organic compounds
4-Cyclohexyl-1-(2-methoxybenzoyl)thiosemicarbazide with an unknown solvent
aDepartment of Chemistry, Banaras Hindu University, Varanasi 221 005, India, bDepartment of Chemistry, Kirori Mal College, University of Delhi, Delhi-110007, India, cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and dDepartment of Chemistry, University of Canterbury, PO Box 4800, 8410, New Zealand
*Correspondence e-mail: mkbharty@bhu.ac.in
In the title compound, C15H21N3O2S, a short intramolecular N—H⋯O hydrogen bond generates an S(6) ring. The molecule is twisted with a dihedral angle between the benzene ring and the mean plane of the cyclohexyl ring being 58.90 (6)°. In the crystal, inversion dimers are formed with each molecule linked to the other by two N—H(H)⋯O hydrogen bonds to the same acceptor, generating R21(6) loops. A region of disordered electron density was corrected for using the SQUEEZE routine in PLATON [Spek (2015). Acta Cryst. C71, 9–18]. The given chemical formula and other crystal data do not take into account the unknown solvent molecule(s).
CCDC reference: 1819711
Structure description
Thiosemicarbazides are a class of organic compounds which are known not only for their various biological activities but also as metal-chelating agents (Siddiqui & Singh, 2003; Castiñeiras et al., 2012; Singh et al., 2014). Thiosemicarbazide is the simplest representative of such ligands having both nitrogen and sulfur atoms as donors. Thiosemicarbazide and substituted thiosemicarbazides are an important class of intermediates used for the synthesis of nitrogen–sulfur or nitrogen–oxygen (Hovsepian et al., 2004; Paswan et al., 2015). Substituted thiosemicarbazides are biologically versatile compounds displaying a variety of biological effects (Bharti et al., 2016; Plech et al., 2011; Siwek et al., 2011). The addition of to various isothiocyanates is a convenient method for the synthesis of substituted thiosemicarbazides. As part of our studies in this area, we have synthesized the title compound and herein report on its crystal structure.
In the title compound, the dihedral angle of 58.90 (6)° between the benzene ring and the mean plane of the cyclohexyl ring indicates that the molecule is twisted (Fig. 1). A short intramolecular N—H⋯O hydrogen bond generates an S(6) ring (Fig. 1, Table 1). The lengths of the C8=O1 [1.2426 (13) Å] and C9=S1 [1.6737 (11) Å] double bonds are in agreement with bond lengths in related compounds (Nath et al., 2015; Dulare et al., 2011). The C—N bond lengths, N1—C8 1.3321 (13), N2—C9 1.3611 (13) and N3—C10 1.4593 (14) Å, are similar to standard C—N single bonds.
|
In the crystal, inversion dimers are formed with each molecule linked to the other by two N—H(H)⋯O hydrogen bonds to the same acceptor, generating (6) loops (Fig. 2, Table 1). The overall crystal packing is illustrated in Fig. 3.
A region of disordered electron density was corrected for using the SQUEEZE routine in PLATON (Spek, 2015). The given chemical formula and other crystal data do not take into account the unknown solvent molecule(s). The region occupied by the disordered solvent is illustrated in Fig. 4, drawn using Mercury (Macrae et al., 2008).
Synthesis and crystallization
The synthesis of the title compound is illustrated in Fig. 5. Methyl-2-methoxy benzoate (1.436 ml, 10 mmol) and hydrazine hydrate (0.485 ml, 10 mmol) were refluxed for 5 h and kept for overnight. The white solid 2-methoxy benzoic acid hydrazide was obtained upon cooling and filtered off, washed with water and and thereafter with ether. A mixture of 2-methoxy benzoic acid hydrazide (1.660 g, 10 mmol) and cyclohexyl isothiocyanate (1.417 ml, 10 mmol) in absolute ethanol (20 ml) was refluxed for 4 h. The solid obtained upon cooling was filtered off and washed with water and thereafter with ether. The above solid was dissolved in methanol and kept for crystallization. Colorless crystals of the title compound were obtained after 10 days (yield: 60%, m.p. 468 K). Analysis calculated for C15H21N3O2S (307.41): C, 58.55; H, 6.83; N, 13.66, S, 10.40%; Found. C, 58.05; H, 6.95; N, 13.15, S, 10.60%. IR (Selected, KBr): ν(NH) 3281, 3188; ν(C=O) 1633; ν(N—N) 1046; ν(C=S) 975 cm−1. 1H NMR (DMSO d6; δ p.p.m.): 10.45, 9.94 (s, 2H, NH), 7.48–7.07 (m, 4H, aromatic), 3.81 (s, 3H, OCH3), 3.27 (s, 1H, NH), 2.46–1.51 (cyclohexyl protons). 13C NMR (DMSO-d6; δ p.p.m.): 180.1 (C9), 163.0 (C8), 157.7 (C2), 133.9 (C4), 130.8 (C6), 122.3 (C5), 121.1 (C3), 112.9 (C1), 56.5 (C7), 49.0 (C10), 39.6 (C11, C15), 32.8 (C13), 25.1 (C12, C14).
Refinement
Crystal data, data collection and structure . A region of disordered electron density was corrected for using the SQUEEZE routine in PLATON (Spek, 2015). The given chemical formula and other crystal data do not take into account the unknown solvent molecule(s).
details are summarized in Table 2Structural data
CCDC reference: 1819711
https://doi.org/10.1107/S2414314618003838/su5423sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314618003838/su5423Isup2.hkl
Data collection: CrysAlis PRO (Rigaku OD, 2015); cell
CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C15H21N3O2S | Dx = 1.223 Mg m−3 |
Mr = 307.41 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pccn | Cell parameters from 5858 reflections |
a = 29.5823 (10) Å | θ = 4.1–36.9° |
b = 15.1971 (8) Å | µ = 0.20 mm−1 |
c = 7.4303 (2) Å | T = 100 K |
V = 3340.4 (2) Å3 | Block, colourless |
Z = 8 | 0.35 × 0.31 × 0.18 mm |
F(000) = 1312 |
Rigaku OD SuperNova, Dual, Cu at zero, Atlas diffractometer | 8579 independent reflections |
Radiation source: micro-focus sealed X-ray tube | 5943 reflections with I > 2σ(I) |
Detector resolution: 10.6501 pixels mm-1 | Rint = 0.038 |
ω scans | θmax = 38.0°, θmin = 3.4° |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) | h = −51→32 |
Tmin = 0.766, Tmax = 1.000 | k = −22→25 |
23969 measured reflections | l = −12→9 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.051 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.141 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0573P)2 + 0.9308P] where P = (Fo2 + 2Fc2)/3 |
8579 reflections | (Δ/σ)max = 0.001 |
191 parameters | Δρmax = 0.57 e Å−3 |
0 restraints | Δρmin = −0.49 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. All H atoms were included in calculated positions and refined as riding: (N—H = 0.88 Å, C—H = 0.95–1.00 Å with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq (C, N) for other H atoms. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.35005 (2) | 0.45941 (2) | 0.30736 (4) | 0.02840 (8) | |
O1 | 0.51910 (3) | 0.44865 (6) | 0.30165 (10) | 0.02145 (16) | |
N1 | 0.44576 (3) | 0.42049 (6) | 0.25602 (12) | 0.01785 (16) | |
H1A | 0.4245 | 0.3969 | 0.1885 | 0.021* | |
N2 | 0.43510 (3) | 0.45797 (6) | 0.41971 (12) | 0.01968 (17) | |
H2A | 0.4555 | 0.4622 | 0.5055 | 0.024* | |
N3 | 0.38838 (3) | 0.54063 (7) | 0.58855 (13) | 0.02328 (19) | |
H3B | 0.4134 | 0.5557 | 0.6450 | 0.028* | |
C1 | 0.49867 (3) | 0.38567 (6) | 0.01910 (13) | 0.01554 (16) | |
O2 | 0.42318 (3) | 0.34449 (6) | −0.04284 (11) | 0.02289 (16) | |
C2 | 0.46703 (4) | 0.34759 (7) | −0.09866 (13) | 0.01771 (18) | |
C3 | 0.48083 (4) | 0.31472 (7) | −0.26464 (15) | 0.0219 (2) | |
H3A | 0.4594 | 0.2887 | −0.3435 | 0.026* | |
C4 | 0.52583 (4) | 0.31993 (7) | −0.31475 (14) | 0.0236 (2) | |
H4A | 0.5351 | 0.2970 | −0.4278 | 0.028* | |
C5 | 0.55740 (4) | 0.35814 (7) | −0.20190 (14) | 0.0213 (2) | |
H5A | 0.5882 | 0.3618 | −0.2369 | 0.026* | |
C6 | 0.54345 (4) | 0.39094 (7) | −0.03713 (13) | 0.01772 (18) | |
H6A | 0.5651 | 0.4178 | 0.0397 | 0.021* | |
C7 | 0.39000 (4) | 0.30595 (9) | −0.15849 (19) | 0.0305 (3) | |
H7A | 0.3601 | 0.3105 | −0.1022 | 0.046* | |
H7B | 0.3974 | 0.2439 | −0.1786 | 0.046* | |
H7C | 0.3898 | 0.3371 | −0.2740 | 0.046* | |
C8 | 0.48867 (4) | 0.42057 (7) | 0.20168 (13) | 0.01617 (17) | |
C9 | 0.39228 (4) | 0.48821 (8) | 0.44523 (13) | 0.01948 (19) | |
C10 | 0.34575 (4) | 0.57477 (8) | 0.65855 (14) | 0.0207 (2) | |
H10A | 0.3240 | 0.5806 | 0.5562 | 0.025* | |
C11 | 0.35395 (4) | 0.66559 (8) | 0.73803 (16) | 0.0227 (2) | |
H11A | 0.3648 | 0.7058 | 0.6425 | 0.027* | |
H11B | 0.3777 | 0.6618 | 0.8316 | 0.027* | |
C12 | 0.31070 (4) | 0.70242 (8) | 0.82077 (15) | 0.0240 (2) | |
H12A | 0.3173 | 0.7597 | 0.8786 | 0.029* | |
H12B | 0.2881 | 0.7126 | 0.7246 | 0.029* | |
C13 | 0.29112 (5) | 0.63975 (9) | 0.95964 (16) | 0.0288 (3) | |
H13A | 0.3124 | 0.6341 | 1.0617 | 0.035* | |
H13B | 0.2624 | 0.6641 | 1.0065 | 0.035* | |
C14 | 0.28248 (5) | 0.54955 (9) | 0.87859 (18) | 0.0294 (3) | |
H14A | 0.2589 | 0.5542 | 0.7844 | 0.035* | |
H14B | 0.2712 | 0.5092 | 0.9732 | 0.035* | |
C15 | 0.32559 (4) | 0.51217 (8) | 0.79683 (16) | 0.0256 (2) | |
H15A | 0.3479 | 0.5014 | 0.8935 | 0.031* | |
H15B | 0.3188 | 0.4551 | 0.7385 | 0.031* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.01858 (12) | 0.04279 (19) | 0.02381 (13) | 0.00557 (12) | −0.00243 (10) | −0.01162 (12) |
O1 | 0.0177 (3) | 0.0308 (4) | 0.0158 (3) | 0.0055 (3) | −0.0021 (3) | −0.0051 (3) |
N1 | 0.0182 (4) | 0.0209 (4) | 0.0145 (3) | 0.0035 (3) | 0.0016 (3) | −0.0039 (3) |
N2 | 0.0175 (4) | 0.0287 (5) | 0.0129 (3) | 0.0079 (3) | −0.0003 (3) | −0.0034 (3) |
N3 | 0.0160 (4) | 0.0367 (5) | 0.0172 (4) | 0.0089 (4) | −0.0009 (3) | −0.0080 (3) |
C1 | 0.0191 (4) | 0.0149 (4) | 0.0126 (3) | 0.0043 (3) | 0.0003 (3) | −0.0005 (3) |
O2 | 0.0183 (3) | 0.0273 (4) | 0.0230 (4) | 0.0018 (3) | −0.0018 (3) | −0.0079 (3) |
C2 | 0.0213 (4) | 0.0153 (4) | 0.0165 (4) | 0.0035 (3) | −0.0003 (4) | −0.0019 (3) |
C3 | 0.0293 (5) | 0.0190 (4) | 0.0174 (4) | 0.0018 (4) | 0.0001 (4) | −0.0053 (3) |
C4 | 0.0339 (6) | 0.0204 (5) | 0.0165 (4) | 0.0032 (4) | 0.0066 (4) | −0.0036 (3) |
C5 | 0.0237 (5) | 0.0208 (5) | 0.0194 (4) | 0.0036 (4) | 0.0066 (4) | 0.0004 (4) |
C6 | 0.0200 (4) | 0.0171 (4) | 0.0161 (4) | 0.0036 (3) | 0.0015 (3) | 0.0005 (3) |
C7 | 0.0238 (5) | 0.0315 (6) | 0.0363 (6) | 0.0025 (5) | −0.0071 (5) | −0.0124 (5) |
C8 | 0.0181 (4) | 0.0175 (4) | 0.0129 (3) | 0.0054 (3) | 0.0004 (3) | 0.0000 (3) |
C9 | 0.0177 (4) | 0.0256 (5) | 0.0152 (4) | 0.0062 (4) | 0.0010 (3) | −0.0006 (3) |
C10 | 0.0171 (4) | 0.0297 (5) | 0.0154 (4) | 0.0082 (4) | 0.0012 (3) | −0.0031 (4) |
C11 | 0.0184 (4) | 0.0284 (5) | 0.0214 (4) | 0.0065 (4) | −0.0016 (4) | −0.0027 (4) |
C12 | 0.0215 (5) | 0.0292 (5) | 0.0213 (4) | 0.0098 (4) | −0.0024 (4) | −0.0048 (4) |
C13 | 0.0298 (6) | 0.0357 (6) | 0.0208 (5) | 0.0131 (5) | 0.0065 (4) | −0.0040 (4) |
C14 | 0.0274 (5) | 0.0351 (6) | 0.0258 (5) | 0.0049 (5) | 0.0102 (5) | −0.0011 (5) |
C15 | 0.0275 (5) | 0.0280 (5) | 0.0214 (5) | 0.0080 (5) | 0.0049 (4) | −0.0013 (4) |
S1—C9 | 1.6737 (11) | C6—H6A | 0.9500 |
O1—C8 | 1.2426 (13) | C7—H7A | 0.9800 |
N1—C8 | 1.3321 (13) | C7—H7B | 0.9800 |
N1—N2 | 1.3795 (12) | C7—H7C | 0.9800 |
N1—H1A | 0.8800 | C10—C11 | 1.5207 (17) |
N2—C9 | 1.3611 (13) | C10—C15 | 1.5221 (17) |
N2—H2A | 0.8800 | C10—H10A | 1.0000 |
N3—C9 | 1.3349 (14) | C11—C12 | 1.5259 (15) |
N3—C10 | 1.4593 (14) | C11—H11A | 0.9900 |
N3—H3B | 0.8800 | C11—H11B | 0.9900 |
C1—C6 | 1.3912 (15) | C12—C13 | 1.5190 (18) |
C1—C2 | 1.4059 (14) | C12—H12A | 0.9900 |
C1—C8 | 1.4864 (13) | C12—H12B | 0.9900 |
O2—C2 | 1.3629 (13) | C13—C14 | 1.5189 (19) |
O2—C7 | 1.4299 (14) | C13—H13A | 0.9900 |
C2—C3 | 1.3918 (14) | C13—H13B | 0.9900 |
C3—C4 | 1.3845 (17) | C14—C15 | 1.5225 (17) |
C3—H3A | 0.9500 | C14—H14A | 0.9900 |
C4—C5 | 1.3830 (17) | C14—H14B | 0.9900 |
C4—H4A | 0.9500 | C15—H15A | 0.9900 |
C5—C6 | 1.3848 (14) | C15—H15B | 0.9900 |
C5—H5A | 0.9500 | ||
C8—N1—N2 | 118.99 (9) | N3—C9—S1 | 125.44 (8) |
C8—N1—H1A | 120.5 | N2—C9—S1 | 121.41 (8) |
N2—N1—H1A | 120.5 | N3—C10—C11 | 108.87 (9) |
C9—N2—N1 | 118.36 (9) | N3—C10—C15 | 110.91 (9) |
C9—N2—H2A | 120.8 | C11—C10—C15 | 111.57 (9) |
N1—N2—H2A | 120.8 | N3—C10—H10A | 108.5 |
C9—N3—C10 | 124.83 (10) | C11—C10—H10A | 108.5 |
C9—N3—H3B | 117.6 | C15—C10—H10A | 108.5 |
C10—N3—H3B | 117.6 | C10—C11—C12 | 110.84 (10) |
C6—C1—C2 | 118.08 (9) | C10—C11—H11A | 109.5 |
C6—C1—C8 | 116.30 (9) | C12—C11—H11A | 109.5 |
C2—C1—C8 | 125.62 (9) | C10—C11—H11B | 109.5 |
C2—O2—C7 | 118.99 (9) | C12—C11—H11B | 109.5 |
O2—C2—C3 | 122.44 (10) | H11A—C11—H11B | 108.1 |
O2—C2—C1 | 117.30 (9) | C13—C12—C11 | 111.31 (10) |
C3—C2—C1 | 120.26 (10) | C13—C12—H12A | 109.4 |
C4—C3—C2 | 119.98 (10) | C11—C12—H12A | 109.4 |
C4—C3—H3A | 120.0 | C13—C12—H12B | 109.4 |
C2—C3—H3A | 120.0 | C11—C12—H12B | 109.4 |
C5—C4—C3 | 120.68 (10) | H12A—C12—H12B | 108.0 |
C5—C4—H4A | 119.7 | C14—C13—C12 | 111.14 (10) |
C3—C4—H4A | 119.7 | C14—C13—H13A | 109.4 |
C4—C5—C6 | 119.07 (11) | C12—C13—H13A | 109.4 |
C4—C5—H5A | 120.5 | C14—C13—H13B | 109.4 |
C6—C5—H5A | 120.5 | C12—C13—H13B | 109.4 |
C5—C6—C1 | 121.91 (10) | H13A—C13—H13B | 108.0 |
C5—C6—H6A | 119.0 | C13—C14—C15 | 110.73 (11) |
C1—C6—H6A | 119.0 | C13—C14—H14A | 109.5 |
O2—C7—H7A | 109.5 | C15—C14—H14A | 109.5 |
O2—C7—H7B | 109.5 | C13—C14—H14B | 109.5 |
H7A—C7—H7B | 109.5 | C15—C14—H14B | 109.5 |
O2—C7—H7C | 109.5 | H14A—C14—H14B | 108.1 |
H7A—C7—H7C | 109.5 | C10—C15—C14 | 111.37 (10) |
H7B—C7—H7C | 109.5 | C10—C15—H15A | 109.4 |
O1—C8—N1 | 120.62 (9) | C14—C15—H15A | 109.4 |
O1—C8—C1 | 121.60 (9) | C10—C15—H15B | 109.4 |
N1—C8—C1 | 117.78 (9) | C14—C15—H15B | 109.4 |
N3—C9—N2 | 113.15 (9) | H15A—C15—H15B | 108.0 |
C8—N1—N2—C9 | 155.21 (10) | C2—C1—C8—O1 | 175.77 (10) |
C7—O2—C2—C3 | 0.13 (16) | C6—C1—C8—N1 | 176.75 (9) |
C7—O2—C2—C1 | −179.76 (10) | C2—C1—C8—N1 | −3.91 (15) |
C6—C1—C2—O2 | −178.77 (9) | C10—N3—C9—N2 | −173.24 (11) |
C8—C1—C2—O2 | 1.90 (15) | C10—N3—C9—S1 | 6.15 (17) |
C6—C1—C2—C3 | 1.33 (15) | N1—N2—C9—N3 | −165.32 (10) |
C8—C1—C2—C3 | −178.00 (10) | N1—N2—C9—S1 | 15.26 (14) |
O2—C2—C3—C4 | 179.74 (10) | C9—N3—C10—C11 | −147.21 (11) |
C1—C2—C3—C4 | −0.37 (16) | C9—N3—C10—C15 | 89.66 (13) |
C2—C3—C4—C5 | −0.45 (17) | N3—C10—C11—C12 | −177.45 (9) |
C3—C4—C5—C6 | 0.27 (17) | C15—C10—C11—C12 | −54.71 (12) |
C4—C5—C6—C1 | 0.76 (16) | C10—C11—C12—C13 | 55.32 (13) |
C2—C1—C6—C5 | −1.54 (15) | C11—C12—C13—C14 | −56.40 (14) |
C8—C1—C6—C5 | 177.85 (9) | C12—C13—C14—C15 | 56.28 (14) |
N2—N1—C8—O1 | 4.70 (15) | N3—C10—C15—C14 | 176.78 (10) |
N2—N1—C8—C1 | −175.62 (9) | C11—C10—C15—C14 | 55.22 (13) |
C6—C1—C8—O1 | −3.58 (14) | C13—C14—C15—C10 | −55.65 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O2 | 0.88 | 1.90 | 2.5907 (12) | 135 |
N2—H2A···O1i | 0.88 | 2.11 | 2.8523 (12) | 142 |
N3—H3B···O1i | 0.88 | 2.04 | 2.8607 (12) | 155 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Funding information
AB is grateful to the UGC, New Delhi, India for the award of a Project UGC-Start-up Grant 2015–16 (No. F.30–109/2015, BSR).
References
Bharti, A., Bharati, P., Singh, N. K. & Bharty, M. K. (2016). J. Coord. Chem. 69, 1258–1271. Web of Science CSD CrossRef CAS Google Scholar
Castiñeiras, A., Fernández-Hermida, N., García-Santos, I. & Gómez-Rodríguez, L. (2012). Dalton Trans. 41, 13486–13495. Google Scholar
Dulare, R., Bharty, M. K., Kushawaha, S. K., Singh, S. & Singh, N. K. (2011). Polyhedron, 30, 1960–1967. Web of Science CSD CrossRef CAS Google Scholar
Hovsepian, T. R., Dilanian, E. R., Engoyan, A. P. & Melik-Ohanjanian, R. G. (2004). Chem. Heterocycl. Compd. 40, 1194–1198. CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Nath, P., Bharty, M. K., Chaurasia, R., Kumari, S. & Gupta, S. K. (2015). Acta Cryst. E71, o967–o968. Web of Science CSD CrossRef IUCr Journals Google Scholar
Paswan, S., Bharty, M. K., Kumari, S., Gupta, S. K. & Singh, N. K. (2015). Acta Cryst. E71, o880–o881. Web of Science CSD CrossRef IUCr Journals Google Scholar
Plech, T., Wujec, M., Siwek, A., Kosikowska, U. & Malm, A. (2011). Eur. J. Med. Chem. 46, 241–248. Web of Science CrossRef CAS PubMed Google Scholar
Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Siddiqui, N. & Singh, O. (2003). Indian J. Pharm. Sci. 65, 423–425. CAS Google Scholar
Singh, A., Bharty, M. K., Dani, R. K., Singh, S., Kushawaha, S. K. & Singh, N. K. (2014). Polyhedron, 73, 98–109. Web of Science CSD CrossRef Google Scholar
Siwek, A., Stączek, P. & Stefańska, J. (2011). Eur. J. Med. Chem. 46, 5717–5726. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2015). Acta Cryst. C71, 9–18. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.