organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-Cyclo­hexyl-1-(2-meth­­oxy­benzo­yl)thio­semi­carbazide with an unknown solvent

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Banaras Hindu University, Varanasi 221 005, India, bDepartment of Chemistry, Kirori Mal College, University of Delhi, Delhi-110007, India, cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and dDepartment of Chemistry, University of Canterbury, PO Box 4800, 8410, New Zealand
*Correspondence e-mail: mkbharty@bhu.ac.in

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 6 February 2018; accepted 5 March 2018; online 13 March 2018)

In the title compound, C15H21N3O2S, a short intra­molecular N—H⋯O hydrogen bond generates an S(6) ring. The mol­ecule is twisted with a dihedral angle between the benzene ring and the mean plane of the cyclo­hexyl ring being 58.90 (6)°. In the crystal, inversion dimers are formed with each molecule linked to the other by two N—H(H)⋯O hydrogen bonds to the same acceptor, generating R21(6) loops. A region of disordered electron density was corrected for using the SQUEEZE routine in PLATON [Spek (2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Acta Cryst. C71, 9–18]. The given chemical formula and other crystal data do not take into account the unknown solvent molecule(s).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Thio­semicarbazides are a class of organic compounds which are known not only for their various biological activities but also as metal-chelating agents (Siddiqui & Singh, 2003[Siddiqui, N. & Singh, O. (2003). Indian J. Pharm. Sci. 65, 423-425.]; Castiñeiras et al., 2012[Castiñeiras, A., Fernández-Hermida, N., García-Santos, I. & Gómez-Rodríguez, L. (2012). Dalton Trans. 41, 13486-13495.]; Singh et al., 2014[Singh, A., Bharty, M. K., Dani, R. K., Singh, S., Kushawaha, S. K. & Singh, N. K. (2014). Polyhedron, 73, 98-109.]). Thio­semicarbazide is the simplest representative of such ligands having both nitro­gen and sulfur atoms as donors. Thio­semicarbazide and substituted thio­semicarbazides are an important class of inter­mediates used for the synthesis of nitro­gen–sulfur or nitro­gen–oxygen heterocyclic compounds (Hovsepian et al., 2004[Hovsepian, T. R., Dilanian, E. R., Engoyan, A. P. & Melik-Ohanjanian, R. G. (2004). Chem. Heterocycl. Compd. 40, 1194-1198.]; Paswan et al., 2015[Paswan, S., Bharty, M. K., Kumari, S., Gupta, S. K. & Singh, N. K. (2015). Acta Cryst. E71, o880-o881.]). Substituted thio­semicarbazides are biologically versatile compounds displaying a variety of biological effects (Bharti et al., 2016[Bharti, A., Bharati, P., Singh, N. K. & Bharty, M. K. (2016). J. Coord. Chem. 69, 1258-1271.]; Plech et al., 2011[Plech, T., Wujec, M., Siwek, A., Kosikowska, U. & Malm, A. (2011). Eur. J. Med. Chem. 46, 241-248.]; Siwek et al., 2011[Siwek, A., Stączek, P. & Stefańska, J. (2011). Eur. J. Med. Chem. 46, 5717-5726.]). The addition of hydrazides to various iso­thio­cyanates is a convenient method for the synthesis of substituted thio­semicarbazides. As part of our studies in this area, we have synthesized the title compound and herein report on its crystal structure.

In the title compound, the dihedral angle of 58.90 (6)° between the benzene ring and the mean plane of the cyclo­hexyl ring indicates that the mol­ecule is twisted (Fig. 1[link]). A short intra­molecular N—H⋯O hydrogen bond generates an S(6) ring (Fig. 1[link], Table 1[link]). The lengths of the C8=O1 [1.2426 (13) Å] and C9=S1 [1.6737 (11) Å] double bonds are in agreement with bond lengths in related compounds (Nath et al., 2015[Nath, P., Bharty, M. K., Chaurasia, R., Kumari, S. & Gupta, S. K. (2015). Acta Cryst. E71, o967-o968.]; Dulare et al., 2011[Dulare, R., Bharty, M. K., Kushawaha, S. K., Singh, S. & Singh, N. K. (2011). Polyhedron, 30, 1960-1967.]). The C—N bond lengths, N1—C8 1.3321 (13), N2—C9 1.3611 (13) and N3—C10 1.4593 (14) Å, are similar to standard C—N single bonds.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2 0.88 1.90 2.5907 (12) 135
N2—H2A⋯O1i 0.88 2.11 2.8523 (12) 142
N3—H3B⋯O1i 0.88 2.04 2.8607 (12) 155
Symmetry code: (i) -x+1, -y+1, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labelling and displacement ellipsoids drawn at the 30% probability level. The intra­molecular N—H⋯O hydrogen bond is shown as a dashed line (see Table 1[link]).

In the crystal, inversion dimers are formed with each molecule linked to the other by two N—H(H)⋯O hydrogen bonds to the same acceptor, generating [R_{2}^{1}](6) loops (Fig. 2[link], Table 1[link]). The overall crystal packing is illustrated in Fig. 3[link].

[Figure 2]
Figure 2
A view of the N—H⋯O hydrogen-bonding inter­actions (dashed lines; Table l) involving the same acceptor atom, forming an inversion dimer. Unlabelled atoms are related to labelled ones by the symmetry operation −x + 1, −y + 1, −z + 1.
[Figure 3]
Figure 3
A view along the a axis of the crystal packing of the title compound, showing the N—H⋯O inter­actions as dashed lines (see Table 1[link]).

A region of disordered electron density was corrected for using the SQUEEZE routine in PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). The given chemical formula and other crystal data do not take into account the unknown solvent molecule(s). The region occupied by the disordered solvent is illustrated in Fig. 4[link], drawn using Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

[Figure 4]
Figure 4
A view along the c axis of the crystal packing of the title compound, showing the region occupied by the disordered solvent (Mercury; Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Synthesis and crystallization

The synthesis of the title compound is illustrated in Fig. 5[link]. Methyl-2-meth­oxy benzoate (1.436 ml, 10 mmol) and hydrazine hydrate (0.485 ml, 10 mmol) were refluxed for 5 h and kept for overnight. The white solid 2-meth­oxy benzoic acid hydrazide was obtained upon cooling and filtered off, washed with water and and thereafter with ether. A mixture of 2-meth­oxy benzoic acid hydrazide (1.660 g, 10 mmol) and cyclo­hexyl iso­thio­cyanate (1.417 ml, 10 mmol) in absolute ethanol (20 ml) was refluxed for 4 h. The solid obtained upon cooling was filtered off and washed with water and thereafter with ether. The above solid was dissolved in methanol and kept for crystallization. Colorless crystals of the title compound were obtained after 10 days (yield: 60%, m.p. 468 K). Analysis calculated for C15H21N3O2S (307.41): C, 58.55; H, 6.83; N, 13.66, S, 10.40%; Found. C, 58.05; H, 6.95; N, 13.15, S, 10.60%. IR (Selected, KBr): ν(NH) 3281, 3188; ν(C=O) 1633; ν(N—N) 1046; ν(C=S) 975 cm−1. 1H NMR (DMSO d6; δ p.p.m.): 10.45, 9.94 (s, 2H, NH), 7.48–7.07 (m, 4H, aromatic), 3.81 (s, 3H, OCH3), 3.27 (s, 1H, NH), 2.46–1.51 (cyclo­hexyl protons). 13C NMR (DMSO-d6; δ p.p.m.): 180.1 (C9), 163.0 (C8), 157.7 (C2), 133.9 (C4), 130.8 (C6), 122.3 (C5), 121.1 (C3), 112.9 (C1), 56.5 (C7), 49.0 (C10), 39.6 (C11, C15), 32.8 (C13), 25.1 (C12, C14).

[Figure 5]
Figure 5
The reaction scheme showing the synthesis of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. A region of disordered electron density was corrected for using the SQUEEZE routine in PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). The given chemical formula and other crystal data do not take into account the unknown solvent molecule(s).

Table 2
Experimental details

Crystal data
Chemical formula C15H21N3O2S
Mr 307.41
Crystal system, space group Orthorhombic, Pccn
Temperature (K) 100
a, b, c (Å) 29.5823 (10), 15.1971 (8), 7.4303 (2)
V3) 3340.4 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.20
Crystal size (mm) 0.35 × 0.31 × 0.18
 
Data collection
Diffractometer Rigaku OD SuperNova, Dual, Cu at zero, Atlas
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.766, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 23969, 8579, 5943
Rint 0.038
(sin θ/λ)max−1) 0.865
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.141, 1.01
No. of reflections 8579
No. of parameters 191
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.57, −0.49
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

4-Cyclohexyl-1-(2-methoxybenzoyl)thiosemicarbazide top
Crystal data top
C15H21N3O2SDx = 1.223 Mg m3
Mr = 307.41Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PccnCell parameters from 5858 reflections
a = 29.5823 (10) Åθ = 4.1–36.9°
b = 15.1971 (8) ŵ = 0.20 mm1
c = 7.4303 (2) ÅT = 100 K
V = 3340.4 (2) Å3Block, colourless
Z = 80.35 × 0.31 × 0.18 mm
F(000) = 1312
Data collection top
Rigaku OD SuperNova, Dual, Cu at zero, Atlas
diffractometer
8579 independent reflections
Radiation source: micro-focus sealed X-ray tube5943 reflections with I > 2σ(I)
Detector resolution: 10.6501 pixels mm-1Rint = 0.038
ω scansθmax = 38.0°, θmin = 3.4°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
h = 5132
Tmin = 0.766, Tmax = 1.000k = 2225
23969 measured reflectionsl = 129
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0573P)2 + 0.9308P]
where P = (Fo2 + 2Fc2)/3
8579 reflections(Δ/σ)max = 0.001
191 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.49 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All H atoms were included in calculated positions and refined as riding: (N—H = 0.88 Å, C—H = 0.95–1.00 Å with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq (C, N) for other H atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.35005 (2)0.45941 (2)0.30736 (4)0.02840 (8)
O10.51910 (3)0.44865 (6)0.30165 (10)0.02145 (16)
N10.44576 (3)0.42049 (6)0.25602 (12)0.01785 (16)
H1A0.42450.39690.18850.021*
N20.43510 (3)0.45797 (6)0.41971 (12)0.01968 (17)
H2A0.45550.46220.50550.024*
N30.38838 (3)0.54063 (7)0.58855 (13)0.02328 (19)
H3B0.41340.55570.64500.028*
C10.49867 (3)0.38567 (6)0.01910 (13)0.01554 (16)
O20.42318 (3)0.34449 (6)0.04284 (11)0.02289 (16)
C20.46703 (4)0.34759 (7)0.09866 (13)0.01771 (18)
C30.48083 (4)0.31472 (7)0.26464 (15)0.0219 (2)
H3A0.45940.28870.34350.026*
C40.52583 (4)0.31993 (7)0.31475 (14)0.0236 (2)
H4A0.53510.29700.42780.028*
C50.55740 (4)0.35814 (7)0.20190 (14)0.0213 (2)
H5A0.58820.36180.23690.026*
C60.54345 (4)0.39094 (7)0.03713 (13)0.01772 (18)
H6A0.56510.41780.03970.021*
C70.39000 (4)0.30595 (9)0.15849 (19)0.0305 (3)
H7A0.36010.31050.10220.046*
H7B0.39740.24390.17860.046*
H7C0.38980.33710.27400.046*
C80.48867 (4)0.42057 (7)0.20168 (13)0.01617 (17)
C90.39228 (4)0.48821 (8)0.44523 (13)0.01948 (19)
C100.34575 (4)0.57477 (8)0.65855 (14)0.0207 (2)
H10A0.32400.58060.55620.025*
C110.35395 (4)0.66559 (8)0.73803 (16)0.0227 (2)
H11A0.36480.70580.64250.027*
H11B0.37770.66180.83160.027*
C120.31070 (4)0.70242 (8)0.82077 (15)0.0240 (2)
H12A0.31730.75970.87860.029*
H12B0.28810.71260.72460.029*
C130.29112 (5)0.63975 (9)0.95964 (16)0.0288 (3)
H13A0.31240.63411.06170.035*
H13B0.26240.66411.00650.035*
C140.28248 (5)0.54955 (9)0.87859 (18)0.0294 (3)
H14A0.25890.55420.78440.035*
H14B0.27120.50920.97320.035*
C150.32559 (4)0.51217 (8)0.79683 (16)0.0256 (2)
H15A0.34790.50140.89350.031*
H15B0.31880.45510.73850.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01858 (12)0.04279 (19)0.02381 (13)0.00557 (12)0.00243 (10)0.01162 (12)
O10.0177 (3)0.0308 (4)0.0158 (3)0.0055 (3)0.0021 (3)0.0051 (3)
N10.0182 (4)0.0209 (4)0.0145 (3)0.0035 (3)0.0016 (3)0.0039 (3)
N20.0175 (4)0.0287 (5)0.0129 (3)0.0079 (3)0.0003 (3)0.0034 (3)
N30.0160 (4)0.0367 (5)0.0172 (4)0.0089 (4)0.0009 (3)0.0080 (3)
C10.0191 (4)0.0149 (4)0.0126 (3)0.0043 (3)0.0003 (3)0.0005 (3)
O20.0183 (3)0.0273 (4)0.0230 (4)0.0018 (3)0.0018 (3)0.0079 (3)
C20.0213 (4)0.0153 (4)0.0165 (4)0.0035 (3)0.0003 (4)0.0019 (3)
C30.0293 (5)0.0190 (4)0.0174 (4)0.0018 (4)0.0001 (4)0.0053 (3)
C40.0339 (6)0.0204 (5)0.0165 (4)0.0032 (4)0.0066 (4)0.0036 (3)
C50.0237 (5)0.0208 (5)0.0194 (4)0.0036 (4)0.0066 (4)0.0004 (4)
C60.0200 (4)0.0171 (4)0.0161 (4)0.0036 (3)0.0015 (3)0.0005 (3)
C70.0238 (5)0.0315 (6)0.0363 (6)0.0025 (5)0.0071 (5)0.0124 (5)
C80.0181 (4)0.0175 (4)0.0129 (3)0.0054 (3)0.0004 (3)0.0000 (3)
C90.0177 (4)0.0256 (5)0.0152 (4)0.0062 (4)0.0010 (3)0.0006 (3)
C100.0171 (4)0.0297 (5)0.0154 (4)0.0082 (4)0.0012 (3)0.0031 (4)
C110.0184 (4)0.0284 (5)0.0214 (4)0.0065 (4)0.0016 (4)0.0027 (4)
C120.0215 (5)0.0292 (5)0.0213 (4)0.0098 (4)0.0024 (4)0.0048 (4)
C130.0298 (6)0.0357 (6)0.0208 (5)0.0131 (5)0.0065 (4)0.0040 (4)
C140.0274 (5)0.0351 (6)0.0258 (5)0.0049 (5)0.0102 (5)0.0011 (5)
C150.0275 (5)0.0280 (5)0.0214 (5)0.0080 (5)0.0049 (4)0.0013 (4)
Geometric parameters (Å, º) top
S1—C91.6737 (11)C6—H6A0.9500
O1—C81.2426 (13)C7—H7A0.9800
N1—C81.3321 (13)C7—H7B0.9800
N1—N21.3795 (12)C7—H7C0.9800
N1—H1A0.8800C10—C111.5207 (17)
N2—C91.3611 (13)C10—C151.5221 (17)
N2—H2A0.8800C10—H10A1.0000
N3—C91.3349 (14)C11—C121.5259 (15)
N3—C101.4593 (14)C11—H11A0.9900
N3—H3B0.8800C11—H11B0.9900
C1—C61.3912 (15)C12—C131.5190 (18)
C1—C21.4059 (14)C12—H12A0.9900
C1—C81.4864 (13)C12—H12B0.9900
O2—C21.3629 (13)C13—C141.5189 (19)
O2—C71.4299 (14)C13—H13A0.9900
C2—C31.3918 (14)C13—H13B0.9900
C3—C41.3845 (17)C14—C151.5225 (17)
C3—H3A0.9500C14—H14A0.9900
C4—C51.3830 (17)C14—H14B0.9900
C4—H4A0.9500C15—H15A0.9900
C5—C61.3848 (14)C15—H15B0.9900
C5—H5A0.9500
C8—N1—N2118.99 (9)N3—C9—S1125.44 (8)
C8—N1—H1A120.5N2—C9—S1121.41 (8)
N2—N1—H1A120.5N3—C10—C11108.87 (9)
C9—N2—N1118.36 (9)N3—C10—C15110.91 (9)
C9—N2—H2A120.8C11—C10—C15111.57 (9)
N1—N2—H2A120.8N3—C10—H10A108.5
C9—N3—C10124.83 (10)C11—C10—H10A108.5
C9—N3—H3B117.6C15—C10—H10A108.5
C10—N3—H3B117.6C10—C11—C12110.84 (10)
C6—C1—C2118.08 (9)C10—C11—H11A109.5
C6—C1—C8116.30 (9)C12—C11—H11A109.5
C2—C1—C8125.62 (9)C10—C11—H11B109.5
C2—O2—C7118.99 (9)C12—C11—H11B109.5
O2—C2—C3122.44 (10)H11A—C11—H11B108.1
O2—C2—C1117.30 (9)C13—C12—C11111.31 (10)
C3—C2—C1120.26 (10)C13—C12—H12A109.4
C4—C3—C2119.98 (10)C11—C12—H12A109.4
C4—C3—H3A120.0C13—C12—H12B109.4
C2—C3—H3A120.0C11—C12—H12B109.4
C5—C4—C3120.68 (10)H12A—C12—H12B108.0
C5—C4—H4A119.7C14—C13—C12111.14 (10)
C3—C4—H4A119.7C14—C13—H13A109.4
C4—C5—C6119.07 (11)C12—C13—H13A109.4
C4—C5—H5A120.5C14—C13—H13B109.4
C6—C5—H5A120.5C12—C13—H13B109.4
C5—C6—C1121.91 (10)H13A—C13—H13B108.0
C5—C6—H6A119.0C13—C14—C15110.73 (11)
C1—C6—H6A119.0C13—C14—H14A109.5
O2—C7—H7A109.5C15—C14—H14A109.5
O2—C7—H7B109.5C13—C14—H14B109.5
H7A—C7—H7B109.5C15—C14—H14B109.5
O2—C7—H7C109.5H14A—C14—H14B108.1
H7A—C7—H7C109.5C10—C15—C14111.37 (10)
H7B—C7—H7C109.5C10—C15—H15A109.4
O1—C8—N1120.62 (9)C14—C15—H15A109.4
O1—C8—C1121.60 (9)C10—C15—H15B109.4
N1—C8—C1117.78 (9)C14—C15—H15B109.4
N3—C9—N2113.15 (9)H15A—C15—H15B108.0
C8—N1—N2—C9155.21 (10)C2—C1—C8—O1175.77 (10)
C7—O2—C2—C30.13 (16)C6—C1—C8—N1176.75 (9)
C7—O2—C2—C1179.76 (10)C2—C1—C8—N13.91 (15)
C6—C1—C2—O2178.77 (9)C10—N3—C9—N2173.24 (11)
C8—C1—C2—O21.90 (15)C10—N3—C9—S16.15 (17)
C6—C1—C2—C31.33 (15)N1—N2—C9—N3165.32 (10)
C8—C1—C2—C3178.00 (10)N1—N2—C9—S115.26 (14)
O2—C2—C3—C4179.74 (10)C9—N3—C10—C11147.21 (11)
C1—C2—C3—C40.37 (16)C9—N3—C10—C1589.66 (13)
C2—C3—C4—C50.45 (17)N3—C10—C11—C12177.45 (9)
C3—C4—C5—C60.27 (17)C15—C10—C11—C1254.71 (12)
C4—C5—C6—C10.76 (16)C10—C11—C12—C1355.32 (13)
C2—C1—C6—C51.54 (15)C11—C12—C13—C1456.40 (14)
C8—C1—C6—C5177.85 (9)C12—C13—C14—C1556.28 (14)
N2—N1—C8—O14.70 (15)N3—C10—C15—C14176.78 (10)
N2—N1—C8—C1175.62 (9)C11—C10—C15—C1455.22 (13)
C6—C1—C8—O13.58 (14)C13—C14—C15—C1055.65 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.881.902.5907 (12)135
N2—H2A···O1i0.882.112.8523 (12)142
N3—H3B···O1i0.882.042.8607 (12)155
Symmetry code: (i) x+1, y+1, z+1.
 

Funding information

AB is grateful to the UGC, New Delhi, India for the award of a Project UGC-Start-up Grant 2015–16 (No. F.30–109/2015, BSR).

References

First citationBharti, A., Bharati, P., Singh, N. K. & Bharty, M. K. (2016). J. Coord. Chem. 69, 1258–1271.  Web of Science CSD CrossRef CAS Google Scholar
First citationCastiñeiras, A., Fernández-Hermida, N., García-Santos, I. & Gómez-Rodríguez, L. (2012). Dalton Trans. 41, 13486–13495.  Google Scholar
First citationDulare, R., Bharty, M. K., Kushawaha, S. K., Singh, S. & Singh, N. K. (2011). Polyhedron, 30, 1960–1967.  Web of Science CSD CrossRef CAS Google Scholar
First citationHovsepian, T. R., Dilanian, E. R., Engoyan, A. P. & Melik-Ohanjanian, R. G. (2004). Chem. Heterocycl. Compd. 40, 1194–1198.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNath, P., Bharty, M. K., Chaurasia, R., Kumari, S. & Gupta, S. K. (2015). Acta Cryst. E71, o967–o968.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPaswan, S., Bharty, M. K., Kumari, S., Gupta, S. K. & Singh, N. K. (2015). Acta Cryst. E71, o880–o881.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPlech, T., Wujec, M., Siwek, A., Kosikowska, U. & Malm, A. (2011). Eur. J. Med. Chem. 46, 241–248.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiddiqui, N. & Singh, O. (2003). Indian J. Pharm. Sci. 65, 423–425.  CAS Google Scholar
First citationSingh, A., Bharty, M. K., Dani, R. K., Singh, S., Kushawaha, S. K. & Singh, N. K. (2014). Polyhedron, 73, 98–109.  Web of Science CSD CrossRef Google Scholar
First citationSiwek, A., Stączek, P. & Stefańska, J. (2011). Eur. J. Med. Chem. 46, 5717–5726.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds