0039 (14) | 0.0069 (14) | −0.0002 (14) |
C2 | 0.0182 (16) | 0.0209 (16) | 0.0183 (14) | −0.0031 (14) | 0.0080 (12) | −0.0013 (14) |
C3 | 0.0183 (17) | 0.0195 (19) | 0.0196 (15) | −0.0027 (14) | 0.0074 (13) | −0.0016 (12) |
C4 | 0.0133 (16) | 0.0207 (17) | 0.0189 (15) | −0.0030 (13) | 0.0063 (13) | 0.0019 (13) |
C5 | 0.0191 (18) | 0.0160 (16) | 0.0243 (17) | 0.0020 (13) | 0.0076 (14) | 0.0006 (13) |
C6 | 0.0187 (17) | 0.0202 (18) | 0.0215 (17) | 0.0020 (14) | 0.0016 (14) | 0.0052 (14) |
C7 | 0.0194 (17) | 0.0236 (19) | 0.0152 (14) | −0.0042 (14) | 0.0054 (12) | −0.0007 (12) |
C8 | 0.0207 (17) | 0.017 (2) | 0.0266 (18) | 0.0016 (13) | 0.0123 (14) | −0.0007 (13) |
C9 | 0.0185 (15) | 0.0197 (16) | 0.0209 (16) | 0.0021 (16) | 0.0069 (13) | 0.0069 (15) |
C10 | 0.0158 (14) | 0.0184 (17) | 0.0140 (14) | −0.0026 (13) | 0.0055 (12) | −0.0041 (12) |
C11 | 0.0135 (16) | 0.0200 (17) | 0.0164 (15) | 0.0015 (13) | 0.0045 (13) | −0.0024 (13) |
C12 | 0.0173 (16) | 0.0161 (18) | 0.0159 (14) | 0.0020 (13) | 0.0052 (12) | 0.0004 (12) |
C13 | 0.0142 (16) | 0.0189 (17) | 0.0147 (14) | −0.0004 (12) | 0.0070 (12) | −0.0014 (12) |
C14 | 0.0145 (16) | 0.0224 (17) | 0.0218 (16) | 0.0044 (14) | 0.0066 (13) | 0.0020 (14) |
C15 | 0.0196 (16) | 0.0171 (19) | 0.0226 (15) | 0.0021 (13) | 0.0061 (13) | 0.0035 (13) |
Br1—C7 | 1.909 (3) | C6—C7 | 1.384 (5) |
Br2—C13 | 1.899 (3) | C6—H6 | 0.93 |
C1—C4 | 1.519 (4) | C7—C8 | 1.380 (5) |
C1—C2 | 1.521 (5) | C8—C9 | 1.400 (5) |
C1—H1A | 0.97 | C8—H8 | 0.93 |
C1—H1B | 0.97 | C9—H9 | 0.93 |
C2—C3 | 1.532 (4) | C10—C15 | 1.392 (4) |
C2—H2A | 0.97 | C10—C11 | 1.400 (5) |
C2—H2B | 0.97 | C11—C12 | 1.395 (5) |
C3—C10 | 1.509 (5) | C11—H11 | 0.93 |
C3—H3A | 0.97 | C12—C13 | 1.393 (4) |
C3—H3B | 0.97 | C12—H12 | 0.93 |
C4—C9 | 1.392 (5) | C13—C14 | 1.387 (5) |
C4—C5 | 1.393 (5) | C14—C15 | 1.390 (5) |
C5—C6 | 1.399 (5) | C14—H14 | 0.93 |
C5—H5 | 0.93 | C15—H15 | 0.93 |
C4—C1—C2 | 111.5 (3) | C8—C7—C6 | 121.9 (3) |
C4—C1—H1A | 109.3 | C8—C7—Br1 | 119.2 (3) |
C2—C1—H1A | 109.3 | C6—C7—Br1 | 118.8 (3) |
C4—C1—H1B | 109.3 | C7—C8—C9 | 118.2 (3) |
C2—C1—H1B | 109.3 | C7—C8—H8 | 120.9 |
H1A—C1—H1B | 108.0 | C9—C8—H8 | 120.9 |
C1—C2—C3 | 113.4 (3) | C4—C9—C8 | 121.7 (3) |
C1—C2—H2A | 108.9 | C4—C9—H9 | 119.1 |
C3—C2—H2A | 108.9 | C8—C9—H9 | 119.1 |
C1—C2—H2B | 108.9 | C15—C10—C11 | 118.1 (3) |
C3—C2—H2B | 108.9 | C15—C10—C3 | 121.0 (3) |
H2A—C2—H2B | 107.7 | C11—C10—C3 | 120.8 (3) |
C10—C3—C2 | 112.4 (3) | C12—C11—C10 | 121.3 (3) |
C10—C3—H3A | 109.1 | C12—C11—H11 | 119.4 |
C2—C3—H3A | 109.1 | C10—C11—H11 | 119.4 |
C10—C3—H3B | 109.1 | C13—C12—C11 | 118.8 (3) |
C2—C3—H3B | 109.1 | C13—C12—H12 | 120.6 |
H3A—C3—H3B | 107.9 | C11—C12—H12 | 120.6 |
C9—C4—C5 | 118.3 (3) | C14—C13—C12 | 121.0 (3) |
C9—C4—C1 | 120.9 (3) | C14—C13—Br2 | 119.6 (3) |
C5—C4—C1 | 120.8 (3) | C12—C13—Br2 | 119.4 (2) |
C4—C5—C6 | 121.1 (3) | C13—C14—C15 | 119.1 (3) |
C4—C5—H5 | 119.4 | C13—C14—H14 | 120.4 |
C6—C5—H5 | 119.4 | C15—C14—H14 | 120.4 |
C7—C6—C5 | 118.8 (3) | C14—C15—C10 | 121.6 (3) |
C7—C6—H6 | 120.6 | C14—C15—H15 | 119.2 |
C5—C6—H6 | 120.6 | C10—C15—H15 | 119.2 |
Funding information
Funding for this research was provided by: Defense Threat Reduction Agency (DTRA) - Joint Science and Technology Transfer Office for Chemical and Biological Defense (award No. HDTRA13964); Air Force Office of Scientific Research .
References
Bruker (2017). SADABS, APEX3 and SAINT. Bruker–Nonius AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Murata, T., Umeda, M., Yoshikawa, S., Urbahns, K., Gupta, J. & Sakurai, O. (2004). Int. Patent WO 2004/043926 A1. Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Varughese, S. & Draper, S. M. (2010). Cryst. Growth Des. 10, 2298–2305. CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.