organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2,4-Di­bromo-6-[(2-hy­dr­oxy-5-methyl­anilino)methyl­­idene]cyclo­hexa-2,4-dienone

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Rajshahi University of Engineering & Technology, Rajshahi-6204, Bangladesh, bDepartment of Chemistry, University of Rajshahi, Rajshahi-6205, Bangladesh, and cCenter for Environmental Conservation and Research Safety, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
*Correspondence e-mail: chansheikh@yahoo.com

Edited by H. Ishida, Okayama University, Japan (Received 21 February 2018; accepted 6 March 2018; online 13 March 2018)

The new bromo-substituted title compound, C14H11Br2NO2, was synthesized by the condensation of 3,5-di­bromo­salicyl­aldehyde and 2-amino-4-methyl phenol. The asymmetric unit consists of two crystallographically independent mol­ecules (A and B), which are related to each other by a pseudo-inversion centre. Both mol­ecules are almost planar; dihedral angles between the two benzene rings are 11.40 (11)° for A and 3.05 (12)° for B. In each mol­ecule, there is an intra­molecular N—H⋯O hydrogen bond with an S(6) ring motif. In the crystal, two independent mol­ecules are linked by O—H⋯O hydrogen bonds, forming a pseudo-inversion AB dimer.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Organic compounds containing N and O donor atoms are widely used as ligands (Dong et al., 2015[Dong, Y. L., Li, C., Meng, X. F., Zhou, X. & Ma, J. J. (2015). J. Struct. Chem. 56, 1426-1430.]; Khalaji et al., 2015[Khalaji, A. D., Hafez Ghoran, S., Pojarová, M. & Dušek, M. (2015). J. Struct. Chem. 56, 1410-1414.]; de Blas et al., 1991[Blas, A. de, Bastida, R. & Fucntcs, M. J. (1991). Synth. React. Inorg. Met.-Org. Chem. 21, 1273-1298.]) and their metal complexes have received considerable attention for their possible bioactivities (Zhang et al., 2012[Zhang, M., Xian, D. M., Li, H. H., Zhang, J. C. & You, Z. L. (2012). Aust. J. Chem. 65, 343-350.]; Khandar et al., 2010[Khandar, A. A., Hosseini-Yazdi, S. A., Khatamian, M. & Zarei, S. A. (2010). Polyhedron, 29, 995-1000.]). In addition, such compounds also containing halogen atoms have been shown to have attractive biological properties (Dong et al., 2015[Dong, Y. L., Li, C., Meng, X. F., Zhou, X. & Ma, J. J. (2015). J. Struct. Chem. 56, 1426-1430.]).

The asymmetric unit of the title compound consists of two independent mol­ecules as shown in Fig. 1[link]. The bond lengths of both mol­ecules are almost same and within normal ranges, but the conformations are slightly different. The lengths of C2—O1 and C16—O3 correspond to a C=O double bond, while C9—O2 and C23—O4 are single C—O bonds (Xu et al., 2007[Xu, T.-T., Xu, X.-Y., Gao, J., Ni, S.-S., Wang, D.-Q., Lu, L.-D., Yang, X.-J. & Wang, X. (2007). J. Struct. Chem. 48, 193-197.]). The NH group in each mol­ecule forms an intra­molecular N—H⋯O hydrogen bond (Fig. 1[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3 0.90 (4) 1.86 (4) 2.728 (3) 163 (4)
O4—H4⋯O1 0.86 (4) 1.92 (4) 2.753 (3) 164 (3)
N1—H1⋯O1 0.80 (4) 1.97 (3) 2.616 (3) 139 (3)
N2—H2A⋯O3 0.81 (3) 1.99 (3) 2.632 (3) 136 (3)
[Figure 1]
Figure 1
The asymmetric unit of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radii. Intra­molecular N—H⋯O and inter­molecular O—H⋯O hydrogen bonds are indicated by dashed lines.

In the crystal, the two independent mol­ecules are linked via two O—H⋯O hydrogen bonds, forming a pseudo-inversion dimer with an R22(18) ring motif (Fig. 1[link] and Table 1[link]).

Synthesis and crystallization

A saturated ethano­lic solution of 2-amino-4-methyl phenol (123 mg, 1 mmol) was added dropwise to a saturated ethano­lic solution of 3,5-di­bromo­salicyl­aldehyde (280 mg, 1 mmol) with continuous stirring at 60°C. The mixture was heated with continuous stirring whereupon a precipitate was formed. The mixture was stirred for a further hour at room temperature. The resulting orange solid product was collected by filtration, washed several times with hot ethanol and dried in a vacuum (300 mg, 78%). Orange single crystals were obtained by slow evaporation from an ethanol/aceto­nitrile (5:1) solution at room temperature over 20 days (m.p. 190°C).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C14H11Br2NO2
Mr 385.05
Crystal system, space group Monoclinic, P21/n
Temperature (K) 173
a, b, c (Å) 16.7219 (3), 6.90389 (13), 23.0811 (4)
β (°) 99.502 (7)
V3) 2628.06 (10)
Z 8
Radiation type Cu Kα
μ (mm−1) 7.81
Crystal size (mm) 0.36 × 0.29 × 0.08
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.239, 0.535
No. of measured, independent and observed [F2 > 2.0σ(F2)] reflections 28830, 4799, 4558
Rint 0.048
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.074, 1.08
No. of reflections 4799
No. of parameters 361
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.99, −0.61
Computer programs: RAPID-AUTO (Rigaku, 2001[Rigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and CrystalStructure (Rigaku, 2017[Rigaku (2017). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Structural data


Computing details top

Cell refinement: RAPID-AUTO (Rigaku, 2001); data reduction: RAPID-AUTO (Rigaku, 2001); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2017); software used to prepare material for publication: CrystalStructure (Rigaku, 2017).

2,4-Dibromo-6-[(2-hydroxy-5-methylanilino)methylidene]cyclohexa-2,4-dienone top
Crystal data top
C14H11Br2NO2F(000) = 1504.00
Mr = 385.05Dx = 1.946 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54187 Å
a = 16.7219 (3) ÅCell parameters from 27726 reflections
b = 6.90389 (13) Åθ = 3.0–68.2°
c = 23.0811 (4) ŵ = 7.81 mm1
β = 99.502 (7)°T = 173 K
V = 2628.06 (10) Å3Platelet, orange
Z = 80.36 × 0.29 × 0.08 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4558 reflections with F2 > 2.0σ(F2)
Detector resolution: 10.000 pixels mm-1Rint = 0.048
ω scansθmax = 68.2°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1920
Tmin = 0.239, Tmax = 0.535k = 88
28830 measured reflectionsl = 2727
4799 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0323P)2 + 3.250P]
where P = (Fo2 + 2Fc2)/3
4799 reflections(Δ/σ)max = 0.004
361 parametersΔρmax = 0.99 e Å3
0 restraintsΔρmin = 0.61 e Å3
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.01727 (2)0.20364 (5)0.64304 (2)0.03261 (10)
Br20.24115 (2)0.12206 (6)0.51554 (2)0.03943 (11)
Br30.25614 (2)0.09612 (5)1.09293 (2)0.03620 (10)
Br40.01488 (2)0.11048 (5)1.20799 (2)0.03135 (9)
O10.12485 (11)0.2391 (3)0.74614 (8)0.0298 (4)
O20.21228 (12)0.1592 (3)0.89639 (9)0.0347 (5)
O30.12662 (11)0.2105 (3)0.98606 (8)0.0295 (4)
O40.04812 (12)0.3579 (3)0.83675 (9)0.0325 (5)
N10.27421 (14)0.1839 (3)0.79845 (9)0.0231 (5)
N20.01980 (14)0.2985 (3)0.93165 (10)0.0231 (5)
C10.23343 (16)0.1772 (4)0.69402 (11)0.0229 (5)
C20.14904 (16)0.2072 (4)0.69752 (11)0.0230 (5)
C30.09544 (15)0.1935 (4)0.64211 (11)0.0231 (5)
C40.12240 (16)0.1692 (4)0.58993 (12)0.0258 (6)
H4A0.0848480.1634990.5542740.031*
C50.20591 (16)0.1527 (4)0.58916 (11)0.0250 (6)
C60.26057 (16)0.1522 (4)0.63966 (12)0.0248 (6)
H60.3166570.1351720.6384840.030*
C70.29174 (16)0.1680 (4)0.74565 (11)0.0242 (6)
H70.3468740.1492220.7417330.029*
C80.32862 (16)0.1779 (4)0.85205 (11)0.0231 (5)
C90.29418 (16)0.1666 (4)0.90288 (12)0.0255 (6)
C100.34561 (18)0.1645 (5)0.95692 (12)0.0321 (7)
H100.3234510.1563310.9921800.039*
C110.42851 (17)0.1742 (5)0.95951 (12)0.0315 (6)
H110.4625260.1730010.9967970.038*
C120.46372 (17)0.1858 (4)0.90902 (12)0.0278 (6)
C130.41242 (16)0.1874 (4)0.85515 (12)0.0242 (6)
H130.4347870.1950000.8199670.029*
C140.55430 (17)0.1992 (5)0.91222 (14)0.0367 (7)
H14A0.5807970.1011700.9395740.044*
H14B0.5728620.3283250.9260280.044*
H14C0.5681300.1766760.8731330.044*
C150.01183 (16)0.2188 (4)1.03431 (11)0.0231 (6)
C160.09673 (16)0.1904 (4)1.03296 (11)0.0226 (5)
C170.14371 (16)0.1393 (4)1.08883 (12)0.0240 (6)
C180.11088 (17)0.1191 (4)1.13890 (12)0.0252 (6)
H180.1445970.0858541.1747960.030*
C190.02747 (16)0.1473 (4)1.13744 (11)0.0235 (6)
C200.02172 (16)0.1947 (4)1.08629 (12)0.0245 (6)
H200.0782740.2115891.0855180.029*
C210.04189 (16)0.2698 (4)0.98261 (11)0.0244 (6)
H210.0977090.2841490.9851660.029*
C220.07113 (16)0.3483 (4)0.87846 (11)0.0222 (5)
C230.03394 (16)0.3733 (4)0.82909 (12)0.0254 (6)
C240.08220 (18)0.4147 (4)0.77557 (12)0.0300 (6)
H240.0580470.4305910.7413980.036*
C250.16540 (17)0.4330 (4)0.77181 (12)0.0301 (6)
H250.1974370.4610470.7348130.036*
C260.20333 (17)0.4115 (4)0.82072 (12)0.0266 (6)
C270.15469 (16)0.3695 (4)0.87419 (12)0.0240 (6)
H270.1789420.3549500.9083750.029*
C280.29388 (17)0.4308 (5)0.81661 (14)0.0361 (7)
H28A0.3074720.4418980.8561870.043*
H28B0.3205320.3162500.7971110.043*
H28C0.3125210.5468320.7938640.043*
H10.227 (2)0.199 (5)0.8001 (14)0.036 (10)*
H20.193 (2)0.164 (6)0.9303 (18)0.061 (12)*
H2A0.028 (2)0.284 (5)0.9301 (14)0.031 (9)*
H40.063 (2)0.328 (5)0.8042 (15)0.041 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01857 (15)0.0492 (2)0.03065 (17)0.00132 (12)0.00568 (11)0.00265 (13)
Br20.02797 (17)0.0714 (3)0.02070 (16)0.00151 (15)0.00913 (12)0.00201 (14)
Br30.02106 (16)0.0624 (2)0.02539 (16)0.00287 (13)0.00467 (12)0.00489 (14)
Br40.03446 (18)0.03847 (19)0.02417 (16)0.00327 (12)0.01380 (12)0.00366 (12)
O10.0220 (10)0.0471 (12)0.0215 (9)0.0004 (9)0.0077 (7)0.0000 (9)
O20.0206 (10)0.0570 (14)0.0280 (11)0.0031 (9)0.0080 (8)0.0017 (10)
O30.0234 (10)0.0457 (12)0.0202 (9)0.0010 (9)0.0065 (7)0.0025 (9)
O40.0231 (10)0.0467 (13)0.0291 (11)0.0026 (9)0.0088 (8)0.0018 (10)
N10.0182 (12)0.0292 (13)0.0215 (12)0.0002 (10)0.0025 (9)0.0019 (9)
N20.0183 (12)0.0266 (12)0.0242 (12)0.0004 (9)0.0028 (9)0.0009 (9)
C10.0227 (13)0.0235 (14)0.0229 (13)0.0005 (11)0.0050 (10)0.0025 (11)
C20.0230 (13)0.0230 (14)0.0237 (13)0.0021 (11)0.0061 (10)0.0025 (11)
C30.0180 (13)0.0256 (14)0.0261 (14)0.0005 (10)0.0045 (10)0.0018 (11)
C40.0253 (14)0.0293 (14)0.0219 (13)0.0004 (11)0.0014 (10)0.0016 (11)
C50.0259 (14)0.0332 (15)0.0171 (12)0.0004 (12)0.0074 (10)0.0026 (11)
C60.0199 (13)0.0302 (14)0.0254 (14)0.0002 (11)0.0065 (10)0.0036 (12)
C70.0216 (13)0.0254 (14)0.0258 (14)0.0004 (11)0.0046 (10)0.0010 (11)
C80.0220 (13)0.0255 (14)0.0214 (13)0.0001 (11)0.0028 (10)0.0024 (11)
C90.0234 (14)0.0295 (14)0.0246 (14)0.0020 (11)0.0069 (11)0.0023 (11)
C100.0314 (16)0.0433 (18)0.0221 (14)0.0035 (13)0.0058 (11)0.0041 (13)
C110.0287 (15)0.0405 (17)0.0231 (14)0.0002 (13)0.0027 (11)0.0032 (12)
C120.0240 (14)0.0293 (15)0.0287 (14)0.0006 (11)0.0004 (11)0.0017 (12)
C130.0223 (14)0.0288 (14)0.0218 (13)0.0005 (11)0.0046 (10)0.0032 (11)
C140.0236 (15)0.0484 (19)0.0360 (16)0.0030 (13)0.0013 (12)0.0063 (14)
C150.0242 (13)0.0219 (13)0.0236 (13)0.0002 (11)0.0055 (10)0.0019 (11)
C160.0244 (13)0.0223 (13)0.0217 (13)0.0034 (11)0.0058 (10)0.0016 (11)
C170.0206 (13)0.0276 (14)0.0237 (13)0.0021 (11)0.0034 (10)0.0002 (11)
C180.0274 (14)0.0286 (15)0.0192 (13)0.0005 (11)0.0033 (10)0.0012 (11)
C190.0275 (14)0.0250 (14)0.0192 (13)0.0000 (11)0.0075 (10)0.0015 (11)
C200.0218 (13)0.0267 (14)0.0265 (14)0.0018 (11)0.0082 (11)0.0015 (11)
C210.0233 (13)0.0261 (14)0.0242 (13)0.0015 (11)0.0051 (10)0.0013 (11)
C220.0237 (13)0.0214 (13)0.0211 (13)0.0011 (11)0.0025 (10)0.0015 (10)
C230.0238 (14)0.0263 (14)0.0267 (14)0.0000 (11)0.0056 (11)0.0045 (11)
C240.0344 (16)0.0351 (16)0.0217 (14)0.0008 (13)0.0078 (11)0.0031 (12)
C250.0313 (15)0.0322 (16)0.0244 (14)0.0010 (12)0.0027 (11)0.0012 (12)
C260.0251 (14)0.0272 (15)0.0268 (14)0.0001 (11)0.0024 (11)0.0020 (11)
C270.0239 (14)0.0246 (14)0.0241 (13)0.0010 (11)0.0056 (10)0.0003 (11)
C280.0255 (15)0.0438 (18)0.0375 (17)0.0030 (13)0.0010 (12)0.0009 (14)
Geometric parameters (Å, º) top
Br1—C31.890 (3)C11—C121.392 (4)
Br2—C51.900 (3)C11—H110.9500
Br3—C171.890 (3)C12—C131.389 (4)
Br4—C191.897 (3)C12—C141.507 (4)
O1—C21.273 (3)C13—H130.9500
O2—C91.354 (3)C14—H14A0.9800
O2—H20.90 (4)C14—H14B0.9800
O3—C161.273 (3)C14—H14C0.9800
O4—C231.358 (3)C15—C211.415 (4)
O4—H40.86 (3)C15—C201.416 (4)
N1—C71.304 (3)C15—C161.438 (4)
N1—C81.410 (3)C16—C171.439 (4)
N1—H10.80 (3)C17—C181.366 (4)
N2—C211.305 (3)C18—C191.403 (4)
N2—C221.419 (3)C18—H180.9500
N2—H2A0.81 (3)C19—C201.363 (4)
C1—C71.411 (4)C20—H200.9500
C1—C61.414 (4)C21—H210.9500
C1—C21.442 (4)C22—C271.392 (4)
C2—C31.439 (4)C22—C231.396 (4)
C3—C41.364 (4)C23—C241.389 (4)
C4—C51.404 (4)C24—C251.385 (4)
C4—H4A0.9500C24—H240.9500
C5—C61.357 (4)C25—C261.391 (4)
C6—H60.9500C25—H250.9500
C7—H70.9500C26—C271.392 (4)
C8—C91.392 (4)C26—C281.507 (4)
C8—C131.393 (4)C27—H270.9500
C9—C101.393 (4)C28—H28A0.9800
C10—C111.379 (4)C28—H28B0.9800
C10—H100.9500C28—H28C0.9800
C9—O2—H2114 (3)H14A—C14—H14B109.5
C23—O4—H4110 (2)C12—C14—H14C109.5
C7—N1—C8127.3 (2)H14A—C14—H14C109.5
C7—N1—H1115 (2)H14B—C14—H14C109.5
C8—N1—H1117 (2)C21—C15—C20117.3 (2)
C21—N2—C22126.6 (2)C21—C15—C16120.5 (2)
C21—N2—H2A117 (2)C20—C15—C16122.2 (2)
C22—N2—H2A117 (2)O3—C16—C15122.1 (2)
C7—C1—C6117.8 (2)O3—C16—C17123.8 (2)
C7—C1—C2120.4 (2)C15—C16—C17114.1 (2)
C6—C1—C2121.9 (2)C18—C17—C16123.2 (2)
O1—C2—C3123.6 (2)C18—C17—Br3118.5 (2)
O1—C2—C1122.0 (2)C16—C17—Br3118.35 (19)
C3—C2—C1114.4 (2)C17—C18—C19120.1 (2)
C4—C3—C2123.0 (2)C17—C18—H18119.9
C4—C3—Br1119.4 (2)C19—C18—H18119.9
C2—C3—Br1117.62 (19)C20—C19—C18120.6 (2)
C3—C4—C5119.7 (2)C20—C19—Br4121.2 (2)
C3—C4—H4A120.2C18—C19—Br4118.12 (19)
C5—C4—H4A120.2C19—C20—C15119.7 (3)
C6—C5—C4121.3 (2)C19—C20—H20120.2
C6—C5—Br2120.2 (2)C15—C20—H20120.2
C4—C5—Br2118.44 (19)N2—C21—C15124.3 (3)
C5—C6—C1119.5 (2)N2—C21—H21117.9
C5—C6—H6120.2C15—C21—H21117.9
C1—C6—H6120.2C27—C22—C23120.4 (2)
N1—C7—C1123.7 (3)C27—C22—N2122.9 (2)
N1—C7—H7118.2C23—C22—N2116.7 (2)
C1—C7—H7118.2O4—C23—C24123.9 (3)
C9—C8—C13120.8 (2)O4—C23—C22117.4 (2)
C9—C8—N1116.4 (2)C24—C23—C22118.6 (3)
C13—C8—N1122.8 (2)C25—C24—C23120.3 (3)
O2—C9—C8117.4 (2)C25—C24—H24119.8
O2—C9—C10124.2 (2)C23—C24—H24119.8
C8—C9—C10118.4 (3)C24—C25—C26121.8 (3)
C11—C10—C9120.4 (3)C24—C25—H25119.1
C11—C10—H10119.8C26—C25—H25119.1
C9—C10—H10119.8C25—C26—C27117.6 (3)
C10—C11—C12121.8 (3)C25—C26—C28121.8 (2)
C10—C11—H11119.1C27—C26—C28120.5 (3)
C12—C11—H11119.1C26—C27—C22121.1 (3)
C13—C12—C11117.8 (3)C26—C27—H27119.4
C13—C12—C14120.7 (3)C22—C27—H27119.4
C11—C12—C14121.5 (3)C26—C28—H28A109.5
C12—C13—C8120.9 (2)C26—C28—H28B109.5
C12—C13—H13119.6H28A—C28—H28B109.5
C8—C13—H13119.6C26—C28—H28C109.5
C12—C14—H14A109.5H28A—C28—H28C109.5
C12—C14—H14B109.5H28B—C28—H28C109.5
C7—C1—C2—O14.8 (4)C21—C15—C16—O30.3 (4)
C6—C1—C2—O1176.5 (3)C20—C15—C16—O3179.4 (3)
C7—C1—C2—C3173.9 (3)C21—C15—C16—C17179.9 (2)
C6—C1—C2—C34.8 (4)C20—C15—C16—C171.0 (4)
O1—C2—C3—C4176.5 (3)O3—C16—C17—C18179.7 (3)
C1—C2—C3—C44.8 (4)C15—C16—C17—C180.1 (4)
O1—C2—C3—Br15.1 (4)O3—C16—C17—Br30.8 (4)
C1—C2—C3—Br1173.57 (19)C15—C16—C17—Br3179.56 (19)
C2—C3—C4—C51.3 (4)C16—C17—C18—C190.4 (4)
Br1—C3—C4—C5177.1 (2)Br3—C17—C18—C19179.1 (2)
C3—C4—C5—C62.8 (4)C17—C18—C19—C200.1 (4)
C3—C4—C5—Br2179.3 (2)C17—C18—C19—Br4178.4 (2)
C4—C5—C6—C12.8 (4)C18—C19—C20—C151.0 (4)
Br2—C5—C6—C1179.3 (2)Br4—C19—C20—C15179.2 (2)
C7—C1—C6—C5177.5 (3)C21—C15—C20—C19179.4 (3)
C2—C1—C6—C51.2 (4)C16—C15—C20—C191.5 (4)
C8—N1—C7—C1179.5 (3)C22—N2—C21—C15179.5 (3)
C6—C1—C7—N1178.2 (3)C20—C15—C21—N2179.4 (3)
C2—C1—C7—N10.5 (4)C16—C15—C21—N21.5 (4)
C7—N1—C8—C9169.9 (3)C21—N2—C22—C271.3 (4)
C7—N1—C8—C1311.6 (4)C21—N2—C22—C23179.6 (3)
C13—C8—C9—O2179.5 (3)C27—C22—C23—O4177.6 (2)
N1—C8—C9—O21.0 (4)N2—C22—C23—O43.3 (4)
C13—C8—C9—C100.1 (4)C27—C22—C23—C241.6 (4)
N1—C8—C9—C10178.6 (3)N2—C22—C23—C24177.5 (2)
O2—C9—C10—C11179.4 (3)O4—C23—C24—C25178.3 (3)
C8—C9—C10—C110.2 (5)C22—C23—C24—C250.8 (4)
C9—C10—C11—C120.2 (5)C23—C24—C25—C260.2 (5)
C10—C11—C12—C130.0 (5)C24—C25—C26—C270.3 (4)
C10—C11—C12—C14179.2 (3)C24—C25—C26—C28179.8 (3)
C11—C12—C13—C80.1 (4)C25—C26—C27—C220.5 (4)
C14—C12—C13—C8179.1 (3)C28—C26—C27—C22179.0 (3)
C9—C8—C13—C120.0 (4)C23—C22—C27—C261.4 (4)
N1—C8—C13—C12178.4 (3)N2—C22—C27—C26177.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.90 (4)1.86 (4)2.728 (3)163 (4)
O4—H4···O10.86 (4)1.92 (4)2.753 (3)164 (3)
N1—H1···O10.80 (4)1.97 (3)2.616 (3)139 (3)
N2—H2A···O30.81 (3)1.99 (3)2.632 (3)136 (3)
 

Acknowledgements

TKP, MDH, MCS and MAA are grateful to the Department of Chemistry, Rajshahi University of Engineering & Technology (RUET) for the provision of laboratory facilities. RM and MCS acknowledge the Center for Environmental Conservation and Research Safety, University of Toyama, Japan for providing facilities for single-crystal X-ray analysis.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBlas, A. de, Bastida, R. & Fucntcs, M. J. (1991). Synth. React. Inorg. Met.-Org. Chem. 21, 1273–1298.  CrossRef Web of Science Google Scholar
First citationDong, Y. L., Li, C., Meng, X. F., Zhou, X. & Ma, J. J. (2015). J. Struct. Chem. 56, 1426–1430.  Web of Science CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKhalaji, A. D., Hafez Ghoran, S., Pojarová, M. & Dušek, M. (2015). J. Struct. Chem. 56, 1410–1414.  Web of Science CrossRef CAS Google Scholar
First citationKhandar, A. A., Hosseini-Yazdi, S. A., Khatamian, M. & Zarei, S. A. (2010). Polyhedron, 29, 995–1000.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2017). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, T.-T., Xu, X.-Y., Gao, J., Ni, S.-S., Wang, D.-Q., Lu, L.-D., Yang, X.-J. & Wang, X. (2007). J. Struct. Chem. 48, 193–197.  Web of Science CrossRef Google Scholar
First citationZhang, M., Xian, D. M., Li, H. H., Zhang, J. C. & You, Z. L. (2012). Aust. J. Chem. 65, 343–350.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds