3D view (loading...)
Structure description
The molecular structure and atomic numbering for the title compound (I) are shown in Fig. 1
. The molecule is an Amadori rearrangement product (Feather & Mossine, 1998
) and can be viewed as a conjugate of a carbohydrate, 1-amino-1-deoxy-D-fructose, and an aromatic amine, N-methyl-p-fluoroaniline, which are joined through the common amino nitrogen atom. The carbohydrate moiety in (I) exists in the acyclic keto form. Notably, in the aqueous solution of (I), this tautomeric form is a minor constituent of the equilibrium, at 9.4% of the total population [Supplementary Table 1
S; includes references Gomez de Anderez et al. (1996
) and Mossine et al. (2009b
)]. The acyclic carbohydrate is in the zigzag conformation, having five out of six of its carbon atoms, C2, C3, C4, C5, and C6, located in one plane. The conformation around the carbonyl group is also nearly flat and involves atoms N1, C1, C2, O2, C3, and O3, with the carbonyl O2 atom in a close to a syn-periplanar position in respect to both N1 and O3 [respective torsion angles are 8.2 (5) and 9.4 (5)°]. The tertiary amino group geometry is a flattened pyramid, with the distance from the N1 apex to the C1–C7–C13 base of 0.248 (3) Å and the average base–face dihedral angle of 19.3 (4)°. The N1—C7 distance, at 1.409 (4) Å, is significantly shorter than the distances from N1 to the aliphatic carbon atoms C1 and C13 [1.452 (4) and 1.465 (5) Å], which is an indication for a mixed sp3/sp2 hybridization at N1 and a partial resonance of the nitrogen p-electrons with the neighboring benzene ring. In the solid-state NMR spectrum of powdered (I) (Fig. 2
), the peaks corresponding to C1, C7, C10, and C13 are split at about a 1:2 ratio, indicating the presence of crystals with two different conformations of (I) at the aromatic amine, likely due to configurational inversion at the amino atom N1.
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A | O3—H3O⋯O5i | 0.83 (5) | 2.03 (5) | 2.782 (4) | 151 (4) | O4—H4O⋯O6ii | 0.94 (6) | 1.78 (6) | 2.701 (4) | 167 (5) | O5—H5O⋯O3iii | 0.86 (4) | 1.84 (4) | 2.690 (4) | 174 (4) | O6—H6O⋯O4iv | 0.86 (5) | 2.01 (5) | 2.762 (4) | 146 (5) | Symmetry codes: (i) x, y-1, z; (ii) ; (iii) ; (iv) x, y+1, z. | |
| Figure 1 Atomic numbering and displacement ellipsoids at the 50% probability level for (I). Weakly directional intramolecular O—H⋯O contacts are shown as dotted lines. |
| Figure 2 Solid-state 13C NMR spectrum of powdered (I). |
The molecular packing of (I) features alternating `carbohydrate' and `hydrocarbon' layers propagating in the ab plane (Fig. 3
). The carbohydrate residues form a two-dimensional network of hydrogen bonds (Table 1
) organized as a system of two infinite chains, with the ⋯O3—H⋯O5–H⋯ and the ⋯O4—H⋯O6—H⋯ sequences of intermolecular hydrogen bonds. These chains are connected by the intramolecular short heteroatom contacts O3—H⋯O4 and O6—H⋯O5. Basic hydrogen-bonding patterns of the resulting network are depicted in Fig. 4
and include fused homodromic rings. In addition, there are close C—H⋯A contacts within the `hydrocarbon' layer that may qualify as weak hydrogen bonds (Table 2
). The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009
) revealed that a major proportion of the intermolecular contacts in crystal structure of (I) is provided by non- or low-polar interactions of the H⋯H and C⋯H type (Fig. 5
and Table 3
).
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A | O3—H3O⋯O4 | 0.86 (4) | 2.62 (3) | 2.940 (3) | 103 (3) | O6—H6O⋯O5 | 0.86 (5) | 2.36 (5) | 2.839 (4) | 116 (4) | C1—H1A⋯O2 | 0.99 | 2.41 | 3.299 (5) | 149 | C3—H3⋯F1 | 1.00 | 2.52 | 3.432 (5) | 151 | Symmetry codes: (i) x, y + 1, z; (ii) −x, y + , −z. | |
Compound | Alkyl, aryl | O⋯H | H⋯H | C⋯H | Other contacts | (I) | methyl, p-fluorophenyl | 26.3 | 44.6 | 13.5 | F⋯H 10.9; F⋯O 2.6; N⋯H 1.8; C⋯C 0.3 | FruNMptia | methyl, p-methylphenyl | 26.5 | 59.8 | 11.8 | N⋯H 1.6; C⋯C 0.3 | FruNMpasb | methyl, p-methoxyphenyl | 32.3 | 58.2 | 13.2 | N⋯H 1.6; C⋯C 0.1 | FruNEpcaa | ethyl, p-chlorophenyl | 23.1 | 50.1 | 8.6 | Cl⋯H 13.1; Cl⋯C 3.4; N⋯C 0.5; C⋯C 1.3 | FruNAllac | allyl, phenyl | 15.2 | 67.7 | 16.9 | C⋯C 0.1 | References: (a) Mossine et al. (2009 ); (b) Mossine et al. (2018 ); (c) Mossine et al. (2009a ). | |
| Figure 3 The molecular packing in (I). Color code for crystallographic axes: red – a, green – b, blue – c. Hydrogen bonds are shown as cyan dotted lines. |
| Figure 4 Hydrogen-bonding pattern in the crystal structure of (I). |
| Figure 5 Two-dimensional fingerprint plots produced for the Hirshfeld surface of (I). Contributions to the plots from the O⋯H, H⋯H, C⋯H, and F⋯H contacts are shown in (a), (b), (c) and (d), respectively. |
Synthesis and crystallization
The preparation of (I) has been described previously (Mossine et al., 2009
). Briefly, a mixture of 0.02 moles of D-glucose, 0.022 moles of N-methyl-p-fluoroaniline and 0.55 ml of acetic acid catalyst was stirred for 6 h in 8 ml of 2-propanol at 360 K. The purification step included ion-exchange on Amberlite IRN-77 (H+), with 0.2 M NH4OH in 50% ethanol as an eluant, and was followed by flash filtration on a short silica column using 5% MeOH in CH2Cl2 as an eluant. Crystals suitable for the diffraction study were obtained from saturated solution of (I) in water/methanol (1:4) following addition a few drops of acetone at 277 K. See Fig. 2
for the solid-state NMR spectrum of (I).
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 4
. As a result of the unrealistic value obtained for the Flack absolute structure parameter [0.2 (10) for 474 quotients; Parsons et al., 2013
], the absolute configuration of the chain system (3S,4R,5R) was assigned on the basis of the known configuration for starting D-glucose (McNaught, 1996
).
Crystal data | Chemical formula | C13H18FNO5 | Mr | 287.28 | Crystal system, space group | Monoclinic, P21 | Temperature (K) | 100 | a, b, c (Å) | 10.561 (6), 5.156 (3), 12.504 (7) | β (°) | 90.606 (9) | V (Å3) | 680.9 (6) | Z | 2 | Radiation type | Mo Kα | μ (mm−1) | 0.12 | Crystal size (mm) | 0.50 × 0.10 × 0.05 | | Data collection | Diffractometer | Bruker APEXII CCD area detector | Absorption correction | Multi-scan (SADABS; Sheldrick, 2003 ) | Tmin, Tmax | 0.79, 0.99 | No. of measured, independent and observed [I > 2σ(I)] reflections | 4693, 2652, 1588 | Rint | 0.039 | (sin θ/λ)max (Å−1) | 0.643 | | Refinement | R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.100, 0.95 | No. of reflections | 2652 | No. of parameters | 198 | No. of restraints | 1 | H-atom treatment | H atoms treated by a mixture of independent and constrained refinement | Δρmax, Δρmin (e Å−3) | 0.18, −0.17 | Absolute structure | Flack x determined using 474 quotients [(I+)−(I−)]/[(I+)+(I−)] (Parsons et al., 2013 ) | Absolute structure parameter | 0.2 (10) | Computer programs: SMART and SAINT (Bruker, 1998 ), SHELXS97 (Sheldrick, 2008 ), SHELXL2017 (Sheldrick, 2015 ), X-SEED (Barbour, 2001 ), Mercury (Macrae et al., 2008 ), CIFTAB (Sheldrick, 2008 ) and publCIF (Westrip, 2010 ). | |
Structural data
Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: X-SEED (Barbour, 2001) and Mercury (Macrae et al., 2008); software used to prepare material for publication: CIFTAB (Sheldrick, 2008) and publCIF (Westrip, 2010).
1-Deoxy-1-(
N-methyl-4-fluorophenylamino)-
D-
arabino-hexulose
top Crystal data top C13H18FNO5 | F(000) = 304 |
Mr = 287.28 | Dx = 1.401 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 10.561 (6) Å | Cell parameters from 1387 reflections |
b = 5.156 (3) Å | θ = 2.5–24.4° |
c = 12.504 (7) Å | µ = 0.12 mm−1 |
β = 90.606 (9)° | T = 100 K |
V = 680.9 (6) Å3 | Needle, colourless |
Z = 2 | 0.50 × 0.10 × 0.05 mm |
Data collection top Bruker APEXII CCD area detector diffractometer | 1588 reflections with I > 2σ(I) |
ω scans | Rint = 0.039 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | θmax = 27.2°, θmin = 1.6° |
Tmin = 0.79, Tmax = 0.99 | h = −13→13 |
4693 measured reflections | k = −6→6 |
2652 independent reflections | l = −15→14 |
Refinement top Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.042 | w = 1/[σ2(Fo2) + (0.0463P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.100 | (Δ/σ)max < 0.001 |
S = 0.95 | Δρmax = 0.18 e Å−3 |
2652 reflections | Δρmin = −0.16 e Å−3 |
198 parameters | Absolute structure: Flack x determined using 474 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
1 restraint | Absolute structure parameter: 0.2 (10) |
Special details top Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Hydroxy and nitrogen-bound H-atoms were located in difference-Fourier analyses and were allowed to refine fully. Other H atoms were placed at calculated positions and treated as riding, with C—H = 0.98 Å (methyl), 0.99 Å (methylene) or 1.00 Å (methine) and with Uiso(H) = 1.2Ueq(methine or methylene) or 1.5Ueq(methyl). |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
F1 | 0.0320 (2) | 0.1152 (6) | −0.2413 (2) | 0.0782 (9) | |
N1 | 0.3656 (3) | 0.1754 (6) | 0.1042 (2) | 0.0343 (8) | |
C1 | 0.3239 (4) | 0.2826 (7) | 0.2053 (3) | 0.0374 (10) | |
H1A | 0.277228 | 0.445581 | 0.190761 | 0.045* | |
H1B | 0.399564 | 0.327236 | 0.248943 | 0.045* | |
O2 | 0.2218 (2) | −0.1203 (5) | 0.2449 (2) | 0.0472 (8) | |
C2 | 0.2394 (3) | 0.1037 (8) | 0.2706 (3) | 0.0329 (9) | |
O3 | 0.0910 (2) | 0.0429 (5) | 0.4150 (2) | 0.0375 (7) | |
C3 | 0.1810 (3) | 0.2174 (7) | 0.3703 (3) | 0.0323 (10) | |
H3 | 0.135141 | 0.379624 | 0.349283 | 0.039* | |
O4 | 0.3611 (2) | 0.0655 (5) | 0.4743 (2) | 0.0364 (7) | |
C4 | 0.2844 (3) | 0.2909 (7) | 0.4525 (3) | 0.0289 (9) | |
H4 | 0.338661 | 0.431473 | 0.422352 | 0.035* | |
O5 | 0.1544 (2) | 0.6087 (5) | 0.5363 (2) | 0.0360 (7) | |
C5 | 0.2283 (3) | 0.3818 (8) | 0.5579 (3) | 0.0323 (9) | |
H5 | 0.171498 | 0.242944 | 0.585874 | 0.039* | |
O6 | 0.4085 (2) | 0.6539 (5) | 0.6102 (2) | 0.0387 (7) | |
C6 | 0.3272 (3) | 0.4450 (7) | 0.6423 (3) | 0.0383 (10) | |
H6A | 0.284356 | 0.493149 | 0.709461 | 0.046* | |
H6B | 0.379111 | 0.288784 | 0.656630 | 0.046* | |
C7 | 0.2775 (3) | 0.1567 (7) | 0.0191 (3) | 0.0318 (8) | |
C8 | 0.1716 (4) | 0.3148 (9) | 0.0110 (3) | 0.0479 (11) | |
H8 | 0.155226 | 0.435436 | 0.066554 | 0.058* | |
C9 | 0.0895 (4) | 0.3024 (10) | −0.0752 (4) | 0.0551 (12) | |
H9 | 0.017345 | 0.412140 | −0.078552 | 0.066* | |
C10 | 0.1128 (4) | 0.1321 (9) | −0.1549 (3) | 0.0511 (12) | |
C11 | 0.2163 (5) | −0.0204 (10) | −0.1523 (4) | 0.0669 (14) | |
H11 | 0.232965 | −0.135503 | −0.209800 | 0.080* | |
C12 | 0.2978 (4) | −0.0084 (9) | −0.0658 (3) | 0.0605 (14) | |
H12 | 0.370320 | −0.117390 | −0.064489 | 0.073* | |
C13 | 0.4626 (3) | −0.0266 (8) | 0.1133 (3) | 0.0425 (10) | |
H13A | 0.421826 | −0.197004 | 0.117209 | 0.064* | |
H13B | 0.513541 | 0.002372 | 0.178204 | 0.064* | |
H13C | 0.517502 | −0.020370 | 0.050643 | 0.064* | |
H4O | 0.438 (5) | 0.077 (13) | 0.438 (4) | 0.11 (2)* | |
H5O | 0.078 (4) | 0.584 (9) | 0.556 (3) | 0.055 (13)* | |
H3O | 0.129 (4) | −0.090 (10) | 0.434 (3) | 0.055 (15)* | |
H6O | 0.363 (5) | 0.753 (10) | 0.570 (4) | 0.09 (2)* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
F1 | 0.0717 (17) | 0.100 (2) | 0.0620 (16) | −0.0097 (17) | −0.0238 (14) | 0.0038 (16) |
N1 | 0.0397 (17) | 0.0258 (18) | 0.0377 (18) | 0.0002 (15) | 0.0064 (15) | −0.0010 (14) |
C1 | 0.045 (2) | 0.026 (2) | 0.041 (2) | −0.0094 (18) | 0.0030 (19) | −0.0010 (18) |
O2 | 0.0494 (16) | 0.0234 (16) | 0.069 (2) | −0.0055 (13) | 0.0165 (14) | −0.0069 (14) |
C2 | 0.0263 (17) | 0.024 (2) | 0.049 (2) | 0.0029 (16) | 0.0035 (16) | 0.0002 (18) |
O3 | 0.0253 (14) | 0.0256 (16) | 0.0617 (19) | −0.0006 (13) | 0.0072 (12) | 0.0028 (14) |
C3 | 0.0248 (19) | 0.024 (2) | 0.048 (2) | 0.0000 (16) | 0.0065 (18) | 0.0017 (18) |
O4 | 0.0296 (14) | 0.0230 (14) | 0.0567 (17) | 0.0060 (12) | 0.0045 (13) | 0.0045 (13) |
C4 | 0.0283 (19) | 0.021 (2) | 0.038 (2) | 0.0018 (16) | 0.0031 (18) | 0.0015 (17) |
O5 | 0.0238 (14) | 0.0235 (15) | 0.0610 (18) | 0.0018 (12) | 0.0113 (12) | 0.0009 (13) |
C5 | 0.0238 (19) | 0.023 (2) | 0.050 (3) | 0.0015 (17) | 0.0074 (18) | 0.0058 (18) |
O6 | 0.0283 (14) | 0.0366 (18) | 0.0513 (17) | −0.0062 (13) | −0.0005 (13) | 0.0044 (14) |
C6 | 0.038 (2) | 0.028 (3) | 0.048 (3) | −0.0034 (18) | 0.007 (2) | 0.0000 (19) |
C7 | 0.0326 (19) | 0.024 (2) | 0.039 (2) | −0.0036 (17) | 0.0006 (17) | 0.0017 (18) |
C8 | 0.051 (3) | 0.046 (3) | 0.047 (3) | 0.017 (2) | 0.003 (2) | −0.009 (2) |
C9 | 0.046 (3) | 0.065 (3) | 0.055 (3) | 0.017 (2) | 0.002 (2) | 0.005 (3) |
C10 | 0.048 (3) | 0.059 (3) | 0.046 (3) | −0.008 (2) | −0.011 (2) | 0.007 (2) |
C11 | 0.084 (3) | 0.059 (3) | 0.057 (3) | 0.008 (3) | −0.015 (3) | −0.023 (3) |
C12 | 0.065 (3) | 0.046 (3) | 0.069 (3) | 0.024 (2) | −0.018 (3) | −0.019 (3) |
C13 | 0.034 (2) | 0.042 (2) | 0.051 (3) | 0.0066 (19) | 0.0051 (19) | 0.004 (2) |
Geometric parameters (Å, º) top F1—C10 | 1.373 (4) | C5—C6 | 1.512 (5) |
N1—C7 | 1.409 (4) | C5—H5 | 1.0000 |
N1—C1 | 1.452 (4) | O6—C6 | 1.437 (4) |
N1—C13 | 1.465 (5) | O6—H6O | 0.86 (5) |
C1—C2 | 1.527 (5) | C6—H6A | 0.9900 |
C1—H1A | 0.9900 | C6—H6B | 0.9900 |
C1—H1B | 0.9900 | C7—C12 | 1.379 (5) |
O2—C2 | 1.213 (4) | C7—C8 | 1.387 (5) |
C2—C3 | 1.515 (5) | C8—C9 | 1.377 (5) |
O3—C3 | 1.427 (4) | C8—H8 | 0.9500 |
O3—H3O | 0.83 (5) | C9—C10 | 1.353 (6) |
C3—C4 | 1.539 (5) | C9—H9 | 0.9500 |
C3—H3 | 1.0000 | C10—C11 | 1.347 (6) |
O4—C4 | 1.441 (4) | C11—C12 | 1.377 (6) |
O4—H4O | 0.94 (6) | C11—H11 | 0.9500 |
C4—C5 | 1.524 (4) | C12—H12 | 0.9500 |
C4—H4 | 1.0000 | C13—H13A | 0.9800 |
O5—C5 | 1.431 (4) | C13—H13B | 0.9800 |
O5—H5O | 0.86 (4) | C13—H13C | 0.9800 |
| | | |
C7—N1—C1 | 118.7 (3) | C4—C5—H5 | 108.8 |
C7—N1—C13 | 117.8 (3) | C6—O6—H6O | 106 (3) |
C1—N1—C13 | 114.9 (3) | O6—C6—C5 | 112.2 (3) |
N1—C1—C2 | 114.8 (3) | O6—C6—H6A | 109.2 |
N1—C1—H1A | 108.6 | C5—C6—H6A | 109.2 |
C2—C1—H1A | 108.6 | O6—C6—H6B | 109.2 |
N1—C1—H1B | 108.6 | C5—C6—H6B | 109.2 |
C2—C1—H1B | 108.6 | H6A—C6—H6B | 107.9 |
H1A—C1—H1B | 107.5 | C12—C7—C8 | 116.0 (4) |
O2—C2—C3 | 121.6 (3) | C12—C7—N1 | 121.1 (3) |
O2—C2—C1 | 121.5 (3) | C8—C7—N1 | 122.7 (3) |
C3—C2—C1 | 116.9 (3) | C9—C8—C7 | 122.0 (4) |
C3—O3—H3O | 108 (3) | C9—C8—H8 | 119.0 |
O3—C3—C2 | 110.9 (3) | C7—C8—H8 | 119.0 |
O3—C3—C4 | 111.4 (3) | C10—C9—C8 | 119.3 (4) |
C2—C3—C4 | 110.6 (3) | C10—C9—H9 | 120.4 |
O3—C3—H3 | 107.9 | C8—C9—H9 | 120.4 |
C2—C3—H3 | 107.9 | C11—C10—C9 | 121.0 (4) |
C4—C3—H3 | 107.9 | C11—C10—F1 | 118.7 (4) |
C4—O4—H4O | 110 (4) | C9—C10—F1 | 120.3 (4) |
O4—C4—C5 | 107.9 (3) | C10—C11—C12 | 119.5 (4) |
O4—C4—C3 | 108.7 (3) | C10—C11—H11 | 120.2 |
C5—C4—C3 | 111.9 (3) | C12—C11—H11 | 120.2 |
O4—C4—H4 | 109.4 | C11—C12—C7 | 122.1 (4) |
C5—C4—H4 | 109.4 | C11—C12—H12 | 118.9 |
C3—C4—H4 | 109.4 | C7—C12—H12 | 118.9 |
C5—O5—H5O | 110 (3) | N1—C13—H13A | 109.5 |
O5—C5—C6 | 109.1 (3) | N1—C13—H13B | 109.5 |
O5—C5—C4 | 107.7 (3) | H13A—C13—H13B | 109.5 |
C6—C5—C4 | 113.5 (3) | N1—C13—H13C | 109.5 |
O5—C5—H5 | 108.8 | H13A—C13—H13C | 109.5 |
C6—C5—H5 | 108.8 | H13B—C13—H13C | 109.5 |
| | | |
C7—N1—C1—C2 | 73.7 (4) | O5—C5—C6—O6 | −58.2 (4) |
C13—N1—C1—C2 | −73.4 (4) | C4—C5—C6—O6 | 61.9 (4) |
N1—C1—C2—O2 | 8.2 (5) | C1—N1—C7—C12 | −160.5 (4) |
N1—C1—C2—C3 | −173.1 (3) | C13—N1—C7—C12 | −14.3 (5) |
O2—C2—C3—O3 | −9.4 (5) | C1—N1—C7—C8 | 24.7 (5) |
C1—C2—C3—O3 | 171.8 (3) | C13—N1—C7—C8 | 170.8 (4) |
O2—C2—C3—C4 | 114.7 (4) | C12—C7—C8—C9 | 1.9 (6) |
C1—C2—C3—C4 | −64.0 (4) | N1—C7—C8—C9 | 177.0 (4) |
O3—C3—C4—O4 | 68.4 (4) | C7—C8—C9—C10 | −0.4 (7) |
C2—C3—C4—O4 | −55.4 (4) | C8—C9—C10—C11 | −1.6 (7) |
O3—C3—C4—C5 | −50.7 (4) | C8—C9—C10—F1 | 179.7 (4) |
C2—C3—C4—C5 | −174.5 (3) | C9—C10—C11—C12 | 1.9 (7) |
O4—C4—C5—O5 | 178.8 (3) | F1—C10—C11—C12 | −179.3 (4) |
C3—C4—C5—O5 | −61.6 (3) | C10—C11—C12—C7 | −0.3 (7) |
O4—C4—C5—C6 | 58.0 (4) | C8—C7—C12—C11 | −1.5 (6) |
C3—C4—C5—C6 | 177.6 (3) | N1—C7—C12—C11 | −176.7 (4) |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3O···O5i | 0.83 (5) | 2.03 (5) | 2.782 (4) | 151 (4) |
O4—H4O···O6ii | 0.94 (6) | 1.78 (6) | 2.701 (4) | 167 (5) |
O5—H5O···O3iii | 0.86 (4) | 1.84 (4) | 2.690 (4) | 174 (4) |
O6—H6O···O4iv | 0.86 (5) | 2.01 (5) | 2.762 (4) | 146 (5) |
Symmetry codes: (i) x, y−1, z; (ii) −x+1, y−1/2, −z+1; (iii) −x, y+1/2, −z+1; (iv) x, y+1, z. |
Suspected O—H···A and C—H···A contacts (Å, °) topD—H···A | D—H | H···A | D···A | D—H···A |
O3—H3O···O4 | 0.86 (4) | 2.62 (3) | 2.940 (3) | 103 (3) |
O6—H6O···O5 | 0.86 (5) | 2.36 (5) | 2.839 (4) | 116 (4) |
C1—H1A···O2 | 0.99 | 2.41 | 3.299 (5) | 149 |
C3—H3···F1 | 1.00 | 2.52 | 3.432 (5) | 151 |
Symmetry codes: (i) x, y + 1, z; (ii) -x, y + 1/2, -z. |
Contributions (%) of specific contact types to the Hirshfeld surfaces of (I) and other N,N-alkylaryl derivatives of D-fructosamine topCompound | Alkyl, aryl | O···H | H···H | C···H | Other contacts |
(I) | methyl, p-fluorophenyl | 26.3 | 44.6 | 13.5 | F···H 10.9; F···O 2.6; N···H 1.8; C···C 0.3 |
FruNMptia | methyl, p-methylphenyl | 26.5 | 59.8 | 11.8 | N···H 1.6; C···C 0.3 |
FruNMpasb | methyl, p-methoxyphenyl | 32.3 | 58.2 | 13.2 | N···H 1.6; C···C 0.1 |
FruNEpcaa | ethyl, p-chlorophenyl | 23.1 | 50.1 | 8.6 | Cl···H 13.1; Cl···C 3.4; N···C 0.5; C···C 1.3 |
FruNAllac | allyl, phenyl | 15.2 | 67.7 | 16.9 | C···C 0.1 |
References: (a) Mossine et al. (2009); (b) Mossine et al. (2018); (c) Mossine et al. (2009a). |
Supplementary Table 1S. Distribution (%) of cyclic and acyclic forms of some 1-amino-1-deoxy-D-fructose derivatives in D2O/pyridine (1:1) at 293 K, as estimated from the 13C NMR spectra, and in the crystalline state topCompound | Amine substituents | | | | | | Crystalline isomers |
| | α-pyranose | β-pyranose | α-furanose | β-furanose | acyclic, keto | |
(I) [a] | methyl, p-fluorophenyl | 2.5 | 52.1 | 5.0 | 31.0 | 9.4 | acyclic keto |
FruNMptia | methyl, p-methylphenyl | 2.1 | 49.9 | 4.8 | 32.2 | 11.0 | acyclic keto |
FruNMpasb | methyl, p-methoxyphenyl | 2.1 | 52.0 | 4.9 | 30.6 | 10.3 | acyclic keto |
FruNEpcaa | ethyl, p-chlorophenyl | 2.0 | 48.7 | 4.2 | 32.3 | 12.7 | acyclic keto |
Fruptia,c | H, phenyl | 3.5 | 61.0 | 9.4 | 24.2 | 1.9 | β-pyranose |
FruNAllad | allyl, phenyl | 2.2 | 47.4 | 4.5 | 33.6 | 12.3 | β-pyranose |
Fructosaminee | none | 5.0 | 70.8 | 11.2 | 12.3 | 0.8 | β-pyranose |
References: (a) Mossine et al. (2009); (b) Mossine et al. (2018); (c) Gomez de Anderez et al. (1996); (d) Mossine et al. (2009a); (e) Mossine et al. (2009b). |
Funding information
Funding for this research was provided by: University of Missouri Agriculture Experiment Station Chemical Laboratories; National Institute of Food and Agriculture (grant No. MO-HABC0002).
References
Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191. CrossRef CAS Google Scholar
Bruker. (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Feather, M. S. & Mossine, V. V. (1998). In The Maillard Reaction in Foods and Medicine, edited by J. O'Brien, H. E. Nursten and M. J. Crabbe, pp. 37–42. The Royal Society of Chemistry. Google Scholar
Gomez de Anderez, D., Gil, H., Helliwell, M. & Mata Segreda, J. (1996). Acta Cryst. C52, 252–254. CSD CrossRef CAS IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
McNaught, A. D. (1996). Pure Appl. Chem. 68, 1919–2008. CrossRef CAS Web of Science Google Scholar
Mossine, V. V., Barnes, C. L., Chance, D. L. & Mawhinney, T. P. (2009). Angew. Chem. Int. Ed. 48, 5517–5520. Web of Science CSD CrossRef CAS Google Scholar
Mossine, V. V., Barnes, C. L. & Mawhinney, T. P. (2009a). Carbohydr. Res. 344, 948–951. Web of Science CSD CrossRef PubMed CAS Google Scholar
Mossine, V. V., Barnes, C. L. & Mawhinney, T. P. (2009b). J. Carbohydr. Chem. 28, 245–263. Web of Science CSD CrossRef CAS Google Scholar
Mossine, V. V., Barnes, C. L. & Mawhinney, T. P. (2018). Acta Cryst. E74, 127–132. Web of Science CSD CrossRef IUCr Journals Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
 | IUCrDATA |
ISSN: 2414-3146
Open

access