metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

trans-(Aniline-κN)di­chlorido­(di­methyl sulfoxide-κS)platinum(II)

CROSSMARK_Color_square_no_text.svg

aInstitute of Molecular Science, Shanxi University, Taiyuan, Shanxi, 030006, People's Republic of China
*Correspondence e-mail: cxyuan@sxu.edu.cn

Edited by J. Simpson, University of Otago, New Zealand (Received 1 March 2018; accepted 6 March 2018; online 13 March 2018)

In the title compound, [PtCl2(C6H7N)(C2H6OS)], the PtII ion has an approximately square-planar coordination environment. It binds to the N atom of the aniline ligand and is trans to the S atom of the dimethyl sulfoxide. The two Cl anions are also in trans positions. In the crystal, mol­ecules are linked by N—H⋯O, C—H⋯Cl and C—H⋯O hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

trans-Platinum(II) complexes attract great attention because such compounds display good cytotoxic activity and have been shown to be able to overcome cisplatin resistance (Sgarbossa et al., 2013[Sgarbossa, P., Sbovata, S. M., Bertani, R., Mozzon, M., Benetollo, F., Marzano, C., Gandin, V. & Michelin, R. A. (2013). Inorg. Chem. 52, 5729-5741.]; Kalinowska-Lis et al., 2008[Kalinowska-Lis, U., Ochocki, J. & Matlawska-Wasowska, K. (2008). Coord. Chem. Rev. 252, 1328-1345.]). It is therefore of inter­est to synthesize trans platinum(II) complexes with different structures.

In the title compound (Fig. 1[link]), the platinum atom is in a slightly distorted square-planar coordination environment, which is defined by the N atom of the aniline ligand, the S atom of dimethyl sulfoxide and the two Cl anions that adopt a trans arrangement. A slight distortion from planarity is indicated with a dihedral angle of 4.39 (11)° between the Cl2–Pt1–S1 and Cl1–Pt1–N1 planes. The Pt1—N1, 2.081 (3) Å, Pt1—S1, 2.2206 (10) Å, and the two Pt—Cl bond distances Pt1—Cl1 2.2894 (11) Å, and 2.2933 (11) Å are normal and comparable to values reported for related PtII complexes in the literature (Francisco et al., 2011[Francisco, C., Gama, S., Mendes, F., Marques, F., dos Santos, I. C., Paulo, A., Santos, I., Coimbra, J., Gabano, E. & Ravera, M. (2011). Dalton Trans. 40, 5781-5792.]; Rahman et al. 2015[Rahman, F., Ali, A., Guo, R., Zhang, Y., Wang, H., Li, Z. & Zhang, D. (2015). Dalton Trans. 44, 2166-2175.]; Huo et al. 2011[Huo, J., Arulsamy, N. & Hoberg, J. O. (2011). Dalton Trans. 40, 7534-7540.]).

[Figure 1]
Figure 1
A view of the title compound with 30% probability displacement ellipsoids.

In the crystal, N1—H1B⋯O1 hydrogen bonds, Table 1[link], form inversion dimers and enclose R22(10) rings, Fig. 2[link]. The mol­ecules are further linked by N—H⋯Cl, C—H⋯Cl and C—H⋯O hydrogen bonds, generating a three-dimensional framework (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl2i 0.89 2.78 3.463 (3) 134
N1—H1A⋯Cl2ii 0.89 2.84 3.425 (3) 125
N1—H1B⋯O1i 0.89 2.05 2.913 (4) 165
C8—H8A⋯O1iii 0.96 2.51 3.424 (6) 158
C8—H8C⋯Cl1iv 0.96 2.77 3.677 (6) 158
Symmetry codes: (i) [-x+1, y, -z+{\script{1\over 2}}]; (ii) [x, -y+1, z+{\script{1\over 2}}]; (iii) [-x+1, y, -z-{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].
[Figure 2]
Figure 2
The N—H⋯O hydrogen-bonding inter­actions between the amine H-atom donors and dimethyl sulfoxide O-atom acceptors in the title compound.
[Figure 3]
Figure 3
Overall packing of the title compound viewed along the b-axis direction.

Synthesis and crystallization

The complex cis-Pt(DMSO)2Cl2 (DMSO = dimethyl sulfoxide) was prepared by a reported method (Kukushkin et al., 1968[Kukushkin, Y. N., Vyaz'menskii, Y. E., Zorina, L. I. & Pazukhina, Y. L. (1968). Zh. Neorg. Khim. 13, 1595-1599.]). A solution of aniline (0.1 mmol, 0.009 g) in methanol (10 ml) was added with stirring to a suspension of cis-Pt(DMSO)2Cl2 (0.1 mmol, 0.042 g) in methanol (10 ml). The solution was refluxed at 338 K with stirring for 2.5 h under a nitro­gen atmosphere, cooled slowly and filtered. The filtrate was kept at room temperature and suitable crystals of the title compound were obtained over a period of two weeks.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [PtCl2(C6H7N)(C2H6OS)]
Mr 437.24
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 15.1308 (7), 16.6636 (8), 10.0062 (5)
β (°) 100.379 (1)
V3) 2481.6 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 11.88
Crystal size (mm) 0.30 × 0.25 × 0.25
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.040, 0.051
No. of measured, independent and observed [I > 2σ(I)] reflections 13004, 2181, 1967
Rint 0.036
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.043, 1.09
No. of reflections 2181
No. of parameters 129
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.41, −0.84
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

trans-(Aniline-κN)dichlorido(dimethyl sulfoxide-κS)platinum(II) top
Crystal data top
[PtCl2(C6H7N)(C2H6OS)]F(000) = 1632
Mr = 437.24Dx = 2.341 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 15.1308 (7) ÅCell parameters from 5286 reflections
b = 16.6636 (8) Åθ = 2.4–27.3°
c = 10.0062 (5) ŵ = 11.88 mm1
β = 100.379 (1)°T = 296 K
V = 2481.6 (2) Å3Block, colorless
Z = 80.30 × 0.25 × 0.25 mm
Data collection top
Bruker APEXII CCD
diffractometer
1967 reflections with I > 2σ(I)
φ and ω scansRint = 0.036
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
θmax = 25.0°, θmin = 1.8°
Tmin = 0.040, Tmax = 0.051h = 1717
13004 measured reflectionsk = 1919
2181 independent reflectionsl = 1111
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.019H-atom parameters constrained
wR(F2) = 0.043 w = 1/[σ2(Fo2) + (0.020P)2 + 0.8P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
2181 reflectionsΔρmax = 0.41 e Å3
129 parametersΔρmin = 0.84 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.39217 (2)0.34146 (2)0.14748 (2)0.02771 (7)
Cl10.36154 (9)0.21751 (7)0.22668 (12)0.0532 (3)
Cl20.41711 (8)0.47049 (7)0.08370 (11)0.0452 (3)
S10.42812 (7)0.29389 (7)0.04301 (10)0.0355 (3)
O10.52497 (18)0.2944 (2)0.0457 (3)0.0470 (8)
N10.3694 (2)0.3897 (2)0.3300 (3)0.0318 (8)
H1A0.4008220.4349330.3447780.038*
H1B0.3919320.3556930.3960380.038*
C10.2775 (2)0.4074 (2)0.3444 (4)0.0283 (9)
C20.2311 (3)0.4691 (3)0.2705 (4)0.0404 (10)
H20.2573080.4976120.2078290.048*
C30.1460 (3)0.4882 (3)0.2904 (5)0.0501 (12)
H30.1147620.5304260.2427710.060*
C40.1068 (3)0.4437 (3)0.3822 (5)0.0543 (14)
H40.0491900.4564140.3958050.065*
C50.1521 (3)0.3820 (3)0.4519 (5)0.0508 (13)
H50.1250460.3519310.5117440.061*
C60.2378 (3)0.3637 (3)0.4343 (4)0.0421 (11)
H60.2690670.3219070.4832290.050*
C70.3881 (4)0.1953 (3)0.0826 (5)0.0609 (15)
H7A0.4175470.1588350.0146250.091*
H7B0.4006830.1800890.1697630.091*
H7C0.3244590.1936770.0847960.091*
C80.3738 (4)0.3477 (3)0.1877 (5)0.0612 (16)
H8A0.3878800.3235190.2684000.092*
H8B0.3942030.4024080.1818410.092*
H8C0.3100160.3464550.1912590.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.02819 (10)0.02928 (11)0.02603 (10)0.00066 (7)0.00590 (6)0.00100 (7)
Cl10.0786 (9)0.0331 (6)0.0493 (7)0.0117 (6)0.0152 (6)0.0038 (5)
Cl20.0558 (7)0.0359 (6)0.0468 (6)0.0025 (5)0.0168 (5)0.0111 (5)
S10.0331 (6)0.0451 (7)0.0280 (5)0.0024 (5)0.0048 (4)0.0054 (5)
O10.0327 (16)0.071 (2)0.0384 (17)0.0042 (16)0.0093 (13)0.0105 (16)
N10.0323 (18)0.036 (2)0.0274 (17)0.0041 (16)0.0058 (14)0.0025 (16)
C10.031 (2)0.027 (2)0.028 (2)0.0034 (17)0.0082 (17)0.0044 (17)
C20.042 (3)0.030 (2)0.051 (3)0.006 (2)0.012 (2)0.003 (2)
C30.042 (3)0.041 (3)0.068 (3)0.010 (2)0.010 (2)0.001 (3)
C40.042 (3)0.058 (4)0.067 (3)0.001 (3)0.020 (3)0.010 (3)
C50.043 (3)0.070 (4)0.043 (3)0.014 (3)0.018 (2)0.004 (3)
C60.046 (3)0.043 (3)0.038 (3)0.002 (2)0.009 (2)0.006 (2)
C70.074 (4)0.052 (3)0.058 (3)0.008 (3)0.016 (3)0.025 (3)
C80.059 (3)0.093 (5)0.030 (3)0.020 (3)0.005 (2)0.008 (3)
Geometric parameters (Å, º) top
Pt1—N12.081 (3)C3—C41.393 (7)
Pt1—S12.2206 (10)C3—H30.9300
Pt1—Cl12.2894 (11)C4—C51.358 (7)
Pt1—Cl22.2933 (11)C4—H40.9300
S1—O11.470 (3)C5—C61.374 (6)
S1—C71.770 (5)C5—H50.9300
S1—C81.775 (5)C6—H60.9300
N1—C11.453 (5)C7—H7A0.9600
N1—H1A0.8899C7—H7B0.9600
N1—H1B0.8900C7—H7C0.9600
C1—C61.377 (6)C8—H8A0.9600
C1—C21.382 (6)C8—H8B0.9600
C2—C31.376 (6)C8—H8C0.9600
C2—H20.9300
N1—Pt1—S1175.23 (9)C2—C3—C4119.6 (5)
N1—Pt1—Cl188.19 (10)C2—C3—H3120.2
S1—Pt1—Cl194.09 (4)C4—C3—H3120.2
N1—Pt1—Cl286.79 (10)C5—C4—C3120.4 (4)
S1—Pt1—Cl291.01 (4)C5—C4—H4119.8
Cl1—Pt1—Cl2174.81 (4)C3—C4—H4119.8
O1—S1—C7107.7 (2)C4—C5—C6120.2 (5)
O1—S1—C8107.4 (2)C4—C5—H5119.9
C7—S1—C8101.4 (3)C6—C5—H5119.9
O1—S1—Pt1114.36 (12)C5—C6—C1120.0 (4)
C7—S1—Pt1113.35 (18)C5—C6—H6120.0
C8—S1—Pt1111.77 (18)C1—C6—H6120.0
C1—N1—Pt1118.6 (2)S1—C7—H7A109.5
C1—N1—H1A107.7S1—C7—H7B109.5
Pt1—N1—H1A107.7H7A—C7—H7B109.5
C1—N1—H1B107.6S1—C7—H7C109.5
Pt1—N1—H1B107.7H7A—C7—H7C109.5
H1A—N1—H1B107.1H7B—C7—H7C109.5
C6—C1—C2120.3 (4)S1—C8—H8A109.5
C6—C1—N1119.6 (4)S1—C8—H8B109.5
C2—C1—N1120.1 (4)H8A—C8—H8B109.5
C3—C2—C1119.5 (4)S1—C8—H8C109.5
C3—C2—H2120.2H8A—C8—H8C109.5
C1—C2—H2120.2H8B—C8—H8C109.5
Pt1—N1—C1—C6112.7 (4)C2—C3—C4—C50.0 (8)
Pt1—N1—C1—C268.9 (4)C3—C4—C5—C61.2 (8)
C6—C1—C2—C31.8 (6)C4—C5—C6—C10.9 (7)
N1—C1—C2—C3176.5 (4)C2—C1—C6—C50.6 (7)
C1—C2—C3—C41.5 (7)N1—C1—C6—C5177.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl2i0.892.783.463 (3)134
N1—H1A···Cl2ii0.892.843.425 (3)125
N1—H1B···O1i0.892.052.913 (4)165
C8—H8A···O1iii0.962.513.424 (6)158
C8—H8C···Cl1iv0.962.773.677 (6)158
Symmetry codes: (i) x+1, y, z+1/2; (ii) x, y+1, z+1/2; (iii) x+1, y, z1/2; (iv) x+1/2, y+1/2, z.
 

Acknowledgements

The authors acknowledge Shao-dong Li for help with the single-crystal X-ray diffraction data collection.

Funding information

Funding for this research was provided by: National Natural Science Foundation of China (grant No. 21471092).

References

First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFrancisco, C., Gama, S., Mendes, F., Marques, F., dos Santos, I. C., Paulo, A., Santos, I., Coimbra, J., Gabano, E. & Ravera, M. (2011). Dalton Trans. 40, 5781–5792.  Web of Science CSD CrossRef CAS Google Scholar
First citationHuo, J., Arulsamy, N. & Hoberg, J. O. (2011). Dalton Trans. 40, 7534–7540.  Web of Science CSD CrossRef CAS Google Scholar
First citationKalinowska-Lis, U., Ochocki, J. & Matlawska-Wasowska, K. (2008). Coord. Chem. Rev. 252, 1328–1345.  CAS Google Scholar
First citationKukushkin, Y. N., Vyaz'menskii, Y. E., Zorina, L. I. & Pazukhina, Y. L. (1968). Zh. Neorg. Khim. 13, 1595–1599.  CAS Google Scholar
First citationRahman, F., Ali, A., Guo, R., Zhang, Y., Wang, H., Li, Z. & Zhang, D. (2015). Dalton Trans. 44, 2166–2175.  Web of Science CSD CrossRef CAS Google Scholar
First citationSgarbossa, P., Sbovata, S. M., Bertani, R., Mozzon, M., Benetollo, F., Marzano, C., Gandin, V. & Michelin, R. A. (2013). Inorg. Chem. 52, 5729–5741.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds