organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-De­­oxy-1-(N-methyl-4-fluoro­phenyl­amino)-D-arabino-hexulose

CROSSMARK_Color_square_no_text.svg

aDepartment of Biochemistry, University of Missouri, Columbia, MO65211, USA, bDepartment of Chemistry, University of Missouri, Columbia, MO65211, USA, and cDepartment of Biochemistry, University of Missouri, Columbia, MO 65211, USA
*Correspondence e-mail: mossinev@missouri.edu

Edited by A. J. Lough, University of Toronto, Canada (Received 21 February 2018; accepted 2 March 2018; online 9 March 2018)

The title compound, C13H18FNO5, consists of D-fructose with an aromatic amine. The carbohydrate chain is in the acyclic keto form and has the zigzag conformation, while the solid-state NMR data suggests a conformational dimorphism at the aromatic amine group. The carbohydrate portion is involved in extensive O—H⋯O hydrogen bonding, which forms a two-dimensional network parallel to (001) and organized into fused homodromic ring patterns. The Hirshfeld surface fingerprint plots reveal a major contribution of the non-polar H⋯H and C⋯H inter­actions to the crystal packing forces.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The mol­ecular structure and atomic numbering for the title compound (I) are shown in Fig. 1[link]. The mol­ecule is an Amadori rearrangement product (Feather & Mossine, 1998[Feather, M. S. & Mossine, V. V. (1998). In The Maillard Reaction in Foods and Medicine, edited by J. O'Brien, H. E. Nursten and M. J. Crabbe, pp. 37-42. The Royal Society of Chemistry.]) and can be viewed as a conjugate of a carbohydrate, 1-amino-1-de­oxy-D-fructose, and an aromatic amine, N-methyl-p-fluoro­aniline, which are joined through the common amino nitro­gen atom. The carbohydrate moiety in (I) exists in the acyclic keto form. Notably, in the aqueous solution of (I), this tautomeric form is a minor constituent of the equilibrium, at 9.4% of the total population [Supplementary Table 1[link]S; includes references Gomez de Anderez et al. (1996[Gomez de Anderez, D., Gil, H., Helliwell, M. & Mata Segreda, J. (1996). Acta Cryst. C52, 252-254.]) and Mossine et al. (2009b[Mossine, V. V., Barnes, C. L. & Mawhinney, T. P. (2009b). J. Carbohydr. Chem. 28, 245-263.])]. The acyclic carbohydrate is in the zigzag conformation, having five out of six of its carbon atoms, C2, C3, C4, C5, and C6, located in one plane. The conformation around the carbonyl group is also nearly flat and involves atoms N1, C1, C2, O2, C3, and O3, with the carbonyl O2 atom in a close to a syn-periplanar position in respect to both N1 and O3 [respective torsion angles are 8.2 (5) and 9.4 (5)°]. The tertiary amino group geometry is a flattened pyramid, with the distance from the N1 apex to the C1–C7–C13 base of 0.248 (3) Å and the average base–face dihedral angle of 19.3 (4)°. The N1—C7 distance, at 1.409 (4) Å, is significantly shorter than the distances from N1 to the aliphatic carbon atoms C1 and C13 [1.452 (4) and 1.465 (5) Å], which is an indication for a mixed sp3/sp2 hybridization at N1 and a partial resonance of the nitro­gen p-electrons with the neighboring benzene ring. In the solid-state NMR spectrum of powdered (I) (Fig. 2[link]), the peaks corresponding to C1, C7, C10, and C13 are split at about a 1:2 ratio, indicating the presence of crystals with two different conformations of (I) at the aromatic amine, likely due to configurational inversion at the amino atom N1.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O5i 0.83 (5) 2.03 (5) 2.782 (4) 151 (4)
O4—H4O⋯O6ii 0.94 (6) 1.78 (6) 2.701 (4) 167 (5)
O5—H5O⋯O3iii 0.86 (4) 1.84 (4) 2.690 (4) 174 (4)
O6—H6O⋯O4iv 0.86 (5) 2.01 (5) 2.762 (4) 146 (5)
Symmetry codes: (i) x, y-1, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+1]; (iii) [-x, y+{\script{1\over 2}}, -z+1]; (iv) x, y+1, z.
[Figure 1]
Figure 1
Atomic numbering and displacement ellipsoids at the 50% probability level for (I). Weakly directional intra­molecular O—H⋯O contacts are shown as dotted lines.
[Figure 2]
Figure 2
Solid-state 13C NMR spectrum of powdered (I).

The mol­ecular packing of (I) features alternating `carbohydrate' and `hydro­carbon' layers propagating in the ab plane (Fig. 3[link]). The carbohydrate residues form a two-dimensional network of hydrogen bonds (Table 1[link]) organized as a system of two infinite chains, with the ⋯O3—H⋯O5–H⋯ and the ⋯O4—H⋯O6—H⋯ sequences of inter­molecular hydrogen bonds. These chains are connected by the intra­molecular short heteroatom contacts O3—H⋯O4 and O6—H⋯O5. Basic hydrogen-bonding patterns of the resulting network are depicted in Fig. 4[link] and include fused homodromic rings. In addition, there are close C—H⋯A contacts within the `hydro­carbon' layer that may qualify as weak hydrogen bonds (Table 2[link]). The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) revealed that a major proportion of the inter­molecular contacts in crystal structure of (I) is provided by non- or low-polar inter­actions of the H⋯H and C⋯H type (Fig. 5[link] and Table 3[link]).

Table 2
Suspected O—H⋯A and C—H⋯A contacts (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O4 0.86 (4) 2.62 (3) 2.940 (3) 103 (3)
O6—H6O⋯O5 0.86 (5) 2.36 (5) 2.839 (4) 116 (4)
C1—H1A⋯O2 0.99 2.41 3.299 (5) 149
C3—H3⋯F1 1.00 2.52 3.432 (5) 151
Symmetry codes: (i) x, y + 1, z; (ii) −x, y + [{1\over 2}], −z.

Table 3
Contributions (%) of specific contact types to the Hirshfeld surfaces of (I) and other N,N-alkylaryl derivatives of D-fructosamine

Compound Alkyl, ar­yl O⋯H H⋯H C⋯H Other contacts
(I) methyl, p-fluoro­phen­yl 26.3 44.6 13.5 F⋯H 10.9; F⋯O 2.6; N⋯H 1.8; C⋯C 0.3
FruNMptia methyl, p-methyl­phen­yl 26.5 59.8 11.8 N⋯H 1.6; C⋯C 0.3
FruNMpasb methyl, p-meth­oxy­phen­yl 32.3 58.2 13.2 N⋯H 1.6; C⋯C 0.1
FruNEpcaa ethyl, p-chloro­phen­yl 23.1 50.1 8.6 Cl⋯H 13.1; Cl⋯C 3.4; N⋯C 0.5; C⋯C 1.3
FruNAllac allyl, phen­yl 15.2 67.7 16.9 C⋯C 0.1
References: (a) Mossine et al. (2009[Mossine, V. V., Barnes, C. L., Chance, D. L. & Mawhinney, T. P. (2009). Angew. Chem. Int. Ed. 48, 5517-5520.]); (b) Mossine et al. (2018[Mossine, V. V., Barnes, C. L. & Mawhinney, T. P. (2018). Acta Cryst. E74, 127-132.]); (c) Mossine et al. (2009a[Mossine, V. V., Barnes, C. L. & Mawhinney, T. P. (2009a). Carbohydr. Res. 344, 948-951.]).
[Figure 3]
Figure 3
The mol­ecular packing in (I). Color code for crystallographic axes: red – a, green – b, blue – c. Hydrogen bonds are shown as cyan dotted lines.
[Figure 4]
Figure 4
Hydrogen-bonding pattern in the crystal structure of (I).
[Figure 5]
Figure 5
Two-dimensional fingerprint plots produced for the Hirshfeld surface of (I). Contributions to the plots from the O⋯H, H⋯H, C⋯H, and F⋯H contacts are shown in (a), (b), (c) and (d), respectively.

Synthesis and crystallization

The preparation of (I) has been described previously (Mossine et al., 2009[Mossine, V. V., Barnes, C. L., Chance, D. L. & Mawhinney, T. P. (2009). Angew. Chem. Int. Ed. 48, 5517-5520.]). Briefly, a mixture of 0.02 moles of D-glucose, 0.022 moles of N-methyl-p-fluoro­aniline and 0.55 ml of acetic acid catalyst was stirred for 6 h in 8 ml of 2-propanol at 360 K. The purification step included ion-exchange on Amberlite IRN-77 (H+), with 0.2 M NH4OH in 50% ethanol as an eluant, and was followed by flash filtration on a short silica column using 5% MeOH in CH2Cl2 as an eluant. Crystals suitable for the diffraction study were obtained from saturated solution of (I) in water/methanol (1:4) following addition a few drops of acetone at 277 K. See Fig. 2[link] for the solid-state NMR spectrum of (I).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. As a result of the unrealistic value obtained for the Flack absolute structure parameter [0.2 (10) for 474 quotients; Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]], the absolute configuration of the chain system (3S,4R,5R) was assigned on the basis of the known configuration for starting D-glucose (McNaught, 1996[McNaught, A. D. (1996). Pure Appl. Chem. 68, 1919-2008.]).

Table 4
Experimental details

Crystal data
Chemical formula C13H18FNO5
Mr 287.28
Crystal system, space group Monoclinic, P21
Temperature (K) 100
a, b, c (Å) 10.561 (6), 5.156 (3), 12.504 (7)
β (°) 90.606 (9)
V3) 680.9 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.12
Crystal size (mm) 0.50 × 0.10 × 0.05
 
Data collection
Diffractometer Bruker APEXII CCD area detector
Absorption correction Multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.79, 0.99
No. of measured, independent and observed [I > 2σ(I)] reflections 4693, 2652, 1588
Rint 0.039
(sin θ/λ)max−1) 0.643
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.100, 0.95
No. of reflections 2652
No. of parameters 198
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.18, −0.17
Absolute structure Flack x determined using 474 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.2 (10)
Computer programs: SMART and SAINT (Bruker, 1998[Bruker. (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2017 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), CIFTAB (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: X-SEED (Barbour, 2001) and Mercury (Macrae et al., 2008); software used to prepare material for publication: CIFTAB (Sheldrick, 2008) and publCIF (Westrip, 2010).

1-Deoxy-1-(N-methyl-4-fluorophenylamino)-D-arabino-hexulose top
Crystal data top
C13H18FNO5F(000) = 304
Mr = 287.28Dx = 1.401 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 10.561 (6) ÅCell parameters from 1387 reflections
b = 5.156 (3) Åθ = 2.5–24.4°
c = 12.504 (7) ŵ = 0.12 mm1
β = 90.606 (9)°T = 100 K
V = 680.9 (6) Å3Needle, colourless
Z = 20.50 × 0.10 × 0.05 mm
Data collection top
Bruker APEXII CCD area detector
diffractometer
1588 reflections with I > 2σ(I)
ω scansRint = 0.039
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
θmax = 27.2°, θmin = 1.6°
Tmin = 0.79, Tmax = 0.99h = 1313
4693 measured reflectionsk = 66
2652 independent reflectionsl = 1514
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0463P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.100(Δ/σ)max < 0.001
S = 0.95Δρmax = 0.18 e Å3
2652 reflectionsΔρmin = 0.16 e Å3
198 parametersAbsolute structure: Flack x determined using 474 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.2 (10)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydroxy and nitrogen-bound H-atoms were located in difference-Fourier analyses and were allowed to refine fully. Other H atoms were placed at calculated positions and treated as riding, with C—H = 0.98 Å (methyl), 0.99 Å (methylene) or 1.00 Å (methine) and with Uiso(H) = 1.2Ueq(methine or methylene) or 1.5Ueq(methyl).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.0320 (2)0.1152 (6)0.2413 (2)0.0782 (9)
N10.3656 (3)0.1754 (6)0.1042 (2)0.0343 (8)
C10.3239 (4)0.2826 (7)0.2053 (3)0.0374 (10)
H1A0.2772280.4455810.1907610.045*
H1B0.3995640.3272360.2489430.045*
O20.2218 (2)0.1203 (5)0.2449 (2)0.0472 (8)
C20.2394 (3)0.1037 (8)0.2706 (3)0.0329 (9)
O30.0910 (2)0.0429 (5)0.4150 (2)0.0375 (7)
C30.1810 (3)0.2174 (7)0.3703 (3)0.0323 (10)
H30.1351410.3796240.3492830.039*
O40.3611 (2)0.0655 (5)0.4743 (2)0.0364 (7)
C40.2844 (3)0.2909 (7)0.4525 (3)0.0289 (9)
H40.3386610.4314730.4223520.035*
O50.1544 (2)0.6087 (5)0.5363 (2)0.0360 (7)
C50.2283 (3)0.3818 (8)0.5579 (3)0.0323 (9)
H50.1714980.2429440.5858740.039*
O60.4085 (2)0.6539 (5)0.6102 (2)0.0387 (7)
C60.3272 (3)0.4450 (7)0.6423 (3)0.0383 (10)
H6A0.2843560.4931490.7094610.046*
H6B0.3791110.2887840.6566300.046*
C70.2775 (3)0.1567 (7)0.0191 (3)0.0318 (8)
C80.1716 (4)0.3148 (9)0.0110 (3)0.0479 (11)
H80.1552260.4354360.0665540.058*
C90.0895 (4)0.3024 (10)0.0752 (4)0.0551 (12)
H90.0173450.4121400.0785520.066*
C100.1128 (4)0.1321 (9)0.1549 (3)0.0511 (12)
C110.2163 (5)0.0204 (10)0.1523 (4)0.0669 (14)
H110.2329650.1355030.2098000.080*
C120.2978 (4)0.0084 (9)0.0658 (3)0.0605 (14)
H120.3703200.1173900.0644890.073*
C130.4626 (3)0.0266 (8)0.1133 (3)0.0425 (10)
H13A0.4218260.1970040.1172090.064*
H13B0.5135410.0023720.1782040.064*
H13C0.5175020.0203700.0506430.064*
H4O0.438 (5)0.077 (13)0.438 (4)0.11 (2)*
H5O0.078 (4)0.584 (9)0.556 (3)0.055 (13)*
H3O0.129 (4)0.090 (10)0.434 (3)0.055 (15)*
H6O0.363 (5)0.753 (10)0.570 (4)0.09 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0717 (17)0.100 (2)0.0620 (16)0.0097 (17)0.0238 (14)0.0038 (16)
N10.0397 (17)0.0258 (18)0.0377 (18)0.0002 (15)0.0064 (15)0.0010 (14)
C10.045 (2)0.026 (2)0.041 (2)0.0094 (18)0.0030 (19)0.0010 (18)
O20.0494 (16)0.0234 (16)0.069 (2)0.0055 (13)0.0165 (14)0.0069 (14)
C20.0263 (17)0.024 (2)0.049 (2)0.0029 (16)0.0035 (16)0.0002 (18)
O30.0253 (14)0.0256 (16)0.0617 (19)0.0006 (13)0.0072 (12)0.0028 (14)
C30.0248 (19)0.024 (2)0.048 (2)0.0000 (16)0.0065 (18)0.0017 (18)
O40.0296 (14)0.0230 (14)0.0567 (17)0.0060 (12)0.0045 (13)0.0045 (13)
C40.0283 (19)0.021 (2)0.038 (2)0.0018 (16)0.0031 (18)0.0015 (17)
O50.0238 (14)0.0235 (15)0.0610 (18)0.0018 (12)0.0113 (12)0.0009 (13)
C50.0238 (19)0.023 (2)0.050 (3)0.0015 (17)0.0074 (18)0.0058 (18)
O60.0283 (14)0.0366 (18)0.0513 (17)0.0062 (13)0.0005 (13)0.0044 (14)
C60.038 (2)0.028 (3)0.048 (3)0.0034 (18)0.007 (2)0.0000 (19)
C70.0326 (19)0.024 (2)0.039 (2)0.0036 (17)0.0006 (17)0.0017 (18)
C80.051 (3)0.046 (3)0.047 (3)0.017 (2)0.003 (2)0.009 (2)
C90.046 (3)0.065 (3)0.055 (3)0.017 (2)0.002 (2)0.005 (3)
C100.048 (3)0.059 (3)0.046 (3)0.008 (2)0.011 (2)0.007 (2)
C110.084 (3)0.059 (3)0.057 (3)0.008 (3)0.015 (3)0.023 (3)
C120.065 (3)0.046 (3)0.069 (3)0.024 (2)0.018 (3)0.019 (3)
C130.034 (2)0.042 (2)0.051 (3)0.0066 (19)0.0051 (19)0.004 (2)
Geometric parameters (Å, º) top
F1—C101.373 (4)C5—C61.512 (5)
N1—C71.409 (4)C5—H51.0000
N1—C11.452 (4)O6—C61.437 (4)
N1—C131.465 (5)O6—H6O0.86 (5)
C1—C21.527 (5)C6—H6A0.9900
C1—H1A0.9900C6—H6B0.9900
C1—H1B0.9900C7—C121.379 (5)
O2—C21.213 (4)C7—C81.387 (5)
C2—C31.515 (5)C8—C91.377 (5)
O3—C31.427 (4)C8—H80.9500
O3—H3O0.83 (5)C9—C101.353 (6)
C3—C41.539 (5)C9—H90.9500
C3—H31.0000C10—C111.347 (6)
O4—C41.441 (4)C11—C121.377 (6)
O4—H4O0.94 (6)C11—H110.9500
C4—C51.524 (4)C12—H120.9500
C4—H41.0000C13—H13A0.9800
O5—C51.431 (4)C13—H13B0.9800
O5—H5O0.86 (4)C13—H13C0.9800
C7—N1—C1118.7 (3)C4—C5—H5108.8
C7—N1—C13117.8 (3)C6—O6—H6O106 (3)
C1—N1—C13114.9 (3)O6—C6—C5112.2 (3)
N1—C1—C2114.8 (3)O6—C6—H6A109.2
N1—C1—H1A108.6C5—C6—H6A109.2
C2—C1—H1A108.6O6—C6—H6B109.2
N1—C1—H1B108.6C5—C6—H6B109.2
C2—C1—H1B108.6H6A—C6—H6B107.9
H1A—C1—H1B107.5C12—C7—C8116.0 (4)
O2—C2—C3121.6 (3)C12—C7—N1121.1 (3)
O2—C2—C1121.5 (3)C8—C7—N1122.7 (3)
C3—C2—C1116.9 (3)C9—C8—C7122.0 (4)
C3—O3—H3O108 (3)C9—C8—H8119.0
O3—C3—C2110.9 (3)C7—C8—H8119.0
O3—C3—C4111.4 (3)C10—C9—C8119.3 (4)
C2—C3—C4110.6 (3)C10—C9—H9120.4
O3—C3—H3107.9C8—C9—H9120.4
C2—C3—H3107.9C11—C10—C9121.0 (4)
C4—C3—H3107.9C11—C10—F1118.7 (4)
C4—O4—H4O110 (4)C9—C10—F1120.3 (4)
O4—C4—C5107.9 (3)C10—C11—C12119.5 (4)
O4—C4—C3108.7 (3)C10—C11—H11120.2
C5—C4—C3111.9 (3)C12—C11—H11120.2
O4—C4—H4109.4C11—C12—C7122.1 (4)
C5—C4—H4109.4C11—C12—H12118.9
C3—C4—H4109.4C7—C12—H12118.9
C5—O5—H5O110 (3)N1—C13—H13A109.5
O5—C5—C6109.1 (3)N1—C13—H13B109.5
O5—C5—C4107.7 (3)H13A—C13—H13B109.5
C6—C5—C4113.5 (3)N1—C13—H13C109.5
O5—C5—H5108.8H13A—C13—H13C109.5
C6—C5—H5108.8H13B—C13—H13C109.5
C7—N1—C1—C273.7 (4)O5—C5—C6—O658.2 (4)
C13—N1—C1—C273.4 (4)C4—C5—C6—O661.9 (4)
N1—C1—C2—O28.2 (5)C1—N1—C7—C12160.5 (4)
N1—C1—C2—C3173.1 (3)C13—N1—C7—C1214.3 (5)
O2—C2—C3—O39.4 (5)C1—N1—C7—C824.7 (5)
C1—C2—C3—O3171.8 (3)C13—N1—C7—C8170.8 (4)
O2—C2—C3—C4114.7 (4)C12—C7—C8—C91.9 (6)
C1—C2—C3—C464.0 (4)N1—C7—C8—C9177.0 (4)
O3—C3—C4—O468.4 (4)C7—C8—C9—C100.4 (7)
C2—C3—C4—O455.4 (4)C8—C9—C10—C111.6 (7)
O3—C3—C4—C550.7 (4)C8—C9—C10—F1179.7 (4)
C2—C3—C4—C5174.5 (3)C9—C10—C11—C121.9 (7)
O4—C4—C5—O5178.8 (3)F1—C10—C11—C12179.3 (4)
C3—C4—C5—O561.6 (3)C10—C11—C12—C70.3 (7)
O4—C4—C5—C658.0 (4)C8—C7—C12—C111.5 (6)
C3—C4—C5—C6177.6 (3)N1—C7—C12—C11176.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O5i0.83 (5)2.03 (5)2.782 (4)151 (4)
O4—H4O···O6ii0.94 (6)1.78 (6)2.701 (4)167 (5)
O5—H5O···O3iii0.86 (4)1.84 (4)2.690 (4)174 (4)
O6—H6O···O4iv0.86 (5)2.01 (5)2.762 (4)146 (5)
Symmetry codes: (i) x, y1, z; (ii) x+1, y1/2, z+1; (iii) x, y+1/2, z+1; (iv) x, y+1, z.
Suspected O—H···A and C—H···A contacts (Å, °) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O40.86 (4)2.62 (3)2.940 (3)103 (3)
O6—H6O···O50.86 (5)2.36 (5)2.839 (4)116 (4)
C1—H1A···O20.992.413.299 (5)149
C3—H3···F11.002.523.432 (5)151
Symmetry codes: (i) x, y + 1, z; (ii) -x, y + 1/2, -z.
Contributions (%) of specific contact types to the Hirshfeld surfaces of (I) and other N,N-alkylaryl derivatives of D-fructosamine top
CompoundAlkyl, arylO···HH···HC···HOther contacts
(I)methyl, p-fluorophenyl26.344.613.5F···H 10.9; F···O 2.6; N···H 1.8; C···C 0.3
FruNMptiamethyl, p-methylphenyl26.559.811.8N···H 1.6; C···C 0.3
FruNMpasbmethyl, p-methoxyphenyl32.358.213.2N···H 1.6; C···C 0.1
FruNEpcaaethyl, p-chlorophenyl23.150.18.6Cl···H 13.1; Cl···C 3.4; N···C 0.5; C···C 1.3
FruNAllacallyl, phenyl15.267.716.9C···C 0.1
References: (a) Mossine et al. (2009); (b) Mossine et al. (2018); (c) Mossine et al. (2009a).
Supplementary Table 1S. Distribution (%) of cyclic and acyclic forms of some 1-amino-1-deoxy-D-fructose derivatives in D2O/pyridine (1:1) at 293 K, as estimated from the 13C NMR spectra, and in the crystalline state top
CompoundAmine substituentsCrystalline isomers
α-pyranoseβ-pyranoseα-furanoseβ-furanoseacyclic, keto
(I) [a]methyl, p-fluorophenyl2.552.15.031.09.4acyclic keto
FruNMptiamethyl, p-methylphenyl2.149.94.832.211.0acyclic keto
FruNMpasbmethyl, p-methoxyphenyl2.152.04.930.610.3acyclic keto
FruNEpcaaethyl, p-chlorophenyl2.048.74.232.312.7acyclic keto
Fruptia,cH, phenyl3.561.09.424.21.9β-pyranose
FruNAlladallyl, phenyl2.247.44.533.612.3β-pyranose
Fructosamineenone5.070.811.212.30.8β-pyranose
References: (a) Mossine et al. (2009); (b) Mossine et al. (2018); (c) Gomez de Anderez et al. (1996); (d) Mossine et al. (2009a); (e) Mossine et al. (2009b).

Funding information

Funding for this research was provided by: University of Missouri Agriculture Experiment Station Chemical Laboratories; National Institute of Food and Agriculture (grant No. MO-HABC0002).

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker. (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFeather, M. S. & Mossine, V. V. (1998). In The Maillard Reaction in Foods and Medicine, edited by J. O'Brien, H. E. Nursten and M. J. Crabbe, pp. 37–42. The Royal Society of Chemistry.  Google Scholar
First citationGomez de Anderez, D., Gil, H., Helliwell, M. & Mata Segreda, J. (1996). Acta Cryst. C52, 252–254.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMcNaught, A. D. (1996). Pure Appl. Chem. 68, 1919–2008.  CrossRef CAS Web of Science Google Scholar
First citationMossine, V. V., Barnes, C. L., Chance, D. L. & Mawhinney, T. P. (2009). Angew. Chem. Int. Ed. 48, 5517–5520.  Web of Science CSD CrossRef CAS Google Scholar
First citationMossine, V. V., Barnes, C. L. & Mawhinney, T. P. (2009a). Carbohydr. Res. 344, 948–951.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMossine, V. V., Barnes, C. L. & Mawhinney, T. P. (2009b). J. Carbohydr. Chem. 28, 245–263.  Web of Science CSD CrossRef CAS Google Scholar
First citationMossine, V. V., Barnes, C. L. & Mawhinney, T. P. (2018). Acta Cryst. E74, 127–132.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds