metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

{Bis[2-(diiso­propyl­phosphan­yl)eth­yl]amine}­carbon­yl(tetra­hydro­borato)cobalt(I)

CROSSMARK_Color_square_no_text.svg

aLeibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany, and bUniversity of Bologna, Dipartiento di Chimica Industriale "Toso Montanari", viale Risorgimento 4, 40136 Bologna, Italy
*Correspondence e-mail: kathrin.junge@catalysis.de

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 2 March 2018; accepted 22 March 2018; online 29 March 2018)

In the structure of title borohydride pincer complex, [Co(BH4)(C16H37NP2)(CO)], the cobalt(I) metal exhibits a distorted square-pyramidal coordination geometry with the basal positions occupied by the P and N atoms of the tridentate ligand and by the C atom of the carbon monoxide ligand. In the crystal, mol­ecules inter­act only by van der Waals forces.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title cobalt(I) borohydride species was formed by the reduction of the complex [CoBr2(CO){HN((CH2CH2)PiPr2)2}] with five equivalents of NaBH4. The title CoI 18-electron complex consists of a PNP, one CO and a HBH3 ligand coordinating to the CoI atom (Fig. 1[link]). The coordination geometry at the CoI atom is best described as distorted square-pyramidal with the HBH3 ligand in the apical position (τ = 0.25; Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). The metal atom is displaced by 0.2757 (7) Å from the mean plane through the P, N and C atoms occupying the basal positions (r.m.s. deviation = 0.135 Å). Both five-membered chelate rings involving the PNP ligand display an envelope conformation, with the flap atoms C2 and C3 lying 0.564 (2) and 0.599 (2) Å, respectively, from the Co1/P1/C1/N1 and Co1/P2/C4/N1 plane. The crystal packing is governed only by van der Waals inter­actions.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at 30% probability level. Hydrogen atoms except H1A–H1E are omitted for clarity.

Synthesis and crystallization

The synthesis of the starting complex [CoBr2(CO){HN((CH2CH2)PiPr2)2}] was described before (Junge et al., 2018[Junge, K., Wendt, B., Cingolani, A., Spannenberg, A., Wei, Z., Jiao, H. & Beller, M. (2018). Chem. Eur. J. 24, 1046-1052.]). [CoBr2(CO){HN((CH2CH2)PiPr2)2}] (475.1 g, 0.86 mmol) and five equivalents of NaBH4 (160.4 mg in 45 ml absolute EtOH) were added in a 100 ml Schlenk tube in an inert atmosphere. The mixture was stirred for 3 h at room temperature giving a dark-brown solution. The solvent was removed under vacuum and the residue was suspended in Et2O. After filtration, Et2O was removed in vacuum and the solid was extracted several times with n-heptane (40 ml). Finally, n-heptane was removed leaving a reddish powder. Pure red crystals suitable for single crystal X-ray diffraction analysis were grown from a solution of Et2O layered with n-heptane. Yield: 158.1 mg (45%). IR ATR ν (CO): 2971, 1914, 1871, ν (NH): 3400, ν (CH): 2959, 2871, 2783, ν (BH): 2368 cm−1.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula [Co(BH4)(C16H37NP2)(CO)]
Mr 407.19
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 8.0249 (2), 27.3200 (8), 10.3546 (3)
β (°) 97.101 (1)
V3) 2252.73 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.91
Crystal size (mm) 0.38 × 0.32 × 0.14
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.72, 0.89
No. of measured, independent and observed [I > 2σ(I)] reflections 38885, 5449, 4886
Rint 0.026
(sin θ/λ)max−1) 0.660
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.075, 1.08
No. of reflections 5449
No. of parameters 236
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.66, −0.42
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXL2014 (Sheldrick, 2015); software used to prepare material for publication: publCIF (Westrip, 2010).

{Bis[2-(diisopropylphosphanyl)ethyl]amine}carbonyl(tetrahydroborato)cobalt(I) top
Crystal data top
[Co(BH4)(C16H37NP2)(CO)]F(000) = 880
Mr = 407.19Dx = 1.201 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.0249 (2) ÅCell parameters from 9366 reflections
b = 27.3200 (8) Åθ = 2.5–28.8°
c = 10.3546 (3) ŵ = 0.91 mm1
β = 97.101 (1)°T = 150 K
V = 2252.73 (11) Å3Prism, red
Z = 40.38 × 0.32 × 0.14 mm
Data collection top
Bruker APEXII CCD
diffractometer
5449 independent reflections
Radiation source: fine-focus sealed tube4886 reflections with I > 2σ(I)
Curved graphite monochromatorRint = 0.026
φ and ω scansθmax = 28.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1010
Tmin = 0.72, Tmax = 0.89k = 3636
38885 measured reflectionsl = 1313
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0317P)2 + 1.3762P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
5449 reflectionsΔρmax = 0.66 e Å3
236 parametersΔρmin = 0.42 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Atoms H1A–H1E could be located in a difference Fourier map and were refined freely. All other H atoms were placed in idealized positions with d(C—H) = 1.00 Å (CH), 0.99 Å (CH2), 0.98 Å (CH3) and refined using as riding with Uiso(H) fixed at 1.2 Ueq(C) for CH, CH2 and 1.5 Ueq(C) for CH3. A rotating model was used for the methyl H atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
B10.1303 (2)0.04214 (7)0.13590 (18)0.0227 (3)
C10.3578 (2)0.03751 (6)0.24641 (16)0.0265 (3)
H1F0.47020.03320.29630.032*
H1G0.29320.00690.25290.032*
C20.3747 (2)0.04845 (6)0.10518 (16)0.0256 (3)
H2A0.46450.07300.10010.031*
H2B0.40590.01820.06120.031*
C30.2323 (2)0.08158 (6)0.09605 (15)0.0248 (3)
H3A0.26560.05270.14460.030*
H3B0.32080.10680.09630.030*
C40.0664 (2)0.10156 (6)0.16071 (15)0.0269 (3)
H4A0.01580.07470.17860.032*
H4B0.08220.11750.24430.032*
C50.1334 (2)0.05913 (7)0.43592 (15)0.0291 (4)
H50.07890.02970.39120.035*
C60.2471 (3)0.03910 (8)0.55335 (18)0.0403 (5)
H6A0.30050.06640.60420.060*
H6B0.33380.01820.52330.060*
H6C0.18000.01990.60790.060*
C70.0108 (2)0.09020 (8)0.47412 (17)0.0394 (4)
H7A0.07220.07160.53400.059*
H7B0.08700.09870.39600.059*
H7C0.03430.12020.51690.059*
C80.4209 (2)0.12393 (7)0.40695 (18)0.0325 (4)
H80.48450.10060.46910.039*
C90.5423 (2)0.14279 (8)0.3157 (2)0.0435 (5)
H9A0.48050.16240.24650.065*
H9B0.59550.11500.27720.065*
H9C0.62880.16300.36500.065*
C100.3582 (3)0.16526 (8)0.4871 (2)0.0453 (5)
H10A0.45440.18260.53380.068*
H10B0.28890.15170.54990.068*
H10C0.29110.18810.42930.068*
C110.2425 (2)0.14304 (8)0.07824 (18)0.0341 (4)
H110.27310.11270.03250.041*
C120.3163 (3)0.18517 (9)0.0076 (2)0.0506 (6)
H12A0.30130.21580.05390.076*
H12B0.25880.18740.08130.076*
H12C0.43630.17930.00490.076*
C130.3250 (3)0.13749 (11)0.2184 (2)0.0572 (6)
H13A0.44300.12820.21870.086*
H13B0.26640.11210.26220.086*
H13C0.31860.16860.26450.086*
C140.0493 (2)0.20699 (6)0.10655 (18)0.0313 (4)
H140.00240.23170.04970.038*
C150.2386 (3)0.21286 (8)0.0862 (2)0.0471 (5)
H15A0.28900.19150.14690.071*
H15B0.28140.20380.00340.071*
H15C0.26780.24700.10190.071*
C160.0198 (3)0.21952 (8)0.2475 (2)0.0476 (5)
H16A0.03440.24940.27420.071*
H16B0.14130.22480.25360.071*
H16C0.00340.19240.30470.071*
C170.0784 (2)0.17611 (6)0.20485 (17)0.0305 (4)
Co10.09870 (2)0.11960 (2)0.14107 (2)0.01695 (6)
H1A0.065 (3)0.0841 (8)0.157 (2)0.037 (5)*
H1B0.034 (3)0.0148 (8)0.172 (2)0.037 (6)*
H1C0.241 (3)0.0384 (8)0.188 (2)0.037 (6)*
H1D0.161 (3)0.0376 (8)0.027 (2)0.049 (6)*
N10.21356 (16)0.06750 (5)0.03935 (12)0.0187 (2)
O10.0642 (2)0.21577 (5)0.24275 (16)0.0561 (4)
P10.24794 (5)0.08916 (2)0.31343 (4)0.02044 (9)
P20.01034 (5)0.14623 (2)0.04995 (4)0.02156 (9)
H1E0.147 (2)0.0444 (7)0.0339 (18)0.022 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
B10.0229 (8)0.0229 (8)0.0225 (8)0.0002 (7)0.0032 (7)0.0005 (7)
C10.0223 (7)0.0280 (8)0.0284 (8)0.0071 (6)0.0001 (6)0.0051 (6)
C20.0198 (7)0.0296 (8)0.0280 (8)0.0084 (6)0.0050 (6)0.0004 (6)
C30.0305 (8)0.0261 (8)0.0197 (7)0.0018 (6)0.0106 (6)0.0003 (6)
C40.0381 (9)0.0268 (8)0.0155 (7)0.0014 (7)0.0024 (6)0.0008 (6)
C50.0304 (8)0.0383 (9)0.0180 (7)0.0017 (7)0.0014 (6)0.0042 (7)
C60.0432 (11)0.0521 (12)0.0246 (9)0.0009 (9)0.0006 (8)0.0161 (8)
C70.0363 (10)0.0616 (13)0.0212 (8)0.0040 (9)0.0069 (7)0.0010 (8)
C80.0304 (9)0.0334 (9)0.0298 (9)0.0032 (7)0.0115 (7)0.0038 (7)
C90.0310 (10)0.0447 (11)0.0520 (12)0.0119 (8)0.0061 (9)0.0058 (9)
C100.0531 (12)0.0415 (11)0.0365 (11)0.0053 (9)0.0136 (9)0.0112 (9)
C110.0230 (8)0.0481 (11)0.0297 (9)0.0017 (7)0.0023 (7)0.0102 (8)
C120.0283 (10)0.0668 (15)0.0578 (14)0.0146 (10)0.0095 (9)0.0066 (11)
C130.0343 (11)0.096 (2)0.0382 (12)0.0045 (12)0.0089 (9)0.0083 (12)
C140.0337 (9)0.0252 (8)0.0351 (9)0.0038 (7)0.0054 (7)0.0069 (7)
C150.0371 (11)0.0400 (11)0.0643 (14)0.0026 (9)0.0064 (10)0.0167 (10)
C160.0615 (14)0.0382 (11)0.0422 (11)0.0023 (10)0.0028 (10)0.0180 (9)
C170.0318 (9)0.0290 (9)0.0284 (9)0.0075 (7)0.0059 (7)0.0058 (7)
Co10.01843 (10)0.01766 (10)0.01438 (10)0.00293 (7)0.00046 (7)0.00097 (7)
N10.0181 (6)0.0198 (6)0.0186 (6)0.0015 (5)0.0043 (5)0.0003 (5)
O10.0681 (11)0.0346 (8)0.0595 (10)0.0175 (7)0.0161 (8)0.0228 (7)
P10.02065 (18)0.0236 (2)0.01616 (18)0.00142 (15)0.00147 (14)0.00128 (14)
P20.0239 (2)0.0226 (2)0.01789 (19)0.00427 (15)0.00123 (14)0.00319 (14)
Geometric parameters (Å, º) top
B1—H1A1.27 (2)C9—H9B0.9800
B1—H1B1.10 (2)C9—H9C0.9800
B1—H1C1.10 (2)C10—H10A0.9800
B1—H1D1.13 (2)C10—H10B0.9800
C1—C21.515 (2)C10—H10C0.9800
C1—P11.8440 (17)C11—C121.522 (3)
C1—H1F0.9900C11—C131.527 (3)
C1—H1G0.9900C11—P21.8520 (18)
C2—N11.4796 (19)C11—H111.0000
C2—H2A0.9900C12—H12A0.9800
C2—H2B0.9900C12—H12B0.9800
C3—N11.4792 (19)C12—H12C0.9800
C3—C41.516 (2)C13—H13A0.9800
C3—H3A0.9900C13—H13B0.9800
C3—H3B0.9900C13—H13C0.9800
C4—P21.8327 (17)C14—C151.516 (3)
C4—H4A0.9900C14—C161.535 (3)
C4—H4B0.9900C14—P21.8431 (18)
C5—C71.526 (3)C14—H141.0000
C5—C61.528 (2)C15—H15A0.9800
C5—P11.8480 (17)C15—H15B0.9800
C5—H51.0000C15—H15C0.9800
C6—H6A0.9800C16—H16A0.9800
C6—H6B0.9800C16—H16B0.9800
C6—H6C0.9800C16—H16C0.9800
C7—H7A0.9800C17—O11.163 (2)
C7—H7B0.9800C17—Co11.6949 (17)
C7—H7C0.9800Co1—N12.0555 (12)
C8—C101.523 (3)Co1—P22.1863 (4)
C8—C91.528 (3)Co1—P12.1869 (4)
C8—P11.8531 (18)Co1—H1A1.66 (2)
C8—H81.0000N1—H1E0.823 (19)
C9—H9A0.9800
H1A—B1—H1B107.3 (14)C12—C11—C13112.53 (18)
H1A—B1—H1C109.8 (14)C12—C11—P2109.38 (14)
H1B—B1—H1C110.3 (15)C13—C11—P2117.68 (14)
H1A—B1—H1D108.0 (15)C12—C11—H11105.4
H1B—B1—H1D108.5 (16)C13—C11—H11105.4
H1C—B1—H1D112.8 (16)P2—C11—H11105.4
C2—C1—P1108.44 (11)C11—C12—H12A109.5
C2—C1—H1F110.0C11—C12—H12B109.5
P1—C1—H1F110.0H12A—C12—H12B109.5
C2—C1—H1G110.0C11—C12—H12C109.5
P1—C1—H1G110.0H12A—C12—H12C109.5
H1F—C1—H1G108.4H12B—C12—H12C109.5
N1—C2—C1109.67 (12)C11—C13—H13A109.5
N1—C2—H2A109.7C11—C13—H13B109.5
C1—C2—H2A109.7H13A—C13—H13B109.5
N1—C2—H2B109.7C11—C13—H13C109.5
C1—C2—H2B109.7H13A—C13—H13C109.5
H2A—C2—H2B108.2H13B—C13—H13C109.5
N1—C3—C4109.02 (12)C15—C14—C16110.30 (17)
N1—C3—H3A109.9C15—C14—P2110.25 (13)
C4—C3—H3A109.9C16—C14—P2115.20 (14)
N1—C3—H3B109.9C15—C14—H14106.9
C4—C3—H3B109.9C16—C14—H14106.9
H3A—C3—H3B108.3P2—C14—H14106.9
C3—C4—P2107.94 (11)C14—C15—H15A109.5
C3—C4—H4A110.1C14—C15—H15B109.5
P2—C4—H4A110.1H15A—C15—H15B109.5
C3—C4—H4B110.1C14—C15—H15C109.5
P2—C4—H4B110.1H15A—C15—H15C109.5
H4A—C4—H4B108.4H15B—C15—H15C109.5
C7—C5—C6112.97 (15)C14—C16—H16A109.5
C7—C5—P1112.85 (13)C14—C16—H16B109.5
C6—C5—P1113.96 (13)H16A—C16—H16B109.5
C7—C5—H5105.3C14—C16—H16C109.5
C6—C5—H5105.3H16A—C16—H16C109.5
P1—C5—H5105.3H16B—C16—H16C109.5
C5—C6—H6A109.5O1—C17—Co1176.79 (18)
C5—C6—H6B109.5C17—Co1—N1154.31 (8)
H6A—C6—H6B109.5C17—Co1—P290.14 (6)
C5—C6—H6C109.5N1—Co1—P285.50 (4)
H6A—C6—H6C109.5C17—Co1—P195.61 (6)
H6B—C6—H6C109.5N1—Co1—P185.40 (4)
C5—C7—H7A109.5P2—Co1—P1169.253 (18)
C5—C7—H7B109.5C17—Co1—H1A112.2 (7)
H7A—C7—H7B109.5N1—Co1—H1A93.4 (7)
C5—C7—H7C109.5P2—Co1—H1A93.1 (7)
H7A—C7—H7C109.5P1—Co1—H1A93.2 (7)
H7B—C7—H7C109.5C3—N1—C2110.05 (12)
C10—C8—C9111.44 (17)C3—N1—Co1114.21 (9)
C10—C8—P1112.85 (13)C2—N1—Co1115.41 (10)
C9—C8—P1110.08 (13)C3—N1—H1E106.0 (13)
C10—C8—H8107.4C2—N1—H1E106.4 (13)
C9—C8—H8107.4Co1—N1—H1E103.8 (13)
P1—C8—H8107.4C1—P1—C5102.71 (8)
C8—C9—H9A109.5C1—P1—C8103.12 (8)
C8—C9—H9B109.5C5—P1—C8105.84 (8)
H9A—C9—H9B109.5C1—P1—Co1102.88 (5)
C8—C9—H9C109.5C5—P1—Co1117.40 (6)
H9A—C9—H9C109.5C8—P1—Co1122.06 (6)
H9B—C9—H9C109.5C4—P2—C14106.27 (8)
C8—C10—H10A109.5C4—P2—C11106.20 (9)
C8—C10—H10B109.5C14—P2—C11106.73 (8)
H10A—C10—H10B109.5C4—P2—Co1102.51 (5)
C8—C10—H10C109.5C14—P2—Co1119.79 (6)
H10A—C10—H10C109.5C11—P2—Co1114.19 (6)
H10B—C10—H10C109.5
P1—C1—C2—N144.85 (16)C9—C8—P1—C5169.94 (13)
N1—C3—C4—P248.02 (15)C10—C8—P1—Co173.05 (15)
C4—C3—N1—C2179.27 (13)C9—C8—P1—Co152.15 (16)
C4—C3—N1—Co147.59 (15)C3—C4—P2—C1498.19 (12)
C1—C2—N1—C3176.00 (13)C3—C4—P2—C11148.41 (12)
C1—C2—N1—Co144.96 (16)C3—C4—P2—Co128.31 (12)
C2—C1—P1—C5148.85 (12)C15—C14—P2—C467.28 (16)
C2—C1—P1—C8101.28 (12)C16—C14—P2—C458.33 (16)
C2—C1—P1—Co126.47 (12)C15—C14—P2—C11179.69 (15)
C7—C5—P1—C1161.14 (13)C16—C14—P2—C1154.70 (17)
C6—C5—P1—C168.27 (15)C15—C14—P2—Co148.01 (16)
C7—C5—P1—C891.05 (14)C16—C14—P2—Co1173.62 (12)
C6—C5—P1—C839.53 (16)C12—C11—P2—C4170.08 (14)
C7—C5—P1—Co149.16 (14)C13—C11—P2—C440.04 (19)
C6—C5—P1—Co1179.75 (12)C12—C11—P2—C1457.00 (16)
C10—C8—P1—C1172.37 (14)C13—C11—P2—C1473.03 (19)
C9—C8—P1—C162.42 (15)C12—C11—P2—Co177.72 (14)
C10—C8—P1—C564.86 (15)C13—C11—P2—Co1152.24 (16)
 

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJunge, K., Wendt, B., Cingolani, A., Spannenberg, A., Wei, Z., Jiao, H. & Beller, M. (2018). Chem. Eur. J. 24, 1046–1052.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds