organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-4-Methyl-2-(N-phenyl­carboximido­yl)phenol

CROSSMARK_Color_square_no_text.svg

aPostgraduate Research Department of Physics, Government Arts College (Autonomous), Kumbakonam 612 001, Tamilnadu, India, bPostgraduate Department of Physics, Dharmapuram Gnanambigai Government Arts College (Women), Mayiladuthurai 609 001, Tamilnadu, India, cPrincipal, Kunthavai Naacchiyaar Government Arts College for Women (Autonomous), Thanjavur 613 007, Tamilnadu, India, and dPostgraduate Department of Physics, A.D.M. College for Women (Autonomous), Nagapattinam 611 001, Tamilnadu, India
*Correspondence e-mail: thiruvalluvar.a@gmail.com

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 19 March 2018; accepted 21 March 2018; online 27 March 2018)

The title compound, C14H13NO, is not planar with the dihedral angle between the planes of the two aryl rings being 6.22 (11)°. The configuration about the imine bond is E. An intra­molecular O—H⋯N hydrogen bond generates an S(6) loop. In the crystal, mol­ecules assemble into columns parallel to the a axis. The methyl group is disordered over two positions rotated from each other by 60°.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

We report here, as part of our on-going research (Ida Malarselvi et al., 2016[Ida Malarselvi, R., Ramachandra Raja, C., Thiruvalluvar, A., Priscilla, J. & Panneer Selvam, K. (2016). IUCrData, 1, x161595.]; Swetha et al., 2017[Swetha, G., Ida Malarselvi, R., Ramachandra Raja, C., Thiruvalluvar, A. & Priscilla, J. (2017). IUCrData, 2, x171671.]), the synthesis and the X-ray crystal structure of the title methyl­ated Schiff base compound, Fig.1, synthesized from the condensation reaction of equimolar amounts of 5-methyl­salicyl­aldehyde and aniline in a mixture of DMSO and CCl4.

The benzene and phenyl rings deviate from co-planarity with the dihedral angle between the two rings being 6.22 (11)°. The mol­ecule has an E configuration about the C=N bond; the C2—C7=N1—C8 torsion angle is −177.73 (17)°. There is an intra­molecular O1—H1⋯N1 hydrogen bond with an H⋯N distance of 1.73 (3) Å generating an S(6) loop, see Table 1[link] and Fig. 1[link]. In the crystal, mol­ecules assemble into columns parallel to the a axis, Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.96 (3) 1.73 (3) 2.603 (2) 148 (3)
[Figure 1]
Figure 1
A view of the title compound with displacement ellipsoids drawn at the 30% probability level. The dashed lines indicate a hydrogen-bonding inter­action. The methyl-H atoms are statistically disordered.
[Figure 2]
Figure 2
A perspective view of the mol­ecular packing of the title compound, viewed down the a axis. The hydrogen bonds are shown as dashed lines (see Table 1[link]).

Swetha et al. (2017[Swetha, G., Ida Malarselvi, R., Ramachandra Raja, C., Thiruvalluvar, A. & Priscilla, J. (2017). IUCrData, 2, x171671.]) have reported the crystal structure of (E)-4-fluoro-2-[(phenyl­imino)­meth­yl]phenol, in which the mol­ecule is essentially planar (r.m.s. deviation = 0.022 Å) and the dihedral angle between the planes of the two aryl rings is 0.69 (15)°.

Synthesis and crystallization

5-Methyl­salicyl­aldehyde (0.64 g, 0.0047 mol) was dissolved in a mixture of DMSO (7.5 ml) and CCl4 (7.5 ml). To this solution, aniline (0.42 g, 0.0045 mol) was added drop-wise with constant stirring for 1 h. During this time, the solution turned deep yellow. On standing for two weeks and with slow evaporation of the solvent, orange crystals of the title compound were deposited.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The methyl group was found to be disordered over two positions rotated from each other by 60°, and was refined as an idealized disordered methyl group.

Table 2
Experimental details

Crystal data
Chemical formula C14H13NO
Mr 211.25
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 4.6976 (4), 19.3656 (18), 12.3116 (12)
β (°) 95.831 (3)
V3) 1114.21 (18)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.15 × 0.10 × 0.10
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.699, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 20153, 2825, 1527
Rint 0.043
(sin θ/λ)max−1) 0.673
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.169, 1.05
No. of reflections 2825
No. of parameters 149
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.21, −0.18
Computer programs: APEX2, SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2018/1 (Sheldrick, 2015b), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

(I) top
Crystal data top
C14H13NOF(000) = 448
Mr = 211.25Dx = 1.259 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 4.6976 (4) ÅCell parameters from 4170 reflections
b = 19.3656 (18) Åθ = 2.7–25.3°
c = 12.3116 (12) ŵ = 0.08 mm1
β = 95.831 (3)°T = 296 K
V = 1114.21 (18) Å3Needle, orange
Z = 40.15 × 0.10 × 0.10 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2825 independent reflections
Radiation source: fine-focus sealed tube1527 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ω and φ scanθmax = 28.6°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 56
Tmin = 0.699, Tmax = 0.746k = 2526
20153 measured reflectionsl = 1616
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.169 w = 1/[σ2(Fo2) + (0.0565P)2 + 0.5019P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2825 reflectionsΔρmax = 0.21 e Å3
149 parametersΔρmin = 0.18 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The carbon-bound H-atoms were placed in calculated positions (C—H = 0.93–0.96 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5Uequiv(C)·The OH H atom was located in a difference Fourier map and refined freely.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.1821 (4)0.78020 (11)0.18545 (16)0.0421 (5)
C20.2951 (4)0.77295 (10)0.29511 (15)0.0373 (4)
C30.1864 (4)0.81482 (11)0.37342 (16)0.0430 (5)
H30.2593870.8099760.4461050.052*
C40.0255 (4)0.86316 (11)0.34711 (18)0.0464 (5)
C50.1323 (5)0.86888 (11)0.23773 (18)0.0502 (6)
H50.2746570.9011420.2177260.060*
C60.0319 (5)0.82791 (12)0.15850 (17)0.0505 (6)
H60.1090200.8324070.0862320.061*
C70.5179 (4)0.72355 (10)0.32756 (16)0.0405 (5)
H70.5898700.7210130.4006600.049*
C80.8311 (4)0.63294 (10)0.29122 (16)0.0401 (5)
C90.9307 (5)0.61802 (12)0.39877 (19)0.0533 (6)
H90.8619450.6427020.4554210.064*
C101.1313 (5)0.56665 (13)0.4217 (2)0.0625 (7)
H101.1962160.5568900.4939220.075*
C111.2361 (5)0.52984 (12)0.3395 (2)0.0653 (7)
H111.3707080.4951700.3558070.078*
C121.1409 (5)0.54455 (13)0.2330 (2)0.0663 (7)
H121.2115560.5199570.1766310.080*
C130.9401 (5)0.59586 (12)0.20938 (19)0.0531 (6)
H130.8772010.6055780.1369220.064*
C140.1393 (6)0.90787 (13)0.4329 (2)0.0651 (7)
H14A0.2844750.9380390.3991460.098*0.5
H14B0.2198130.8791860.4855660.098*0.5
H14C0.0138070.9349030.4687600.098*0.5
H14D0.0425130.8967130.5031690.098*0.5
H14E0.1071740.9555660.4167490.098*0.5
H14F0.3407940.8998490.4335550.098*0.5
N10.6195 (3)0.68309 (9)0.25867 (13)0.0416 (4)
O10.2776 (4)0.74103 (9)0.10554 (12)0.0595 (5)
H10.427 (7)0.7120 (16)0.140 (2)0.097 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0427 (11)0.0475 (12)0.0359 (10)0.0030 (9)0.0028 (8)0.0041 (9)
C20.0344 (10)0.0393 (10)0.0378 (10)0.0050 (8)0.0014 (8)0.0039 (8)
C30.0439 (11)0.0464 (12)0.0380 (10)0.0040 (9)0.0001 (9)0.0013 (9)
C40.0466 (12)0.0415 (11)0.0514 (12)0.0039 (9)0.0068 (10)0.0010 (10)
C50.0463 (12)0.0465 (12)0.0571 (14)0.0035 (10)0.0021 (10)0.0115 (10)
C60.0524 (13)0.0573 (14)0.0404 (11)0.0031 (11)0.0018 (10)0.0109 (10)
C70.0382 (11)0.0460 (11)0.0363 (10)0.0038 (9)0.0014 (8)0.0024 (9)
C80.0343 (10)0.0413 (11)0.0444 (11)0.0045 (8)0.0024 (8)0.0006 (9)
C90.0559 (14)0.0532 (13)0.0497 (13)0.0078 (11)0.0004 (10)0.0013 (11)
C100.0654 (16)0.0539 (14)0.0649 (16)0.0053 (12)0.0097 (12)0.0062 (12)
C110.0550 (15)0.0471 (14)0.091 (2)0.0068 (11)0.0067 (14)0.0006 (13)
C120.0588 (16)0.0605 (16)0.0800 (19)0.0094 (12)0.0097 (13)0.0170 (14)
C130.0510 (13)0.0597 (14)0.0481 (12)0.0016 (11)0.0029 (10)0.0057 (11)
C140.0708 (17)0.0554 (15)0.0692 (17)0.0098 (12)0.0074 (13)0.0064 (12)
N10.0392 (9)0.0450 (10)0.0400 (9)0.0004 (8)0.0014 (7)0.0012 (8)
O10.0679 (11)0.0728 (11)0.0370 (8)0.0156 (9)0.0008 (7)0.0007 (8)
Geometric parameters (Å, º) top
C1—O11.355 (2)C9—C101.380 (3)
C1—C61.381 (3)C9—H90.9300
C1—C21.407 (3)C10—C111.369 (3)
C2—C31.396 (3)C10—H100.9300
C2—C71.444 (3)C11—C121.372 (4)
C3—C41.381 (3)C11—H110.9300
C3—H30.9300C12—C131.380 (3)
C4—C51.393 (3)C12—H120.9300
C4—C141.505 (3)C13—H130.9300
C5—C61.377 (3)C14—H14A0.9600
C5—H50.9300C14—H14B0.9600
C6—H60.9300C14—H14C0.9600
C7—N11.282 (2)C14—H14D0.9600
C7—H70.9300C14—H14E0.9600
C8—C131.377 (3)C14—H14F0.9600
C8—C91.389 (3)O1—H10.96 (3)
C8—N11.418 (2)
O1—C1—C6119.16 (18)C10—C9—H9119.9
O1—C1—C2121.36 (18)C8—C9—H9119.9
C6—C1—C2119.48 (19)C11—C10—C9120.9 (2)
C3—C2—C1118.42 (18)C11—C10—H10119.5
C3—C2—C7119.98 (17)C9—C10—H10119.5
C1—C2—C7121.61 (18)C10—C11—C12119.4 (2)
C4—C3—C2122.52 (19)C10—C11—H11120.3
C4—C3—H3118.7C12—C11—H11120.3
C2—C3—H3118.7C11—C12—C13120.0 (2)
C3—C4—C5117.4 (2)C11—C12—H12120.0
C3—C4—C14121.6 (2)C13—C12—H12120.0
C5—C4—C14120.9 (2)C8—C13—C12121.2 (2)
C6—C5—C4121.6 (2)C8—C13—H13119.4
C6—C5—H5119.2C12—C13—H13119.4
C4—C5—H5119.2C4—C14—H14A109.5
C5—C6—C1120.6 (2)C4—C14—H14B109.5
C5—C6—H6119.7H14A—C14—H14B109.5
C1—C6—H6119.7C4—C14—H14C109.5
N1—C7—C2122.01 (18)H14A—C14—H14C109.5
N1—C7—H7119.0H14B—C14—H14C109.5
C2—C7—H7119.0H14D—C14—H14E109.5
C13—C8—C9118.3 (2)H14D—C14—H14F109.5
C13—C8—N1116.88 (18)H14E—C14—H14F109.5
C9—C8—N1124.77 (19)C7—N1—C8121.95 (17)
C10—C9—C8120.1 (2)C1—O1—H1106.9 (18)
O1—C1—C2—C3179.81 (18)C3—C2—C7—N1178.48 (18)
C6—C1—C2—C30.2 (3)C1—C2—C7—N11.4 (3)
O1—C1—C2—C70.0 (3)C13—C8—C9—C100.7 (3)
C6—C1—C2—C7179.64 (19)N1—C8—C9—C10178.0 (2)
C1—C2—C3—C40.5 (3)C8—C9—C10—C110.2 (4)
C7—C2—C3—C4179.67 (18)C9—C10—C11—C120.3 (4)
C2—C3—C4—C50.5 (3)C10—C11—C12—C130.3 (4)
C2—C3—C4—C14179.9 (2)C9—C8—C13—C120.7 (3)
C3—C4—C5—C60.2 (3)N1—C8—C13—C12178.1 (2)
C14—C4—C5—C6179.4 (2)C11—C12—C13—C80.2 (4)
C4—C5—C6—C10.9 (3)C2—C7—N1—C8177.73 (17)
O1—C1—C6—C5179.5 (2)C13—C8—N1—C7175.27 (19)
C2—C1—C6—C50.9 (3)C9—C8—N1—C76.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.96 (3)1.73 (3)2.603 (2)148 (3)
 

Acknowledgements

The authors are grateful to the Sophisticated Analytical Instrument Facility (SAIF), IITM, Chennai, Tamilnadu, India, for the single-crystal X-ray diffraction data.

References

First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIda Malarselvi, R., Ramachandra Raja, C., Thiruvalluvar, A., Priscilla, J. & Panneer Selvam, K. (2016). IUCrData, 1, x161595.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwetha, G., Ida Malarselvi, R., Ramachandra Raja, C., Thiruvalluvar, A. & Priscilla, J. (2017). IUCrData, 2, x171671.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds