organic compounds
5-[Phenyl(pyridin-4-yl)amino]penta-2,4-diyn-1-ol
aDepartment of Material Science and Chemistry, Wakayama University, Sakaedani, Wakayama, 640-8510, Japan
*Correspondence e-mail: okuno@center.wakayama-u.ac.jp
In the title diacetylene derivative, C16H12N2O, the amino plane makes dihedral angles of 3.90 (4) and 60.53 (4)°, respectively, with the pyridyl and phenyl rings, indicating that an electron-deficient pyridyl ring makes better conjugation with a lone pair of the amino nitrogen atom. In the crystal, molecules form inversion dimers via pairs of hydrogen bonds between the hydroxy and pyridyl groups, with an O⋯N distance of 2.7765 (16) Å. The dimers stack along the a axis, but the title compound shows little solid-state polymerization reactivity.
Keywords: diacetylene derivative; crystal structure; hydrogen bond.
CCDC reference: 1830665
Structure description
In diacetylene derivatives, a phenylpyridylamino group is connected to a terminal acetylene group. Solid-state polymerization of diacetylene derivatives (Wegner, 1969) affords polydiacetylenes whose one-dimensional π system has attracted attention from a materials science viewpoint. In order to improve their properties, several strategies for making novel polydiacetylenes have been examined, such as the introduction of hetero atoms directly to their π system. However, except for the case of iodine or nitrogen, these attempts have resulted in failure owing to limitations on molecular arrangement for solid-state polymerization of diacetylenes (Baughman, 1974), where the molecular arrangement is expressed in terms of stacking intervals and the inclination angle of the diacetylene unit to the stacking axis. Some heteroatom-substituted polydiacetylenes have been developed successfully (Galli et al., 1988, 1989; Sarkar et al., 1998; Okuno et al., 2006; Tabata et al., 2012, 2016; Tokutome et al., 2012).
The title compound (Fig. 1) comprises two parts, viz. diacetylene and anilinopyridine units. The diacetylene unit curves slightly. The structure around the amino nitrogen atom is almost planar (r.m.s. deviation of C1/C6/C7/N1 plane = 0.0228 Å). The plane makes dihedral angles of 3.84 (7) and 60.64 (6)°, respectively, with the C1–C5/N2 pyridyl and C6–C11 phenyl rings, indicating that an electron-deficient pyridyl ring makes better conjugation with a lone pair of the amino nitrogen (Umezono & Okuno, 2015). The structure of 5-(diphenylamino)-2,4-pentadiyne-1-ol (Tokutome et al., 2012), where a pyridyl ring of the title compound is replaced by a phenyl ring, has an almost similar structure but here the phenyl rings make dihedral angles of 7.05 (9) and 82.5 (9)° with the amino plane. The large difference in the dihedral angle is thought to originate in intermolecular interactions.
In the crystal, molecules form centrosymmetric hydrogen-bonded dimers (Table 1, Fig. 2), where the O1⋯N2i distance is 2.7765 (16) Å. These dimeric unit stacks along the a axis where the repeating intervals and inclination angle of the diacetylene unit to the stacking axis are 4.0205 (11) Å and ca 66°. These stacking parameters do not satisfy Baughman's limitation, and the title compound did not show any solid-state polymerization reactivity. In the case of 5-(diphenylamino)-2,4-pentadiyne-1-ol, polymeric hydrogen bonds are formed among the hydroxy groups and they play a crucial role in the molecular arrangement. However, in the case of the title compound, the hydroxy groups are used for making dimeric hydrogen bonds. This is the main reason for forming an inert structure regarding solid-state polymerization.
Synthesis and crystallization
Sodium hydride (0.28 g, 11.8 mmol) was added to a solution of N-phenylpyridin-4-amine (1.00 g, 5.88 mmol) in tetrahydrofuran. Trichloroethylene (1.06 ml, 11.8 mmol) was added to the solution and it was stirred for 24 h under an argon atmosphere. The solution was concentrated under reduced pressure and extracted with chloroform. The chloroform solution was concentrated, and the residual oil was purified by to give 0.55 g (36%) of (E)-N-(1,2-dichlorovinyl)-N-phenylpyridin-4-amine as a black oil. 1H NMR (400 MHz, CDCl3): δ 6.40 (s, 1H); 6.76 (d, J = 8.0 Hz, 2H); 7.33(m, 3H); 7.44 (t, J = 8.0 Hz, 2H); 8.38 (d, J = 8.0 Hz, 2H).
A solution of butyllithium in hexane (6.2 mmol) was added to a solution of (E)-N-(1,2-dichlorovinyl)-N-phenylpyridin-4-amine (0.55 g, 2.1 mmol) at 193 K, and the solution was stirred for 2 h. The reaction was quenched at 253 K, and the solution was concentrated by a rotary evaporator. The residue was extracted with chloroform, and the organic layer was washed with water and then brine. Removal of the solvent gave 0.35 g (86%) of N-ethynyl-N-phenylpyridin-4-amine as a black oil. 1H NMR (400 MHz, CDCl3): δ 2.97 (s, 1H); 7.02 (dd, J = 4.8,1.6 Hz, 2H); 7.30–7.43(m, 3H); 7.47(t, J = 8.0 Hz, 2H); 8.39 (dd, J = 4.8, 1.6 Hz, 2H).
Cu-TMEDA catalyst prepared from CuI (0.021 g, 0.21 mmol) and TMEDA (0.063 ml, 0.42 mmol) was added to a solution of N-ethynyl-N-phenylpyridin-4-amine (0.81 g, 4.2 mmol) and 2-propyn-1-ol (1.2 ml, 20.9 mmol) in acetone (30 ml). The solution was stirred for 1 d and concentrated under reduced pressure. The residue was extracted with dichloromethane, and the organic layer was washed with 5% ammonium hydroxide and water. It was concentrated by a rotary evaporator, and the residue was purified by to afford the title compound (0.28 g, 28%) as a brown solid. 1H NMR (400 MHz, CDCl3): δ 2.07 (s, 1H); 4.41 (s, 2H); 7.03 (dd, J = 4.8,1.6 Hz, 2H); 7.38 (m, 3H); 7.49 (t, J = 8.1 Hz, 2H); 8.44 (dd, J = 4.8, 1.6 Hz, 2H).
Single colourless crystals of sufficient quality for X-ray crystallographic analysis were prepared by recrystallization from a dichloromethane solution.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1830665
https://doi.org/10.1107/S2414314618004546/xu4034sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314618004546/xu4034Isup2.hkl
Data collection: CrystalClear (Rigaku, 2008); cell
CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: CrystalStructure (Rigaku, 2014).C16H12N2O | Z = 2 |
Mr = 248.28 | F(000) = 260.00 |
Triclinic, P1 | Dx = 1.327 Mg m−3 |
a = 4.0205 (11) Å | Mo Kα radiation, λ = 0.71075 Å |
b = 11.316 (3) Å | Cell parameters from 2024 reflections |
c = 13.781 (4) Å | θ = 2.4–31.2° |
α = 85.067 (9)° | µ = 0.09 mm−1 |
β = 88.517 (9)° | T = 93 K |
γ = 84.335 (6)° | Block, colorless |
V = 621.5 (3) Å3 | 0.10 × 0.06 × 0.04 mm |
Rigaku Saturn724+ diffractometer | 1773 reflections with F2 > 2.0σ(F2) |
Detector resolution: 7.111 pixels mm-1 | Rint = 0.019 |
ω scans | θmax = 25.0°, θmin = 3.4° |
Absorption correction: numerical (NUMABS; Rigaku, 1999) | h = −4→4 |
Tmin = 0.995, Tmax = 0.997 | k = −13→13 |
4294 measured reflections | l = −14→16 |
2156 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.104 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0614P)2 + 0.0857P] where P = (Fo2 + 2Fc2)/3 |
2156 reflections | (Δ/σ)max < 0.001 |
176 parameters | Δρmax = 0.18 e Å−3 |
0 restraints | Δρmin = −0.17 e Å−3 |
Primary atom site location: structure-invariant direct methods |
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt). The C-bound H atoms were placed at ideal positions and were refined as riding on their parent C atoms. Uiso(H) values of the H atoms were set at 1.2Ueq(parent atom). The O-bound H atom was obtained from a difference Fourier map and was refined isotropically without any restrictions. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.1044 (3) | 0.04808 (8) | 0.19758 (7) | 0.0212 (3) | |
N1 | 0.3981 (3) | 0.65837 (10) | 0.24201 (8) | 0.0164 (3) | |
N2 | 0.6840 (3) | 0.82820 (10) | −0.02810 (8) | 0.0199 (3) | |
C1 | 0.4983 (3) | 0.71528 (12) | 0.15208 (10) | 0.0158 (3) | |
C2 | 0.4407 (4) | 0.66720 (13) | 0.06486 (10) | 0.0194 (3) | |
C3 | 0.5357 (4) | 0.72613 (13) | −0.02170 (11) | 0.0205 (3) | |
C4 | 0.7401 (4) | 0.87159 (13) | 0.05677 (11) | 0.0200 (3) | |
C5 | 0.6560 (4) | 0.81987 (12) | 0.14734 (10) | 0.0179 (3) | |
C6 | 0.4511 (4) | 0.70306 (12) | 0.33530 (10) | 0.0162 (3) | |
C7 | 0.3302 (4) | 0.81874 (13) | 0.35304 (10) | 0.0188 (3) | |
C8 | 0.3819 (4) | 0.85885 (13) | 0.44329 (10) | 0.0209 (3) | |
C9 | 0.5475 (4) | 0.78394 (13) | 0.51558 (11) | 0.0226 (3) | |
C10 | 0.6625 (4) | 0.66780 (13) | 0.49748 (11) | 0.0227 (4) | |
C11 | 0.6158 (4) | 0.62704 (13) | 0.40721 (10) | 0.0188 (3) | |
C12 | 0.2817 (4) | 0.55039 (12) | 0.24330 (10) | 0.0174 (3) | |
C13 | 0.1761 (4) | 0.45476 (12) | 0.24541 (10) | 0.0180 (3) | |
C14 | 0.0675 (4) | 0.34287 (12) | 0.24871 (10) | 0.0175 (3) | |
C15 | −0.0230 (4) | 0.24424 (12) | 0.25177 (10) | 0.0185 (3) | |
C16 | −0.1235 (4) | 0.12318 (12) | 0.25070 (11) | 0.0207 (3) | |
H1 | 0.172 (6) | 0.095 (2) | 0.1360 (17) | 0.064 (7)* | |
H2 | 0.33779 | 0.59513 | 0.06506 | 0.0233* | |
H3 | 0.49387 | 0.69255 | −0.08052 | 0.0246* | |
H4 | 0.84561 | 0.94331 | 0.05448 | 0.0240* | |
H5 | 0.70444 | 0.85476 | 0.20501 | 0.0214* | |
H7 | 0.2138 | 0.86961 | 0.30405 | 0.0225* | |
H8 | 0.30342 | 0.93816 | 0.45577 | 0.0251* | |
H9 | 0.58203 | 0.81201 | 0.5772 | 0.0271* | |
H10 | 0.77347 | 0.61624 | 0.54709 | 0.0272* | |
H11 | 0.69548 | 0.54789 | 0.39459 | 0.0226* | |
H16A | −0.14132 | 0.08758 | 0.31859 | 0.0249* | |
H16B | −0.34725 | 0.12755 | 0.22151 | 0.0249* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0271 (6) | 0.0156 (5) | 0.0208 (6) | −0.0027 (4) | 0.0032 (4) | −0.0008 (4) |
N1 | 0.0215 (7) | 0.0131 (6) | 0.0153 (6) | −0.0046 (5) | 0.0002 (5) | −0.0007 (5) |
N2 | 0.0218 (7) | 0.0204 (7) | 0.0172 (7) | −0.0017 (5) | 0.0009 (5) | −0.0007 (5) |
C1 | 0.0141 (7) | 0.0170 (7) | 0.0154 (7) | 0.0009 (5) | 0.0005 (6) | 0.0003 (5) |
C2 | 0.0216 (8) | 0.0174 (7) | 0.0196 (8) | −0.0032 (6) | −0.0011 (6) | −0.0015 (6) |
C3 | 0.0229 (8) | 0.0214 (8) | 0.0176 (8) | −0.0031 (6) | −0.0008 (6) | −0.0029 (6) |
C4 | 0.0210 (8) | 0.0179 (7) | 0.0208 (8) | −0.0026 (6) | 0.0013 (6) | 0.0005 (6) |
C5 | 0.0186 (8) | 0.0185 (7) | 0.0170 (7) | −0.0026 (6) | −0.0010 (6) | −0.0029 (6) |
C6 | 0.0170 (7) | 0.0185 (7) | 0.0139 (7) | −0.0055 (6) | 0.0006 (6) | −0.0019 (6) |
C7 | 0.0182 (8) | 0.0190 (7) | 0.0190 (8) | −0.0028 (6) | −0.0004 (6) | 0.0005 (6) |
C8 | 0.0221 (8) | 0.0201 (8) | 0.0212 (8) | −0.0034 (6) | 0.0015 (6) | −0.0043 (6) |
C9 | 0.0233 (8) | 0.0299 (9) | 0.0160 (8) | −0.0081 (7) | 0.0010 (6) | −0.0047 (6) |
C10 | 0.0228 (8) | 0.0265 (8) | 0.0182 (8) | −0.0039 (6) | −0.0007 (6) | 0.0035 (6) |
C11 | 0.0207 (8) | 0.0160 (7) | 0.0195 (8) | −0.0022 (6) | 0.0023 (6) | 0.0001 (6) |
C12 | 0.0197 (8) | 0.0175 (8) | 0.0145 (7) | 0.0000 (6) | 0.0002 (6) | −0.0015 (6) |
C13 | 0.0221 (8) | 0.0175 (8) | 0.0144 (7) | −0.0016 (6) | 0.0003 (6) | −0.0026 (6) |
C14 | 0.0187 (8) | 0.0191 (8) | 0.0146 (7) | −0.0015 (6) | 0.0001 (6) | −0.0011 (6) |
C15 | 0.0190 (8) | 0.0195 (8) | 0.0168 (7) | −0.0022 (6) | 0.0000 (6) | −0.0006 (6) |
C16 | 0.0215 (8) | 0.0166 (7) | 0.0247 (8) | −0.0047 (6) | 0.0018 (6) | −0.0026 (6) |
O1—C16 | 1.4199 (18) | C12—C13 | 1.199 (2) |
N1—C1 | 1.4146 (18) | C13—C14 | 1.376 (2) |
N1—C6 | 1.4495 (19) | C14—C15 | 1.205 (2) |
N1—C12 | 1.3496 (19) | C15—C16 | 1.467 (2) |
N2—C3 | 1.346 (2) | O1—H1 | 1.01 (2) |
N2—C4 | 1.339 (2) | C2—H2 | 0.950 |
C1—C2 | 1.395 (2) | C3—H3 | 0.950 |
C1—C5 | 1.393 (2) | C4—H4 | 0.950 |
C2—C3 | 1.380 (2) | C5—H5 | 0.950 |
C4—C5 | 1.381 (2) | C7—H7 | 0.950 |
C6—C7 | 1.390 (2) | C8—H8 | 0.950 |
C6—C11 | 1.3912 (19) | C9—H9 | 0.950 |
C7—C8 | 1.387 (2) | C10—H10 | 0.950 |
C8—C9 | 1.390 (2) | C11—H11 | 0.950 |
C9—C10 | 1.391 (2) | C16—H16A | 0.990 |
C10—C11 | 1.387 (2) | C16—H16B | 0.990 |
O1···C14 | 3.4566 (19) | C14···H9xiii | 3.1269 |
N2···C1 | 2.8111 (18) | C14···H10xiii | 2.9861 |
C1···C7 | 3.131 (2) | C14···H11v | 3.4092 |
C1···C13 | 3.470 (2) | C14···H16Biv | 3.2549 |
C2···C4 | 2.704 (2) | C15···H3x | 3.0559 |
C2···C12 | 2.780 (2) | C15···H3i | 3.2182 |
C2···C13 | 3.527 (2) | C15···H9xii | 3.2805 |
C3···C5 | 2.715 (2) | C15···H9xiii | 2.9730 |
C5···C6 | 2.941 (2) | C15···H10xiii | 3.5202 |
C5···C7 | 3.091 (2) | C15···H16Biv | 2.9371 |
C6···C9 | 2.770 (2) | C16···H1v | 3.33 (2) |
C6···C13 | 3.455 (2) | C16···H3x | 3.2852 |
C7···C10 | 2.787 (2) | C16···H4ii | 3.5333 |
C7···C12 | 3.531 (2) | C16···H5ii | 3.2966 |
C8···C11 | 2.780 (2) | C16···H7iii | 3.0877 |
C11···C12 | 2.895 (2) | C16···H9xii | 3.0606 |
O1···N2i | 2.7765 (16) | C16···H9xiii | 3.4327 |
O1···C4ii | 3.360 (2) | C16···H16Biv | 3.1411 |
O1···C4i | 3.599 (2) | H1···N2i | 1.77 (2) |
O1···C5ii | 3.4191 (19) | H1···C3i | 2.79 (2) |
O1···C5iii | 3.3412 (18) | H1···C4ii | 3.47 (2) |
O1···C7iii | 3.2907 (18) | H1···C4iii | 3.46 (2) |
O1···C16iv | 3.412 (2) | H1···C4i | 2.67 (2) |
N1···C5v | 3.5581 (19) | H1···C5iii | 3.50 (2) |
N2···O1i | 2.7765 (16) | H1···C16iv | 3.33 (2) |
N2···C2iv | 3.595 (2) | H1···H3x | 3.4742 |
N2···C3iv | 3.505 (2) | H1···H3i | 2.9075 |
N2···C15i | 3.468 (2) | H1···H4ii | 2.6024 |
N2···C16i | 3.529 (2) | H1···H4iii | 3.2841 |
C1···C4v | 3.590 (2) | H1···H4i | 2.7004 |
C1···C5v | 3.476 (2) | H1···H5ii | 3.5048 |
C2···N2v | 3.595 (2) | H1···H5iii | 3.3717 |
C2···C4v | 3.462 (2) | H1···H7iii | 3.2860 |
C3···N2v | 3.505 (2) | H1···H16Biv | 2.3651 |
C3···C14i | 3.586 (2) | H2···H2i | 3.0888 |
C4···O1vi | 3.360 (2) | H2···H3i | 3.2488 |
C4···O1i | 3.599 (2) | H3···N2v | 3.5445 |
C4···C1iv | 3.590 (2) | H3···C13i | 3.1243 |
C4···C2iv | 3.462 (2) | H3···C14x | 3.3519 |
C4···C4vii | 3.590 (2) | H3···C14i | 2.9072 |
C5···O1viii | 3.3412 (18) | H3···C15x | 3.0559 |
C5···O1vi | 3.4191 (19) | H3···C15i | 3.2182 |
C5···N1iv | 3.5581 (19) | H3···C16x | 3.2852 |
C5···C1iv | 3.476 (2) | H3···H1x | 3.4742 |
C7···O1viii | 3.2907 (18) | H3···H1i | 2.9075 |
C11···C12iv | 3.548 (2) | H3···H2i | 3.2488 |
C12···C11v | 3.548 (2) | H3···H16Bx | 2.7220 |
C14···C3i | 3.586 (2) | H4···O1vi | 2.6700 |
C15···N2i | 3.468 (2) | H4···O1i | 3.4677 |
C16···O1v | 3.412 (2) | H4···N2vii | 3.1847 |
C16···N2i | 3.529 (2) | H4···N2ix | 3.3412 |
N1···H2 | 2.6234 | H4···C4vii | 3.3081 |
N1···H5 | 2.6512 | H4···C4ix | 3.0850 |
N1···H7 | 2.6388 | H4···C16vi | 3.5333 |
N1···H11 | 2.6070 | H4···H1viii | 3.2841 |
N2···H2 | 3.2545 | H4···H1vi | 2.6024 |
N2···H5 | 3.2560 | H4···H1i | 2.7004 |
C1···H3 | 3.2383 | H4···H4vii | 3.2871 |
C1···H4 | 3.2303 | H4···H4ix | 2.3084 |
C1···H7 | 2.9757 | H4···H16Bvi | 3.2650 |
C2···H5 | 3.2581 | H5···O1viii | 3.0902 |
C3···H4 | 3.1322 | H5···O1vi | 2.8336 |
C4···H3 | 3.1331 | H5···N1iv | 3.4106 |
C5···H2 | 3.2563 | H5···C1iv | 3.5062 |
C5···H7 | 2.8202 | H5···C7iv | 3.2522 |
C6···H5 | 2.6323 | H5···C16vi | 3.2966 |
C6···H8 | 3.2532 | H5···H1viii | 3.3717 |
C6···H10 | 3.2581 | H5···H1vi | 3.5048 |
C7···H5 | 2.5320 | H5···H7iv | 2.5173 |
C7···H9 | 3.2680 | H5···H16Avi | 3.2951 |
C7···H11 | 3.2760 | H5···H16Bvi | 3.1010 |
C8···H5 | 3.5015 | H7···O1viii | 2.4028 |
C8···H10 | 3.2635 | H7···C5v | 3.2741 |
C9···H7 | 3.2706 | H7···C16viii | 3.0877 |
C9···H11 | 3.2665 | H7···H1viii | 3.2860 |
C10···H8 | 3.2625 | H7···H5v | 2.5173 |
C11···H7 | 3.2771 | H7···H16Aviii | 2.7455 |
C11···H9 | 3.2647 | H8···C8xi | 3.1665 |
C12···H2 | 2.4740 | H8···C9xi | 3.3170 |
C12···H11 | 2.6973 | H8···H8xv | 2.9771 |
C13···H2 | 2.9264 | H8···H8xi | 2.6026 |
C13···H11 | 3.2752 | H8···H9xi | 2.9046 |
C14···H1 | 3.31 (2) | H8···H16Aviii | 2.9425 |
C14···H16A | 3.1522 | H8···H16Avi | 3.3754 |
C14···H16B | 3.1384 | H8···H16Axii | 3.1552 |
C15···H1 | 2.48 (2) | H9···C14xiii | 3.1269 |
H1···H16A | 2.7831 | H9···C15xii | 3.2805 |
H1···H16B | 2.3837 | H9···C15xiii | 2.9730 |
H2···H3 | 2.3076 | H9···C16xii | 3.0606 |
H4···H5 | 2.3072 | H9···C16xiii | 3.4327 |
H5···H7 | 2.3700 | H9···H8xi | 2.9046 |
H7···H8 | 2.3401 | H9···H16Axii | 2.4989 |
H8···H9 | 2.3374 | H9···H16Axiii | 3.0597 |
H9···H10 | 2.3404 | H9···H16Bxii | 3.0194 |
H10···H11 | 2.3398 | H10···C11xiii | 3.3054 |
O1···H4ii | 2.6700 | H10···C11xiv | 3.5289 |
O1···H4i | 3.4677 | H10···C12xiii | 3.3258 |
O1···H5ii | 2.8336 | H10···C13xiii | 2.9096 |
O1···H5iii | 3.0902 | H10···C14xiii | 2.9861 |
O1···H7iii | 2.4028 | H10···C15xiii | 3.5202 |
O1···H16Aiv | 3.5826 | H10···H10xiv | 3.3826 |
O1···H16Biv | 2.5017 | H10···H11xiii | 2.8296 |
N1···H5v | 3.4106 | H10···H11xiv | 2.7755 |
N2···H1i | 1.77 (2) | H11···C10xiii | 3.1938 |
N2···H3iv | 3.5445 | H11···C11xiii | 3.5110 |
N2···H4vii | 3.1847 | H11···C12iv | 3.1065 |
N2···H4ix | 3.3412 | H11···C13iv | 2.9725 |
N2···H16Bx | 3.0018 | H11···C14iv | 3.4092 |
C1···H5v | 3.5062 | H11···H10xiii | 2.8296 |
C3···H1i | 2.79 (2) | H11···H10xiv | 2.7755 |
C3···H16Bx | 3.1581 | H11···H11xiii | 3.4124 |
C4···H1viii | 3.46 (2) | H16A···O1v | 3.5826 |
C4···H1vi | 3.47 (2) | H16A···C7iii | 3.4255 |
C4···H1i | 2.67 (2) | H16A···C8iii | 3.5249 |
C4···H4vii | 3.3081 | H16A···C8xii | 3.4832 |
C4···H4ix | 3.0850 | H16A···C9xii | 3.1484 |
C5···H1viii | 3.50 (2) | H16A···H5ii | 3.2951 |
C5···H7iv | 3.2741 | H16A···H7iii | 2.7455 |
C7···H5v | 3.2522 | H16A···H8ii | 3.3754 |
C7···H16Aviii | 3.4255 | H16A···H8iii | 2.9425 |
C8···H8xi | 3.1665 | H16A···H8xii | 3.1552 |
C8···H16Aviii | 3.5249 | H16A···H9xii | 2.4989 |
C8···H16Axii | 3.4832 | H16A···H9xiii | 3.0597 |
C9···H8xi | 3.3170 | H16A···H16Biv | 3.4852 |
C9···H16Axii | 3.1484 | H16B···O1v | 2.5017 |
C10···H11xiii | 3.1938 | H16B···N2x | 3.0018 |
C11···H10xiii | 3.3054 | H16B···C3x | 3.1581 |
C11···H10xiv | 3.5289 | H16B···C14v | 3.2549 |
C11···H11xiii | 3.5110 | H16B···C15v | 2.9371 |
C12···H10xiii | 3.3258 | H16B···C16v | 3.1411 |
C12···H11v | 3.1065 | H16B···H1v | 2.3651 |
C13···H3i | 3.1243 | H16B···H3x | 2.7220 |
C13···H10xiii | 2.9096 | H16B···H4ii | 3.2650 |
C13···H11v | 2.9725 | H16B···H5ii | 3.1010 |
C14···H3x | 3.3519 | H16B···H9xii | 3.0194 |
C14···H3i | 2.9072 | H16B···H16Av | 3.4852 |
C1—N1—C6 | 123.25 (12) | C16—O1—H1 | 108.4 (13) |
C1—N1—C12 | 119.14 (12) | C1—C2—H2 | 120.577 |
C6—N1—C12 | 117.18 (11) | C3—C2—H2 | 120.570 |
C3—N2—C4 | 115.73 (12) | N2—C3—H3 | 117.923 |
N1—C1—C2 | 120.31 (13) | C2—C3—H3 | 117.912 |
N1—C1—C5 | 121.70 (13) | N2—C4—H4 | 117.566 |
C2—C1—C5 | 118.00 (13) | C5—C4—H4 | 117.556 |
C1—C2—C3 | 118.85 (14) | C1—C5—H5 | 120.814 |
N2—C3—C2 | 124.16 (14) | C4—C5—H5 | 120.826 |
N2—C4—C5 | 124.88 (14) | C6—C7—H7 | 120.459 |
C1—C5—C4 | 118.36 (13) | C8—C7—H7 | 120.463 |
N1—C6—C7 | 120.30 (12) | C7—C8—H8 | 119.721 |
N1—C6—C11 | 118.76 (12) | C9—C8—H8 | 119.737 |
C7—C6—C11 | 120.91 (13) | C8—C9—H9 | 120.083 |
C6—C7—C8 | 119.08 (13) | C10—C9—H9 | 120.079 |
C7—C8—C9 | 120.54 (14) | C9—C10—H10 | 119.904 |
C8—C9—C10 | 119.84 (14) | C11—C10—H10 | 119.914 |
C9—C10—C11 | 120.18 (13) | C6—C11—H11 | 120.284 |
C6—C11—C10 | 119.43 (13) | C10—C11—H11 | 120.285 |
N1—C12—C13 | 179.23 (15) | O1—C16—H16A | 109.016 |
C12—C13—C14 | 177.71 (15) | O1—C16—H16B | 109.017 |
C13—C14—C15 | 179.07 (15) | C15—C16—H16A | 109.016 |
C14—C15—C16 | 177.00 (15) | C15—C16—H16B | 109.011 |
O1—C16—C15 | 112.86 (12) | H16A—C16—H16B | 107.794 |
C1—N1—C6—C7 | 55.63 (17) | C2—C1—C5—C4 | 1.36 (18) |
C1—N1—C6—C11 | −126.23 (13) | C5—C1—C2—C3 | −1.25 (19) |
C6—N1—C1—C2 | 179.77 (10) | C1—C2—C3—N2 | 0.3 (2) |
C6—N1—C1—C5 | −0.21 (18) | N2—C4—C5—C1 | −0.6 (2) |
C12—N1—C1—C2 | 7.53 (18) | N1—C6—C7—C8 | 179.43 (11) |
C12—N1—C1—C5 | −172.45 (11) | N1—C6—C11—C10 | −178.76 (11) |
C12—N1—C6—C7 | −131.99 (12) | C7—C6—C11—C10 | −0.6 (2) |
C12—N1—C6—C11 | 46.15 (17) | C11—C6—C7—C8 | 1.3 (2) |
C3—N2—C4—C5 | −0.4 (2) | C6—C7—C8—C9 | −1.0 (2) |
C4—N2—C3—C2 | 0.5 (2) | C7—C8—C9—C10 | 0.0 (2) |
N1—C1—C2—C3 | 178.77 (11) | C8—C9—C10—C11 | 0.7 (2) |
N1—C1—C5—C4 | −178.66 (10) | C9—C10—C11—C6 | −0.4 (2) |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) x−1, y−1, z; (iii) x, y−1, z; (iv) x+1, y, z; (v) x−1, y, z; (vi) x+1, y+1, z; (vii) −x+1, −y+2, −z; (viii) x, y+1, z; (ix) −x+2, −y+2, −z; (x) −x, −y+1, −z; (xi) −x+1, −y+2, −z+1; (xii) −x, −y+1, −z+1; (xiii) −x+1, −y+1, −z+1; (xiv) −x+2, −y+1, −z+1; (xv) −x, −y+2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N2i | 1.01 (2) | 1.77 (2) | 2.7765 (16) | 177 (2) |
Symmetry code: (i) −x+1, −y+1, −z. |
Funding information
This work was supported by the Adaptable and Seamless Technology Transfer Program through Target-driven R&D of the Japan Science and Technology Agency (JST).
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Baughman, R. H. (1974). J. Polym. Sci. Polym. Phys. Ed. 12, 1511–1535. CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Galli, R., Neuenschwander, M. & Engel, P. (1988). Helv. Chim. Acta, 71, 1914–1923. CSD CrossRef CAS Web of Science Google Scholar
Galli, R., Neuenschwander, M. & Engel, P. (1989). Helv. Chim. Acta, 72, 1324–1336. CSD CrossRef CAS Web of Science Google Scholar
Okuno, T., Ikeda, S., Kubo, N. & Sandman, D. J. (2006). Mol. Cryst. Liq. Cryst. 456, 35–44. Web of Science CSD CrossRef CAS Google Scholar
Rigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2008). CrystalClear . Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2014). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sarkar, A., Okada, S., Nakanishi, H. & Matsuda, H. (1998). Macromolecules, 31, 9174–9180. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tabata, H., Kuwamoto, K. & Okuno, T. (2016). J. Mol. Struct. 1106, 452–459. CSD CrossRef CAS Google Scholar
Tabata, H., Tokoyama, H., Yamakado, H. & Okuno, T. (2012). J. Mater. Chem. 22, 115–122. Web of Science CSD CrossRef CAS Google Scholar
Tokutome, Y., Kubo, N. & Okuno, T. (2012). J. Mol. Struct. 1029, 135–141. Web of Science CSD CrossRef CAS Google Scholar
Umezono, S. & Okuno, T. (2015). J. Struct. Chem. 56 C531–533. Google Scholar
Wegner, G. (1969). Z. Naturforsch. Teil B, 24, 824–832. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.