organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-(4-Bromo­phen­yl)-2-(3-(4-bromo­phen­yl)-5-{3-[5-methyl-1-(4-methyl­phen­yl)-1H-1,2,3-triazol-4-yl]-1-phenyl-1H-pyrazol-4-yl}-4,5-di­hydro-1H-pyrazol-1-yl)-1,3-thia­zole

CROSSMARK_Color_square_no_text.svg

aCornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, bDepartment of Chemistry, College of Science and Humanities, Shaqra University, Duwadimi, Saudi Arabia, cApplied Organic Chemistry Department, National Research Centre, Dokki 12622, Giza, Egypt, dChemistry Department, Faculty of Science, Jazan University, Jazan 2079, Saudi Arabia, eChemical Industries Division, National Research Centre, Dokki 12622, Giza, Egypt, fChemistry Department, Faculty of Science, Damietta University, Egypt, and gSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
*Correspondence e-mail: gelhiti@ksu.edu.sa

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 14 March 2018; accepted 16 March 2018; online 23 March 2018)

In the title compound, C37H28Br2N8S, the dihedral angles between the planes of tol­yl–triazol­yl–pyrazol­yl–phenyl rings are 47.5 (1), 11.4 (2) and 22.4 (2)°, respectively, and the angles between the bromo­phen­yl–thia­zol­yl–di­hydro­pyrazol­yl–bromo­phenyl rings are 16.0 (2), 5.1 (2) and 0.8 (2)°, respectively. The dihedral angle between the planes of the pyrazolyl and di­hydro­pyrazolyl rings is 67.7 (1)°. In the crystal, weak C—H⋯Br inter­actions form chains of mol­ecules propagating in the [010] direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Several synthetic procedures have been reported for the synthesis of pyrazole, thia­zole and triazole-containing heterocycles (Assarzadeh et al., 2014[Assarzadeh, M. J., Almasirad, A., Shafiee, A., Koopaei, M. N. & Abdollahi, M. (2014). Med. Chem. Res. 23, 948-957.]; Hassan et al., 2014[Hassan, A. A., Bebair, T. M. & El-Gamal, M. I. (2014). J. Chem. Res. 38, 1-64.]; Sarigol et al., 2015[Sarigol, D., Uzgoren-Baran, A., Tel, B. C., Somuncuoglu, E. I., Kazkayasi, I., Ozadali-Sari, K., Unsal-Tan, O., Okay, G., Ertan, M. & Tozkoparan, B. (2015). Bioorg. Med. Chem. 23, 2518-2528.]). Compounds with pyrazolyl­thia­zole and pyrazolyltriazole ring systems show a variety of biological activities (Dawood et al., 2013[Dawood, K. M., Eldebss, T. M., El-Zahabi, H. S., Yousef, M. H. & Metz, P. (2013). Eur. J. Med. Chem. 70, 740-749.]; Dayakar et al., 2017[Dayakar, C., Kumar, B. S., Sneha, G., Sagarika, G., Meghana, K., Ramakrishna, S., Prakasham, R. S. & China Raju, B. (2017). Bioorg. Med. Chem. 25, 5678-5691.]; Gomha et al., 2016[Gomha, S. M., Edrees, M. M. & Altalbawy, F. M. (2016). Int. J. Mol. Sci. 17, 1499.]). The X-ray crystal structure for a related compound has been recently published (Abu El-Enin et al., 2017[Abu El-Enin, M. A. B., Abdel-Wahab, B. F., Baashen, M., Ghabbour, H. A. & El-Hiti, G. A. (2017). IUCrData, 2, x171729.]).

The asymmetric unit comprises one mol­ecule of C37H28Br2N8S (Fig. 1[link]). The mol­ecule can be considered as two sets of rings linked by the C10—C19 bond. The dihedral angles between the planes of tol­yl–triazol­yl–pyrazol­yl–phenyl rings are 47.5 (1), 11.4 (2) and 22.4 (2)°, respectively, in the first set. In the second set, the dihedral angles between the bromo­phen­yl–thia­zol­yl–di­hydro­pyrazol­yl–bromo­phenyl rings are 16.0 (2), 5.1 (2) and 0.8 (2)°, respectively. The dihedral angle between the planes of the pyrazolyl and di­hydro­pyrazolyl rings is 67.7 (1)°. In the crystal, weak C—H⋯Br inter­actions form chains of mol­ecules parallel to the b-axis direction (Table 1[link], Fig. 2[link]) with adjacent mol­ecules in the chain related by the 21 screw axis.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯Br1i 0.93 2.87 3.741 (3) 157
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The title compound showing 50% displacement ellipsoids.
[Figure 2]
Figure 2
A segment of the crystal structure showing C—H⋯Br contacts.

Synthesis and crystallization

The title compound was synthesized using a literature procedure (Abdel-Wahab et al., 2017[Abdel-Wahab, B. F., Khidre, R. E., Mohamed, H. A. & El-Hiti, G. A. (2017). Arab. J. Sci. Eng. 42, 2441-2448.]) and colourless needles were recrystallized from di­methyl­formamide solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C37H28Br2N8S
Mr 776.55
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 10.3624 (2), 13.5082 (3), 24.0262 (6)
β (°) 90.457 (2)
V3) 3363.02 (13)
Z 4
Radiation type Cu Kα
μ (mm−1) 3.96
Crystal size (mm) 0.24 × 0.09 × 0.05
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.971, 0.995
No. of measured, independent and observed [I > 2σ(I)] reflections 24126, 6772, 5247
Rint 0.037
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.162, 1.05
No. of reflections 6772
No. of parameters 435
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.06, −1.26
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CHEMDRAW Ultra (Cambridge Soft, 2001[Cambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001).

4-(4-Bromophenyl)-2-(3-(4-bromophenyl)-5-{3-[5-methyl-1-(4-methylphenyl)-1H-1,2,3-triazol-4-yl]-1-phenyl-1H-pyrazol-4-yl}-4,5-dihydro-1H-pyrazol-1-yl)-1,3-thiazole top
Crystal data top
C37H28Br2N8SF(000) = 1568
Mr = 776.55Dx = 1.534 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 10.3624 (2) ÅCell parameters from 7424 reflections
b = 13.5082 (3) Åθ = 3.6–74.1°
c = 24.0262 (6) ŵ = 3.96 mm1
β = 90.457 (2)°T = 293 K
V = 3363.02 (13) Å3Needle, colourless
Z = 40.24 × 0.09 × 0.05 mm
Data collection top
Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas
diffractometer
5247 reflections with I > 2σ(I)
ω scansRint = 0.037
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2015)
θmax = 74.4°, θmin = 3.7°
Tmin = 0.971, Tmax = 0.995h = 1112
24126 measured reflectionsk = 1616
6772 independent reflectionsl = 2926
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.162 w = 1/[σ2(Fo2) + (0.0831P)2 + 2.1716P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
6772 reflectionsΔρmax = 1.06 e Å3
435 parametersΔρmin = 1.26 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All hydrogen atoms were placed in calculated positions and refined using a riding model. Aromatic C—H distances were set to 0.93 Å and their U(iso) set to 1.2 times the Ueq for the atoms to which they are bonded. Methine C—H distances were set to 0.98 Å and their U(iso) set to 1.2 times the Ueq for the atoms to which they are bonded. Methylene C—H distances were set to 0.97 Å and their U(iso) set to 1.2 times the Ueq for the atoms to which they are bonded. Methyl groups were allowed to rotate about the C—C bond and C—H distances were set to 0.96 Å with U(iso) set to 1.5 times the Ueq for the C atoms to which they are bonded.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6973 (4)0.3731 (3)0.28057 (17)0.0651 (9)
C20.6176 (4)0.3335 (3)0.31946 (17)0.0641 (9)
H20.6250040.2671330.3291690.077*
C30.5256 (3)0.3922 (2)0.34446 (16)0.0603 (8)
H30.4718070.3650790.3712410.072*
C40.5127 (3)0.4917 (2)0.32994 (14)0.0508 (7)
C50.5965 (4)0.5294 (3)0.29070 (16)0.0637 (9)
H50.5898570.5957040.2806530.076*
C60.6894 (4)0.4714 (3)0.26610 (18)0.0719 (10)
H60.7456920.4982520.2402080.086*
C70.4122 (3)0.5552 (2)0.35431 (13)0.0506 (7)
C80.3420 (3)0.5346 (3)0.40002 (15)0.0610 (8)
H80.3508410.4774590.4212940.073*
C90.2914 (3)0.6884 (2)0.35436 (13)0.0508 (7)
C100.2794 (3)0.8355 (2)0.28957 (12)0.0511 (7)
H100.3714310.8509160.2935080.061*
C110.1968 (4)0.9295 (2)0.29769 (14)0.0572 (8)
H11A0.2506330.9874600.3031690.069*
H11B0.1398810.9405520.2660350.069*
C120.1214 (3)0.9060 (2)0.34918 (13)0.0494 (7)
C130.0284 (3)0.9733 (2)0.37463 (13)0.0511 (7)
C140.0054 (4)1.0665 (3)0.35213 (15)0.0623 (8)
H140.0493031.0858000.3203190.075*
C150.0819 (4)1.1312 (3)0.37621 (17)0.0666 (9)
H150.0970301.1933320.3607590.080*
C160.1455 (4)1.1017 (3)0.42334 (17)0.0640 (9)
C170.1242 (4)1.0100 (3)0.44684 (19)0.0750 (11)
H170.1680560.9914380.4787900.090*
C180.0376 (4)0.9463 (3)0.42278 (18)0.0697 (10)
H180.0227760.8845450.4387170.084*
C190.2525 (3)0.7858 (2)0.23482 (12)0.0464 (6)
C200.1731 (3)0.7073 (2)0.22478 (13)0.0489 (7)
H200.1273630.6716840.2512490.059*
C210.2988 (3)0.8134 (2)0.18174 (13)0.0467 (6)
C220.1075 (3)0.6137 (2)0.13990 (13)0.0499 (7)
C230.0020 (4)0.5679 (3)0.16363 (14)0.0592 (8)
H230.0293840.5896520.1976660.071*
C240.0560 (4)0.4900 (3)0.13649 (18)0.0737 (10)
H240.1265170.4585390.1524060.088*
C250.0108 (5)0.4585 (3)0.0863 (2)0.0858 (13)
H250.0505530.4057500.0681450.103*
C260.0935 (5)0.5048 (4)0.06260 (18)0.0814 (12)
H260.1239550.4830290.0284130.098*
C270.1535 (4)0.5832 (3)0.08898 (15)0.0629 (8)
H270.2235320.6148060.0727820.075*
C280.3889 (3)0.8933 (2)0.16866 (13)0.0484 (6)
C290.4572 (3)0.9133 (2)0.12084 (13)0.0478 (6)
C300.4513 (4)0.8675 (3)0.06460 (14)0.0604 (8)
H30A0.4500060.9185450.0368090.091*
H30B0.3745300.8281100.0612990.091*
H30C0.5256940.8262290.0593840.091*
C310.6254 (3)1.0440 (2)0.10339 (13)0.0491 (7)
C320.6289 (4)1.1467 (3)0.10291 (18)0.0670 (9)
H320.5665341.1831480.1214880.080*
C330.7265 (4)1.1939 (3)0.07445 (19)0.0688 (10)
H330.7298411.2626730.0747150.083*
C340.8197 (3)1.1416 (3)0.04547 (15)0.0561 (7)
C350.8135 (3)1.0398 (3)0.04709 (14)0.0549 (7)
H350.8754061.0031220.0283350.066*
C360.7179 (3)0.9905 (2)0.07575 (14)0.0535 (7)
H360.7161520.9217230.0763500.064*
C370.9254 (4)1.1942 (3)0.0147 (2)0.0761 (11)
H37A0.9593171.1513610.0134720.114*
H37B0.9930501.2119340.0403640.114*
H37C0.8912251.2530110.0023580.114*
N10.3837 (3)0.6446 (2)0.32804 (11)0.0524 (6)
N20.2349 (3)0.7741 (2)0.33681 (11)0.0565 (6)
N30.1453 (3)0.8199 (2)0.36979 (11)0.0523 (6)
N40.1729 (3)0.69057 (18)0.16912 (11)0.0493 (6)
N50.2502 (3)0.75534 (19)0.14154 (10)0.0494 (6)
N60.4192 (3)0.9628 (2)0.20785 (12)0.0593 (7)
N70.5043 (3)1.0237 (2)0.18751 (12)0.0601 (7)
N80.5289 (3)0.9938 (2)0.13477 (11)0.0512 (6)
S10.23386 (9)0.62837 (7)0.41369 (4)0.0613 (2)
Br10.82136 (6)0.29156 (4)0.24450 (3)0.1019 (2)
Br20.26346 (5)1.19038 (3)0.45748 (3)0.0937 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.071 (2)0.0499 (18)0.074 (2)0.0077 (16)0.0066 (18)0.0076 (16)
C20.072 (2)0.0374 (15)0.083 (2)0.0004 (15)0.0010 (18)0.0030 (16)
C30.0609 (19)0.0454 (17)0.075 (2)0.0050 (14)0.0041 (16)0.0091 (15)
C40.0540 (16)0.0436 (15)0.0548 (17)0.0027 (13)0.0007 (13)0.0002 (13)
C50.074 (2)0.0402 (16)0.077 (2)0.0030 (15)0.0170 (18)0.0095 (15)
C60.079 (2)0.054 (2)0.083 (3)0.0086 (17)0.025 (2)0.0130 (18)
C70.0528 (16)0.0455 (15)0.0534 (16)0.0032 (13)0.0014 (13)0.0021 (13)
C80.0598 (19)0.059 (2)0.064 (2)0.0047 (15)0.0045 (15)0.0129 (16)
C90.0573 (17)0.0481 (16)0.0471 (16)0.0010 (13)0.0006 (13)0.0000 (13)
C100.0636 (18)0.0440 (15)0.0458 (15)0.0014 (13)0.0064 (13)0.0039 (12)
C110.072 (2)0.0435 (16)0.0559 (18)0.0006 (14)0.0141 (15)0.0061 (13)
C120.0506 (15)0.0467 (16)0.0511 (16)0.0027 (13)0.0030 (12)0.0041 (13)
C130.0513 (16)0.0478 (16)0.0543 (16)0.0018 (13)0.0050 (13)0.0036 (13)
C140.079 (2)0.0512 (18)0.0568 (18)0.0013 (16)0.0120 (16)0.0010 (15)
C150.083 (2)0.0461 (18)0.071 (2)0.0080 (16)0.0106 (19)0.0006 (16)
C160.062 (2)0.0521 (18)0.078 (2)0.0020 (15)0.0119 (17)0.0082 (17)
C170.073 (2)0.067 (2)0.085 (3)0.0066 (19)0.033 (2)0.009 (2)
C180.071 (2)0.056 (2)0.083 (2)0.0093 (17)0.0233 (19)0.0087 (18)
C190.0507 (15)0.0411 (14)0.0474 (15)0.0025 (12)0.0070 (12)0.0024 (12)
C200.0580 (17)0.0432 (15)0.0456 (15)0.0022 (12)0.0091 (12)0.0002 (12)
C210.0478 (15)0.0416 (15)0.0508 (15)0.0018 (11)0.0078 (12)0.0006 (12)
C220.0572 (17)0.0418 (15)0.0508 (16)0.0011 (12)0.0001 (13)0.0023 (12)
C230.072 (2)0.0521 (18)0.0542 (18)0.0113 (15)0.0042 (15)0.0009 (14)
C240.086 (3)0.061 (2)0.075 (2)0.0232 (19)0.004 (2)0.0020 (18)
C250.101 (3)0.069 (3)0.087 (3)0.024 (2)0.000 (2)0.026 (2)
C260.092 (3)0.083 (3)0.069 (2)0.009 (2)0.011 (2)0.031 (2)
C270.064 (2)0.066 (2)0.0593 (19)0.0034 (16)0.0058 (15)0.0120 (16)
C280.0496 (15)0.0463 (15)0.0494 (15)0.0028 (12)0.0071 (12)0.0029 (12)
C290.0485 (15)0.0430 (15)0.0521 (16)0.0023 (12)0.0059 (12)0.0021 (12)
C300.067 (2)0.062 (2)0.0517 (17)0.0124 (16)0.0086 (15)0.0056 (15)
C310.0498 (15)0.0452 (15)0.0525 (16)0.0047 (12)0.0049 (12)0.0005 (13)
C320.062 (2)0.0477 (18)0.092 (3)0.0034 (15)0.0217 (18)0.0099 (17)
C330.068 (2)0.0410 (17)0.098 (3)0.0050 (15)0.017 (2)0.0012 (17)
C340.0547 (17)0.0520 (18)0.0618 (19)0.0070 (14)0.0046 (14)0.0020 (14)
C350.0553 (17)0.0521 (17)0.0575 (18)0.0020 (14)0.0112 (14)0.0009 (14)
C360.0575 (17)0.0427 (15)0.0603 (18)0.0027 (13)0.0053 (14)0.0034 (13)
C370.071 (2)0.059 (2)0.099 (3)0.0102 (17)0.023 (2)0.009 (2)
N10.0606 (15)0.0463 (14)0.0505 (14)0.0031 (11)0.0052 (11)0.0009 (11)
N20.0691 (16)0.0521 (15)0.0485 (14)0.0103 (13)0.0123 (12)0.0019 (12)
N30.0565 (14)0.0516 (14)0.0490 (13)0.0035 (11)0.0101 (11)0.0008 (11)
N40.0582 (14)0.0416 (13)0.0480 (13)0.0037 (10)0.0057 (11)0.0017 (10)
N50.0551 (14)0.0455 (13)0.0478 (13)0.0040 (11)0.0101 (11)0.0017 (11)
N60.0642 (16)0.0563 (16)0.0576 (15)0.0105 (13)0.0155 (13)0.0111 (13)
N70.0653 (16)0.0559 (16)0.0593 (16)0.0120 (13)0.0146 (13)0.0115 (13)
N80.0531 (14)0.0477 (14)0.0529 (14)0.0059 (11)0.0082 (11)0.0039 (11)
S10.0628 (5)0.0643 (5)0.0571 (5)0.0053 (4)0.0110 (4)0.0088 (4)
Br10.1222 (5)0.0676 (3)0.1165 (4)0.0333 (3)0.0368 (3)0.0011 (3)
Br20.1003 (4)0.0578 (3)0.1239 (4)0.0151 (2)0.0496 (3)0.0028 (2)
Geometric parameters (Å, º) top
C1—C21.361 (6)C20—H200.9300
C1—C61.376 (5)C21—N51.339 (4)
C1—Br11.906 (4)C21—C281.463 (4)
C2—C31.380 (5)C22—C271.380 (5)
C2—H20.9300C22—C231.383 (5)
C3—C41.395 (5)C22—N41.422 (4)
C3—H30.9300C23—C241.374 (5)
C4—C51.384 (5)C23—H230.9300
C4—C71.474 (5)C24—C251.365 (6)
C5—C61.378 (5)C24—H240.9300
C5—H50.9300C25—C261.377 (6)
C6—H60.9300C25—H250.9300
C7—C81.351 (5)C26—C271.379 (5)
C7—N11.394 (4)C26—H260.9300
C8—S11.725 (4)C27—H270.9300
C8—H80.9300C28—N61.365 (4)
C9—N11.294 (4)C28—C291.381 (4)
C9—N21.362 (4)C29—N81.358 (4)
C9—S11.749 (3)C29—C301.487 (4)
C10—N21.482 (4)C30—H30A0.9600
C10—C191.501 (4)C30—H30B0.9600
C10—C111.545 (4)C30—H30C0.9600
C10—H100.9800C31—C361.376 (4)
C11—C121.503 (4)C31—C321.387 (5)
C11—H11A0.9700C31—N81.428 (4)
C11—H11B0.9700C32—C331.381 (5)
C12—N31.286 (4)C32—H320.9300
C12—C131.462 (4)C33—C341.388 (5)
C13—C141.390 (5)C33—H330.9300
C13—C181.397 (5)C34—C351.377 (5)
C14—C151.388 (5)C34—C371.505 (5)
C14—H140.9300C35—C361.381 (5)
C15—C161.374 (5)C35—H350.9300
C15—H150.9300C36—H360.9300
C16—C171.378 (6)C37—H37A0.9600
C16—Br21.902 (4)C37—H37B0.9600
C17—C181.374 (5)C37—H37C0.9600
C17—H170.9300N2—N31.373 (4)
C18—H180.9300N4—N51.362 (4)
C19—C201.363 (4)N6—N71.304 (4)
C19—C211.416 (4)N7—N81.356 (4)
C20—N41.356 (4)
C2—C1—C6121.1 (3)C27—C22—C23120.8 (3)
C2—C1—Br1120.1 (3)C27—C22—N4119.3 (3)
C6—C1—Br1118.8 (3)C23—C22—N4119.9 (3)
C1—C2—C3119.9 (3)C24—C23—C22119.4 (3)
C1—C2—H2120.0C24—C23—H23120.3
C3—C2—H2120.0C22—C23—H23120.3
C2—C3—C4120.6 (3)C25—C24—C23120.4 (4)
C2—C3—H3119.7C25—C24—H24119.8
C4—C3—H3119.7C23—C24—H24119.8
C5—C4—C3117.8 (3)C24—C25—C26120.0 (4)
C5—C4—C7120.3 (3)C24—C25—H25120.0
C3—C4—C7121.9 (3)C26—C25—H25120.0
C6—C5—C4121.8 (3)C25—C26—C27120.7 (4)
C6—C5—H5119.1C25—C26—H26119.6
C4—C5—H5119.1C27—C26—H26119.6
C1—C6—C5118.8 (4)C26—C27—C22118.6 (4)
C1—C6—H6120.6C26—C27—H27120.7
C5—C6—H6120.6C22—C27—H27120.7
C8—C7—N1115.6 (3)N6—C28—C29108.8 (3)
C8—C7—C4126.1 (3)N6—C28—C21120.2 (3)
N1—C7—C4118.2 (3)C29—C28—C21130.9 (3)
C7—C8—S1111.0 (3)N8—C29—C28103.6 (3)
C7—C8—H8124.5N8—C29—C30125.1 (3)
S1—C8—H8124.5C28—C29—C30131.1 (3)
N1—C9—N2123.7 (3)C29—C30—H30A109.5
N1—C9—S1116.4 (2)C29—C30—H30B109.5
N2—C9—S1119.9 (2)H30A—C30—H30B109.5
N2—C10—C19111.3 (3)C29—C30—H30C109.5
N2—C10—C11100.8 (2)H30A—C30—H30C109.5
C19—C10—C11112.3 (3)H30B—C30—H30C109.5
N2—C10—H10110.7C36—C31—C32120.1 (3)
C19—C10—H10110.7C36—C31—N8120.0 (3)
C11—C10—H10110.7C32—C31—N8119.8 (3)
C12—C11—C10102.8 (3)C33—C32—C31119.0 (3)
C12—C11—H11A111.2C33—C32—H32120.5
C10—C11—H11A111.2C31—C32—H32120.5
C12—C11—H11B111.2C32—C33—C34121.9 (3)
C10—C11—H11B111.2C32—C33—H33119.1
H11A—C11—H11B109.1C34—C33—H33119.1
N3—C12—C13121.8 (3)C35—C34—C33117.4 (3)
N3—C12—C11114.1 (3)C35—C34—C37121.3 (3)
C13—C12—C11124.1 (3)C33—C34—C37121.2 (3)
C14—C13—C18118.4 (3)C34—C35—C36121.9 (3)
C14—C13—C12120.8 (3)C34—C35—H35119.0
C18—C13—C12120.8 (3)C36—C35—H35119.0
C15—C14—C13121.3 (3)C31—C36—C35119.6 (3)
C15—C14—H14119.4C31—C36—H36120.2
C13—C14—H14119.4C35—C36—H36120.2
C16—C15—C14118.6 (3)C34—C37—H37A109.5
C16—C15—H15120.7C34—C37—H37B109.5
C14—C15—H15120.7H37A—C37—H37B109.5
C15—C16—C17121.5 (3)C34—C37—H37C109.5
C15—C16—Br2119.1 (3)H37A—C37—H37C109.5
C17—C16—Br2119.4 (3)H37B—C37—H37C109.5
C18—C17—C16119.6 (4)C9—N1—C7109.3 (3)
C18—C17—H17120.2C9—N2—N3119.7 (3)
C16—C17—H17120.2C9—N2—C10125.2 (3)
C17—C18—C13120.7 (4)N3—N2—C10113.9 (3)
C17—C18—H18119.7C12—N3—N2108.3 (3)
C13—C18—H18119.7C20—N4—N5112.1 (2)
C20—C19—C21104.7 (3)C20—N4—C22127.2 (3)
C20—C19—C10127.6 (3)N5—N4—C22120.6 (3)
C21—C19—C10127.6 (3)C21—N5—N4104.1 (2)
N4—C20—C19107.5 (3)N7—N6—C28109.2 (3)
N4—C20—H20126.3N6—N7—N8107.1 (3)
C19—C20—H20126.3N7—N8—C29111.3 (3)
N5—C21—C19111.5 (3)N7—N8—C31119.3 (3)
N5—C21—C28120.9 (3)C29—N8—C31129.4 (3)
C19—C21—C28127.5 (3)C8—S1—C987.66 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···Br1i0.932.873.741 (3)157
Symmetry code: (i) x+3/2, y+1/2, z+1/2.
 

Footnotes

Additional corresponding author, e-mail: kariukib@cardiff.ac.uk.

Funding information

This project was supported by King Saud University, Deanship of Scientific Research, Research Chairs.

References

First citationAbdel-Wahab, B. F., Khidre, R. E., Mohamed, H. A. & El-Hiti, G. A. (2017). Arab. J. Sci. Eng. 42, 2441–2448.  CAS Google Scholar
First citationAbu El-Enin, M. A. B., Abdel-Wahab, B. F., Baashen, M., Ghabbour, H. A. & El-Hiti, G. A. (2017). IUCrData, 2, x171729.  Google Scholar
First citationAssarzadeh, M. J., Almasirad, A., Shafiee, A., Koopaei, M. N. & Abdollahi, M. (2014). Med. Chem. Res. 23, 948–957.  CrossRef CAS Google Scholar
First citationCambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.  Google Scholar
First citationDawood, K. M., Eldebss, T. M., El-Zahabi, H. S., Yousef, M. H. & Metz, P. (2013). Eur. J. Med. Chem. 70, 740–749.  CrossRef CAS Google Scholar
First citationDayakar, C., Kumar, B. S., Sneha, G., Sagarika, G., Meghana, K., Ramakrishna, S., Prakasham, R. S. & China Raju, B. (2017). Bioorg. Med. Chem. 25, 5678–5691.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGomha, S. M., Edrees, M. M. & Altalbawy, F. M. (2016). Int. J. Mol. Sci. 17, 1499.  CrossRef Google Scholar
First citationHassan, A. A., Bebair, T. M. & El-Gamal, M. I. (2014). J. Chem. Res. 38, 1–64.  Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSarigol, D., Uzgoren-Baran, A., Tel, B. C., Somuncuoglu, E. I., Kazkayasi, I., Ozadali-Sari, K., Unsal-Tan, O., Okay, G., Ertan, M. & Tozkoparan, B. (2015). Bioorg. Med. Chem. 23, 2518–2528.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds