metal-organic compounds
trans-(Aniline-κN)dichlorido(dimethyl sulfoxide-κS)platinum(II)
aInstitute of Molecular Science, Shanxi University, Taiyuan, Shanxi, 030006, People's Republic of China
*Correspondence e-mail: cxyuan@sxu.edu.cn
In the title compound, [PtCl2(C6H7N)(C2H6OS)], the PtII ion has an approximately square-planar coordination environment. It binds to the N atom of the aniline ligand and is trans to the S atom of the dimethyl sulfoxide. The two Cl− anions are also in trans positions. In the crystal, molecules are linked by N—H⋯O, C—H⋯Cl and C—H⋯O hydrogen bonds.
Keywords: crystal structure; platinum(II) complex; hydrogen bonding.
CCDC reference: 1827840
Structure description
trans-Platinum(II) complexes attract great attention because such compounds display good cytotoxic activity and have been shown to be able to overcome cisplatin resistance (Sgarbossa et al., 2013; Kalinowska-Lis et al., 2008). It is therefore of interest to synthesize trans platinum(II) complexes with different structures.
In the title compound (Fig. 1), the platinum atom is in a slightly distorted square-planar coordination environment, which is defined by the N atom of the aniline ligand, the S atom of dimethyl sulfoxide and the two Cl− anions that adopt a trans arrangement. A slight distortion from planarity is indicated with a dihedral angle of 4.39 (11)° between the Cl2–Pt1–S1 and Cl1–Pt1–N1 planes. The Pt1—N1, 2.081 (3) Å, Pt1—S1, 2.2206 (10) Å, and the two Pt—Cl bond distances Pt1—Cl1 2.2894 (11) Å, and 2.2933 (11) Å are normal and comparable to values reported for related PtII complexes in the literature (Francisco et al., 2011; Rahman et al. 2015; Huo et al. 2011).
In the crystal, N1—H1B⋯O1 hydrogen bonds, Table 1, form inversion dimers and enclose R22(10) rings, Fig. 2. The molecules are further linked by N—H⋯Cl, C—H⋯Cl and C—H⋯O hydrogen bonds, generating a three-dimensional framework (Fig. 3).
Synthesis and crystallization
The complex cis-Pt(DMSO)2Cl2 (DMSO = dimethyl sulfoxide) was prepared by a reported method (Kukushkin et al., 1968). A solution of aniline (0.1 mmol, 0.009 g) in methanol (10 ml) was added with stirring to a suspension of cis-Pt(DMSO)2Cl2 (0.1 mmol, 0.042 g) in methanol (10 ml). The solution was refluxed at 338 K with stirring for 2.5 h under a nitrogen atmosphere, cooled slowly and filtered. The filtrate was kept at room temperature and suitable crystals of the title compound were obtained over a period of two weeks.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1827840
https://doi.org/10.1107/S2414314618003875/sj4166sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314618003875/sj4166Isup2.hkl
Data collection: APEX2 (Bruker, 2012); cell
SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).[PtCl2(C6H7N)(C2H6OS)] | F(000) = 1632 |
Mr = 437.24 | Dx = 2.341 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 15.1308 (7) Å | Cell parameters from 5286 reflections |
b = 16.6636 (8) Å | θ = 2.4–27.3° |
c = 10.0062 (5) Å | µ = 11.88 mm−1 |
β = 100.379 (1)° | T = 296 K |
V = 2481.6 (2) Å3 | Block, colorless |
Z = 8 | 0.30 × 0.25 × 0.25 mm |
Bruker APEXII CCD diffractometer | 1967 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.036 |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | θmax = 25.0°, θmin = 1.8° |
Tmin = 0.040, Tmax = 0.051 | h = −17→17 |
13004 measured reflections | k = −19→19 |
2181 independent reflections | l = −11→11 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.019 | H-atom parameters constrained |
wR(F2) = 0.043 | w = 1/[σ2(Fo2) + (0.020P)2 + 0.8P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max = 0.001 |
2181 reflections | Δρmax = 0.41 e Å−3 |
129 parameters | Δρmin = −0.84 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Pt1 | 0.39217 (2) | 0.34146 (2) | 0.14748 (2) | 0.02771 (7) | |
Cl1 | 0.36154 (9) | 0.21751 (7) | 0.22668 (12) | 0.0532 (3) | |
Cl2 | 0.41711 (8) | 0.47049 (7) | 0.08370 (11) | 0.0452 (3) | |
S1 | 0.42812 (7) | 0.29389 (7) | −0.04301 (10) | 0.0355 (3) | |
O1 | 0.52497 (18) | 0.2944 (2) | −0.0457 (3) | 0.0470 (8) | |
N1 | 0.3694 (2) | 0.3897 (2) | 0.3300 (3) | 0.0318 (8) | |
H1A | 0.400822 | 0.434933 | 0.344778 | 0.038* | |
H1B | 0.391932 | 0.355693 | 0.396038 | 0.038* | |
C1 | 0.2775 (2) | 0.4074 (2) | 0.3444 (4) | 0.0283 (9) | |
C2 | 0.2311 (3) | 0.4691 (3) | 0.2705 (4) | 0.0404 (10) | |
H2 | 0.257308 | 0.497612 | 0.207829 | 0.048* | |
C3 | 0.1460 (3) | 0.4882 (3) | 0.2904 (5) | 0.0501 (12) | |
H3 | 0.114762 | 0.530426 | 0.242771 | 0.060* | |
C4 | 0.1068 (3) | 0.4437 (3) | 0.3822 (5) | 0.0543 (14) | |
H4 | 0.049190 | 0.456414 | 0.395805 | 0.065* | |
C5 | 0.1521 (3) | 0.3820 (3) | 0.4519 (5) | 0.0508 (13) | |
H5 | 0.125046 | 0.351931 | 0.511744 | 0.061* | |
C6 | 0.2378 (3) | 0.3637 (3) | 0.4343 (4) | 0.0421 (11) | |
H6 | 0.269067 | 0.321907 | 0.483229 | 0.050* | |
C7 | 0.3881 (4) | 0.1953 (3) | −0.0826 (5) | 0.0609 (15) | |
H7A | 0.417547 | 0.158835 | −0.014625 | 0.091* | |
H7B | 0.400683 | 0.180089 | −0.169763 | 0.091* | |
H7C | 0.324459 | 0.193677 | −0.084796 | 0.091* | |
C8 | 0.3738 (4) | 0.3477 (3) | −0.1877 (5) | 0.0612 (16) | |
H8A | 0.387880 | 0.323519 | −0.268400 | 0.092* | |
H8B | 0.394203 | 0.402408 | −0.181841 | 0.092* | |
H8C | 0.310016 | 0.346455 | −0.191259 | 0.092* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pt1 | 0.02819 (10) | 0.02928 (11) | 0.02603 (10) | −0.00066 (7) | 0.00590 (6) | 0.00100 (7) |
Cl1 | 0.0786 (9) | 0.0331 (6) | 0.0493 (7) | −0.0117 (6) | 0.0152 (6) | 0.0038 (5) |
Cl2 | 0.0558 (7) | 0.0359 (6) | 0.0468 (6) | −0.0025 (5) | 0.0168 (5) | 0.0111 (5) |
S1 | 0.0331 (6) | 0.0451 (7) | 0.0280 (5) | 0.0024 (5) | 0.0048 (4) | −0.0054 (5) |
O1 | 0.0327 (16) | 0.071 (2) | 0.0384 (17) | 0.0042 (16) | 0.0093 (13) | −0.0105 (16) |
N1 | 0.0323 (18) | 0.036 (2) | 0.0274 (17) | −0.0041 (16) | 0.0058 (14) | −0.0025 (16) |
C1 | 0.031 (2) | 0.027 (2) | 0.028 (2) | −0.0034 (17) | 0.0082 (17) | −0.0044 (17) |
C2 | 0.042 (3) | 0.030 (2) | 0.051 (3) | −0.006 (2) | 0.012 (2) | 0.003 (2) |
C3 | 0.042 (3) | 0.041 (3) | 0.068 (3) | 0.010 (2) | 0.010 (2) | 0.001 (3) |
C4 | 0.042 (3) | 0.058 (4) | 0.067 (3) | −0.001 (3) | 0.020 (3) | −0.010 (3) |
C5 | 0.043 (3) | 0.070 (4) | 0.043 (3) | −0.014 (3) | 0.018 (2) | 0.004 (3) |
C6 | 0.046 (3) | 0.043 (3) | 0.038 (3) | −0.002 (2) | 0.009 (2) | 0.006 (2) |
C7 | 0.074 (4) | 0.052 (3) | 0.058 (3) | −0.008 (3) | 0.016 (3) | −0.025 (3) |
C8 | 0.059 (3) | 0.093 (5) | 0.030 (3) | 0.020 (3) | 0.005 (2) | 0.008 (3) |
Pt1—N1 | 2.081 (3) | C3—C4 | 1.393 (7) |
Pt1—S1 | 2.2206 (10) | C3—H3 | 0.9300 |
Pt1—Cl1 | 2.2894 (11) | C4—C5 | 1.358 (7) |
Pt1—Cl2 | 2.2933 (11) | C4—H4 | 0.9300 |
S1—O1 | 1.470 (3) | C5—C6 | 1.374 (6) |
S1—C7 | 1.770 (5) | C5—H5 | 0.9300 |
S1—C8 | 1.775 (5) | C6—H6 | 0.9300 |
N1—C1 | 1.453 (5) | C7—H7A | 0.9600 |
N1—H1A | 0.8899 | C7—H7B | 0.9600 |
N1—H1B | 0.8900 | C7—H7C | 0.9600 |
C1—C6 | 1.377 (6) | C8—H8A | 0.9600 |
C1—C2 | 1.382 (6) | C8—H8B | 0.9600 |
C2—C3 | 1.376 (6) | C8—H8C | 0.9600 |
C2—H2 | 0.9300 | ||
N1—Pt1—S1 | 175.23 (9) | C2—C3—C4 | 119.6 (5) |
N1—Pt1—Cl1 | 88.19 (10) | C2—C3—H3 | 120.2 |
S1—Pt1—Cl1 | 94.09 (4) | C4—C3—H3 | 120.2 |
N1—Pt1—Cl2 | 86.79 (10) | C5—C4—C3 | 120.4 (4) |
S1—Pt1—Cl2 | 91.01 (4) | C5—C4—H4 | 119.8 |
Cl1—Pt1—Cl2 | 174.81 (4) | C3—C4—H4 | 119.8 |
O1—S1—C7 | 107.7 (2) | C4—C5—C6 | 120.2 (5) |
O1—S1—C8 | 107.4 (2) | C4—C5—H5 | 119.9 |
C7—S1—C8 | 101.4 (3) | C6—C5—H5 | 119.9 |
O1—S1—Pt1 | 114.36 (12) | C5—C6—C1 | 120.0 (4) |
C7—S1—Pt1 | 113.35 (18) | C5—C6—H6 | 120.0 |
C8—S1—Pt1 | 111.77 (18) | C1—C6—H6 | 120.0 |
C1—N1—Pt1 | 118.6 (2) | S1—C7—H7A | 109.5 |
C1—N1—H1A | 107.7 | S1—C7—H7B | 109.5 |
Pt1—N1—H1A | 107.7 | H7A—C7—H7B | 109.5 |
C1—N1—H1B | 107.6 | S1—C7—H7C | 109.5 |
Pt1—N1—H1B | 107.7 | H7A—C7—H7C | 109.5 |
H1A—N1—H1B | 107.1 | H7B—C7—H7C | 109.5 |
C6—C1—C2 | 120.3 (4) | S1—C8—H8A | 109.5 |
C6—C1—N1 | 119.6 (4) | S1—C8—H8B | 109.5 |
C2—C1—N1 | 120.1 (4) | H8A—C8—H8B | 109.5 |
C3—C2—C1 | 119.5 (4) | S1—C8—H8C | 109.5 |
C3—C2—H2 | 120.2 | H8A—C8—H8C | 109.5 |
C1—C2—H2 | 120.2 | H8B—C8—H8C | 109.5 |
Pt1—N1—C1—C6 | 112.7 (4) | C2—C3—C4—C5 | 0.0 (8) |
Pt1—N1—C1—C2 | −68.9 (4) | C3—C4—C5—C6 | 1.2 (8) |
C6—C1—C2—C3 | 1.8 (6) | C4—C5—C6—C1 | −0.9 (7) |
N1—C1—C2—C3 | −176.5 (4) | C2—C1—C6—C5 | −0.6 (7) |
C1—C2—C3—C4 | −1.5 (7) | N1—C1—C6—C5 | 177.7 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Cl2i | 0.89 | 2.78 | 3.463 (3) | 134 |
N1—H1A···Cl2ii | 0.89 | 2.84 | 3.425 (3) | 125 |
N1—H1B···O1i | 0.89 | 2.05 | 2.913 (4) | 165 |
C8—H8A···O1iii | 0.96 | 2.51 | 3.424 (6) | 158 |
C8—H8C···Cl1iv | 0.96 | 2.77 | 3.677 (6) | 158 |
Symmetry codes: (i) −x+1, y, −z+1/2; (ii) x, −y+1, z+1/2; (iii) −x+1, y, −z−1/2; (iv) −x+1/2, −y+1/2, −z. |
Acknowledgements
The authors acknowledge Shao-dong Li for help with the single-crystal X-ray diffraction data collection.
Funding information
Funding for this research was provided by: National Natural Science Foundation of China (grant No. 21471092).
References
Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Francisco, C., Gama, S., Mendes, F., Marques, F., dos Santos, I. C., Paulo, A., Santos, I., Coimbra, J., Gabano, E. & Ravera, M. (2011). Dalton Trans. 40, 5781–5792. Web of Science CSD CrossRef CAS Google Scholar
Huo, J., Arulsamy, N. & Hoberg, J. O. (2011). Dalton Trans. 40, 7534–7540. Web of Science CSD CrossRef CAS Google Scholar
Kalinowska-Lis, U., Ochocki, J. & Matlawska-Wasowska, K. (2008). Coord. Chem. Rev. 252, 1328–1345. CAS Google Scholar
Kukushkin, Y. N., Vyaz'menskii, Y. E., Zorina, L. I. & Pazukhina, Y. L. (1968). Zh. Neorg. Khim. 13, 1595–1599. CAS Google Scholar
Rahman, F., Ali, A., Guo, R., Zhang, Y., Wang, H., Li, Z. & Zhang, D. (2015). Dalton Trans. 44, 2166–2175. Web of Science CSD CrossRef CAS Google Scholar
Sgarbossa, P., Sbovata, S. M., Bertani, R., Mozzon, M., Benetollo, F., Marzano, C., Gandin, V. & Michelin, R. A. (2013). Inorg. Chem. 52, 5729–5741. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.