organic compounds
rac-(9R,10R)-3,6,9,10-Tetrabromo-8,8-dimethyl-9,10-dihydro-2H,8H-pyrano[2,3-f]chromen-2-one (tetrabromoseselin): a photobiochemically active pyranocoumarin
aBio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India, bInstitute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Strasse 2, D-64287 Darmstadt, Germany, and cDepartment of Applied Chemistry & Chemical Engineering, University of Dhaka, Dhaka-1000, Bangladesh
*Correspondence e-mail: mustafizacce@du.ac.bd
The title molecule, C14H10Br4O3, is a tetrabrominated substituted pyranocoumarin synthesized by bromination of seselin (systematic name: 8,8-dimethyl-2H,8H-pyrano[2,3-f]chromene-2-one) isolated from the Indian herb Trachyspermum stictocapum. The pyran ring has a distorted half-chair conformation and its mean plane is inclined to mean plane of the coumarin unit by 3.33 (17)°. In the crystal, molecules are linked by pairs of C—H⋯O hydrogen bonds, forming inversion dimmers with an R22(16) ring motif. The dimers are linked by pairs of C—H⋯Br hydrogen bonds, enclosing an R22(16) ring motif, forming chains propagating along the [1-10] direction. Within the chains there are offset π–π interactions involving inversion-related benzene rings with an intercentroid distance of 3.788 (2) Å.
Keywords: crystal structure; tetrabromoseselin; pyranocoumarin; bromination using bromine; photo-biochemical activity; hydrogen bonding; offset π–π interactions.
CCDC reference: 1826410
Structure description
The title compound (I) is a substituted angular pyranocoumarin derivative of seselin (II), whose ; Bauri et al., 2006). We have described the properties of pyranocoumarins when reporting the crystal structures of 8,8-dimethyl-3,4,9,10-tetrahydro-2H,8H-pyrano[2,3-f]chromen-2-one] [(III); Bauri et al., 2017a], rac-(9S,10R)-3,9-dibromo-10-methoxy-8,8-dimethyl-9,10-dihydro-2H,8H-pyrano [2,3-f]chromen-2-one [(IV); Bauri et al., 2017b], and rac-(9S,10R)-9-bromo-10-hydroxy-8,8-dimethyl-9,10-dihydro-2H,8H-pyrano [2,3-f]chromen-2-one [(V); Bauri et al., 2017c] (Fig. 1).
has previously been reported (Kato, 1970The title molecule (I), illustrated in Fig. 2, belongs to a class of naturally occurring pyranocoumarins, known as psoralene. It is an angular isomer of the substituted pyranocoumarin seselin (II). It is composed of three rings, viz. a benzene and a pyrone ring each with one Br atom positioned at C12 and C8, respectively, and a pyran ring with a dimethyl-substituted C atom, C2, and two Br substituents located at positions C3 and C4; see Fig. 2. The C5—C6—C10—C11 and C5—C6—C10—C9 torsion angles are very similar [−0.8 (6) and −179.3 (4)°, respectively) indicating that these rings are coplanar. The pyran ring (O1/C1–C5) has a distorted half-chair conformation [puckering parameters: Q = 0.420 (5) Å, θ = 129.9 (7)°, φ = 98.9 (8)°], probably because of the ring flexibility and the presence of the substituents. Its mean plane is inclined to the mean plane of the coumarin ring system (O2/C1/C5–C12, r.m.s. deviation = 0.016 Å) by 3.33 (17)°. There are two asymmetric centres at positions C3 and C4 (Fig. 1) and the present study indicates their to be R,R.
In crystal, molecules are linked by pairs of C—H⋯O hydrogen bonds, forming inversion dimers with an R22(16) ring motif. Details of the hydrogen bonding are given in Table 1 and Fig. 3. The dimers are linked by pairs of C—H⋯·Br hydrogen bonds, enclosing an R22(16) ring motif, forming chains propagating along [10]. Within the chains there are offset π–π interactions involving inversion-related benzene rings (Fig. 2); Cg⋯Cgii = 3.788 (2) Å, Cg is the centroid of ring C1/C5/C6/C10–C12, interplanar distance = 3.459 (2) Å, slippage = 1.544 Å; symmetry code: (ii) −x, −y, −z.
Synthesis and crystallization
The seselin synthon was isolated as a colourless crystalline solid from the methanol extract of T. stictocurpum by means of (CC) over SiO2 gel by with a mixture of binary solvents (hexane and ethyl acetate). Finally it was purified by reverse-phase high-pressure It was then brominated in benzene under reflux conditions over a period of 12 h with continuous stirring. The crude brominated seselin was purified by CC over SiO2 by gradient solvent elution and crystallized as colourless crystals. Crystals suitable for X-ray were obtained by recrystallization (× 3) from an ethyl acetate:hexane (1:4) solution at room temperature by slow evaporation of the solvents. Spectroscopic data: 1H NMR (CDCl3, 200 MHz): δH 7.11 (s, 1H, H-9), 7.05 (s, 1H, H-9), 5.25 (d, 1H, J = 9.8 Hz, H-4), 4.26 (d, 1H, J = 9.8 Hz, H-3), 1.50 (s, 3H, CH3, H-13), 1.54 (s, 3H, CH3, H-14).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1826410
https://doi.org/10.1107/S2414314618003462/su5427sup1.cif
contains datablocks I, Global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314618003462/su5427Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314618003462/su5427Isup3.cml
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell
CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).C14H10Br4O3 | Z = 2 |
Mr = 545.86 | F(000) = 516 |
Triclinic, P1 | Dx = 2.291 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.2256 (8) Å | Cell parameters from 3670 reflections |
b = 10.4409 (9) Å | θ = 2.7–27.8° |
c = 11.2102 (9) Å | µ = 10.18 mm−1 |
α = 91.337 (7)° | T = 299 K |
β = 93.972 (8)° | Prism, colourless |
γ = 110.077 (9)° | 0.40 × 0.24 × 0.12 mm |
V = 791.41 (13) Å3 |
Oxford Diffraction Xcalibur with a Sapphire CCD detector diffractometer | 2870 independent reflections |
Radiation source: fine-focus sealed tube | 2365 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.015 |
Rotation method data acquisition using ω scans | θmax = 25.4°, θmin = 2.7° |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) | h = −8→8 |
Tmin = 0.106, Tmax = 0.375 | k = −12→12 |
4887 measured reflections | l = −13→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.091 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0513P)2 + 1.0324P] where P = (Fo2 + 2Fc2)/3 |
2870 reflections | (Δ/σ)max < 0.001 |
192 parameters | Δρmax = 0.76 e Å−3 |
0 restraints | Δρmin = −0.65 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.56855 (7) | 0.25787 (5) | 0.22289 (6) | 0.05285 (18) | |
Br2 | 0.28329 (8) | 0.56363 (5) | 0.10391 (5) | 0.04718 (16) | |
Br3 | −0.21257 (9) | 0.16052 (7) | −0.42181 (5) | 0.0626 (2) | |
Br4 | −0.25882 (7) | −0.04642 (5) | 0.27392 (5) | 0.04240 (15) | |
O1 | 0.1145 (4) | 0.1914 (3) | 0.2955 (3) | 0.0374 (7) | |
O2 | 0.1306 (4) | 0.3208 (3) | −0.1092 (3) | 0.0350 (7) | |
O3 | 0.1571 (5) | 0.3827 (4) | −0.2955 (3) | 0.0515 (9) | |
C1 | 0.0368 (6) | 0.1798 (4) | 0.1818 (4) | 0.0297 (9) | |
C2 | 0.2614 (7) | 0.3222 (5) | 0.3396 (4) | 0.0384 (11) | |
C3 | 0.4094 (6) | 0.3763 (4) | 0.2449 (4) | 0.0353 (10) | |
H3 | 0.4986 | 0.4682 | 0.2714 | 0.042* | |
C4 | 0.3143 (6) | 0.3823 (4) | 0.1214 (4) | 0.0309 (9) | |
H4 | 0.4059 | 0.3748 | 0.0633 | 0.037* | |
C5 | 0.1244 (6) | 0.2667 (4) | 0.0927 (4) | 0.0296 (9) | |
C6 | 0.0364 (6) | 0.2367 (4) | −0.0234 (4) | 0.0301 (9) | |
C7 | 0.0616 (7) | 0.3029 (5) | −0.2292 (4) | 0.0373 (10) | |
C8 | −0.1199 (7) | 0.1882 (5) | −0.2591 (4) | 0.0371 (10) | |
C9 | −0.2127 (6) | 0.1043 (5) | −0.1773 (4) | 0.0355 (10) | |
H9 | −0.3276 | 0.0310 | −0.2000 | 0.043* | |
C10 | −0.1349 (6) | 0.1271 (4) | −0.0539 (4) | 0.0302 (9) | |
C11 | −0.2222 (6) | 0.0418 (4) | 0.0367 (4) | 0.0327 (10) | |
H11 | −0.3374 | −0.0329 | 0.0186 | 0.039* | |
C12 | −0.1377 (6) | 0.0685 (4) | 0.1513 (4) | 0.0313 (9) | |
C13 | 0.1523 (8) | 0.4204 (5) | 0.3642 (5) | 0.0475 (12) | |
H13A | 0.0685 | 0.4222 | 0.2944 | 0.057* | |
H13B | 0.2465 | 0.5103 | 0.3832 | 0.057* | |
H13C | 0.0733 | 0.3906 | 0.4304 | 0.057* | |
C14 | 0.3513 (8) | 0.2900 (6) | 0.4562 (5) | 0.0554 (14) | |
H14A | 0.2514 | 0.2607 | 0.5118 | 0.066* | |
H14B | 0.4558 | 0.3702 | 0.4892 | 0.066* | |
H14C | 0.4035 | 0.2185 | 0.4415 | 0.066* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0330 (3) | 0.0397 (3) | 0.0876 (4) | 0.0167 (2) | −0.0031 (2) | −0.0027 (3) |
Br2 | 0.0460 (3) | 0.0335 (3) | 0.0621 (3) | 0.0138 (2) | 0.0052 (2) | 0.0015 (2) |
Br3 | 0.0543 (4) | 0.0749 (4) | 0.0411 (3) | 0.0033 (3) | −0.0118 (2) | −0.0006 (3) |
Br4 | 0.0317 (3) | 0.0387 (3) | 0.0537 (3) | 0.0073 (2) | 0.0061 (2) | 0.0093 (2) |
O1 | 0.0309 (16) | 0.0365 (17) | 0.0376 (18) | 0.0042 (13) | −0.0048 (13) | 0.0007 (13) |
O2 | 0.0293 (16) | 0.0340 (16) | 0.0371 (17) | 0.0057 (13) | 0.0006 (13) | −0.0024 (13) |
O3 | 0.045 (2) | 0.052 (2) | 0.045 (2) | 0.0008 (17) | 0.0019 (16) | 0.0053 (17) |
C1 | 0.023 (2) | 0.028 (2) | 0.039 (2) | 0.0095 (17) | 0.0019 (17) | −0.0019 (18) |
C2 | 0.032 (2) | 0.030 (2) | 0.046 (3) | 0.0044 (19) | −0.008 (2) | −0.007 (2) |
C3 | 0.026 (2) | 0.027 (2) | 0.051 (3) | 0.0089 (18) | −0.0059 (19) | −0.0063 (19) |
C4 | 0.026 (2) | 0.0198 (19) | 0.046 (3) | 0.0073 (17) | 0.0037 (18) | −0.0036 (18) |
C5 | 0.025 (2) | 0.027 (2) | 0.038 (2) | 0.0113 (17) | 0.0013 (17) | −0.0051 (18) |
C6 | 0.022 (2) | 0.027 (2) | 0.042 (2) | 0.0098 (17) | 0.0035 (18) | −0.0047 (18) |
C7 | 0.036 (2) | 0.038 (2) | 0.039 (3) | 0.015 (2) | 0.000 (2) | −0.004 (2) |
C8 | 0.033 (2) | 0.041 (3) | 0.037 (2) | 0.015 (2) | −0.0050 (19) | −0.007 (2) |
C9 | 0.026 (2) | 0.031 (2) | 0.047 (3) | 0.0092 (18) | −0.0032 (19) | −0.005 (2) |
C10 | 0.022 (2) | 0.028 (2) | 0.042 (3) | 0.0112 (17) | −0.0002 (18) | −0.0046 (18) |
C11 | 0.021 (2) | 0.026 (2) | 0.048 (3) | 0.0052 (17) | 0.0001 (18) | −0.0047 (19) |
C12 | 0.024 (2) | 0.028 (2) | 0.042 (3) | 0.0090 (17) | 0.0058 (18) | −0.0002 (18) |
C13 | 0.046 (3) | 0.049 (3) | 0.046 (3) | 0.015 (2) | 0.007 (2) | −0.009 (2) |
C14 | 0.053 (3) | 0.057 (3) | 0.046 (3) | 0.010 (3) | −0.017 (2) | 0.002 (3) |
Br1—C3 | 1.979 (4) | C4—H4 | 0.9800 |
Br2—C4 | 1.994 (4) | C5—C6 | 1.388 (6) |
Br3—C8 | 1.879 (5) | C6—C10 | 1.382 (6) |
Br4—C12 | 1.902 (4) | C7—C8 | 1.452 (6) |
O1—C1 | 1.342 (5) | C8—C9 | 1.334 (7) |
O1—C2 | 1.462 (5) | C9—C10 | 1.439 (6) |
O2—C6 | 1.371 (5) | C9—H9 | 0.9300 |
O2—C7 | 1.387 (5) | C10—C11 | 1.403 (6) |
O3—C7 | 1.196 (6) | C11—C12 | 1.364 (6) |
C1—C5 | 1.399 (6) | C11—H11 | 0.9300 |
C1—C12 | 1.405 (6) | C13—H13A | 0.9600 |
C2—C14 | 1.515 (7) | C13—H13B | 0.9600 |
C2—C13 | 1.523 (7) | C13—H13C | 0.9600 |
C2—C3 | 1.537 (7) | C14—H14A | 0.9600 |
C3—C4 | 1.514 (6) | C14—H14B | 0.9600 |
C3—H3 | 0.9800 | C14—H14C | 0.9600 |
C4—C5 | 1.492 (6) | ||
C1—O1—C2 | 118.3 (3) | O3—C7—C8 | 127.6 (4) |
C6—O2—C7 | 123.1 (3) | O2—C7—C8 | 115.5 (4) |
O1—C1—C5 | 124.0 (4) | C9—C8—C7 | 122.4 (4) |
O1—C1—C12 | 116.7 (4) | C9—C8—Br3 | 121.6 (4) |
C5—C1—C12 | 119.2 (4) | C7—C8—Br3 | 116.0 (3) |
O1—C2—C14 | 104.1 (4) | C8—C9—C10 | 120.0 (4) |
O1—C2—C13 | 107.8 (4) | C8—C9—H9 | 120.0 |
C14—C2—C13 | 109.9 (4) | C10—C9—H9 | 120.0 |
O1—C2—C3 | 109.3 (4) | C6—C10—C11 | 118.3 (4) |
C14—C2—C3 | 114.4 (4) | C6—C10—C9 | 118.5 (4) |
C13—C2—C3 | 110.9 (4) | C11—C10—C9 | 123.2 (4) |
C4—C3—C2 | 114.2 (4) | C12—C11—C10 | 119.8 (4) |
C4—C3—Br1 | 105.2 (3) | C12—C11—H11 | 120.1 |
C2—C3—Br1 | 111.2 (3) | C10—C11—H11 | 120.1 |
C4—C3—H3 | 108.7 | C11—C12—C1 | 121.7 (4) |
C2—C3—H3 | 108.7 | C11—C12—Br4 | 119.6 (3) |
Br1—C3—H3 | 108.7 | C1—C12—Br4 | 118.8 (3) |
C5—C4—C3 | 112.7 (4) | C2—C13—H13A | 109.5 |
C5—C4—Br2 | 112.3 (3) | C2—C13—H13B | 109.5 |
C3—C4—Br2 | 109.8 (3) | H13A—C13—H13B | 109.5 |
C5—C4—H4 | 107.2 | C2—C13—H13C | 109.5 |
C3—C4—H4 | 107.2 | H13A—C13—H13C | 109.5 |
Br2—C4—H4 | 107.2 | H13B—C13—H13C | 109.5 |
C6—C5—C1 | 118.0 (4) | C2—C14—H14A | 109.5 |
C6—C5—C4 | 121.5 (4) | C2—C14—H14B | 109.5 |
C1—C5—C4 | 120.4 (4) | H14A—C14—H14B | 109.5 |
O2—C6—C10 | 120.6 (4) | C2—C14—H14C | 109.5 |
O2—C6—C5 | 116.4 (4) | H14A—C14—H14C | 109.5 |
C10—C6—C5 | 123.0 (4) | H14B—C14—H14C | 109.5 |
O3—C7—O2 | 116.8 (4) | ||
C2—O1—C1—C5 | 19.7 (6) | C4—C5—C6—O2 | −1.6 (6) |
C2—O1—C1—C12 | −163.7 (4) | C1—C5—C6—C10 | 1.4 (6) |
C1—O1—C2—C14 | −166.8 (4) | C4—C5—C6—C10 | 177.3 (4) |
C1—O1—C2—C13 | 76.5 (5) | C6—O2—C7—O3 | −179.8 (4) |
C1—O1—C2—C3 | −44.2 (5) | C6—O2—C7—C8 | 0.3 (6) |
O1—C2—C3—C4 | 52.5 (5) | O3—C7—C8—C9 | 179.1 (5) |
C14—C2—C3—C4 | 168.7 (4) | O2—C7—C8—C9 | −1.0 (7) |
C13—C2—C3—C4 | −66.3 (5) | O3—C7—C8—Br3 | 1.2 (7) |
O1—C2—C3—Br1 | −66.3 (4) | O2—C7—C8—Br3 | −178.9 (3) |
C14—C2—C3—Br1 | 49.9 (5) | C7—C8—C9—C10 | 1.0 (7) |
C13—C2—C3—Br1 | 174.9 (3) | Br3—C8—C9—C10 | 178.7 (3) |
C2—C3—C4—C5 | −35.9 (5) | O2—C6—C10—C11 | 178.1 (4) |
Br1—C3—C4—C5 | 86.3 (4) | C5—C6—C10—C11 | −0.8 (6) |
C2—C3—C4—Br2 | 90.2 (4) | O2—C6—C10—C9 | −0.5 (6) |
Br1—C3—C4—Br2 | −147.7 (2) | C5—C6—C10—C9 | −179.3 (4) |
O1—C1—C5—C6 | 175.0 (4) | C8—C9—C10—C6 | −0.2 (6) |
C12—C1—C5—C6 | −1.6 (6) | C8—C9—C10—C11 | −178.7 (4) |
O1—C1—C5—C4 | −0.9 (6) | C6—C10—C11—C12 | 0.2 (6) |
C12—C1—C5—C4 | −177.4 (4) | C9—C10—C11—C12 | 178.7 (4) |
C3—C4—C5—C6 | −165.9 (4) | C10—C11—C12—C1 | −0.4 (7) |
Br2—C4—C5—C6 | 69.4 (5) | C10—C11—C12—Br4 | 179.2 (3) |
C3—C4—C5—C1 | 9.8 (6) | O1—C1—C12—C11 | −175.7 (4) |
Br2—C4—C5—C1 | −114.9 (4) | C5—C1—C12—C11 | 1.1 (6) |
C7—O2—C6—C10 | 0.4 (6) | O1—C1—C12—Br4 | 4.7 (5) |
C7—O2—C6—C5 | 179.4 (4) | C5—C1—C12—Br4 | −178.5 (3) |
C1—C5—C6—O2 | −177.4 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O3i | 0.98 | 2.43 | 3.277 (6) | 144 |
C9—H9···Br1ii | 0.93 | 2.91 | 3.771 (5) | 154 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, −y, −z. |
Acknowledgements
The authors thank Professor Dr Hartmut, FG Strukturforschung, Material-und Geowissenschaften, Technische Universität Darmstadt, for his kind co-operation to record the XRD of the crystal and provide diffractometer time.
References
Bauri, A. K., Foro, S., Lindner, H.-J. & Nayak, S. K. (2006). Acta Cryst. E62, o1340–o1341. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bauri, A. K., Foro, S. & Rahman, A. F. M. M. (2017a). Acta Cryst. E73, 1117–1120. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bauri, A. K., Foro, S. & Rahman, A. F. M. M. (2017b). Acta Cryst. E73, 774–776. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bauri, A. K., Foro, S. & Rahman, A. F. M. M. (2017c). Acta Cryst. E73, 453–455. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kato, K. (1970). Acta Cryst. B26, 2022–2029. CSD CrossRef IUCr Journals Web of Science Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.