metal-organic compounds
Redetermination of nickel(II) formate dihydrate
aInstitute for Chemical Technologies and Analytics, Division of Structural Chemistry, TU Wien, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria
*Correspondence e-mail: matthias.weil@tuwien.ac.at
In comparison with the previous μ-formato-nickel(II)], [Ni(HCOO)2(H2O)2]n, based on Weissenberg film data [Krogmann & Mattes (1963). Z. Kristallogr. 118, 291–302], the current redetermination from modern CCD data revealed the positions of the H atoms, thus making a detailed description of the hydrogen-bonding pattern possible. Both Ni2+ cations in the are located on inversion centres and are octahedrally coordinated. One Ni2+ cation is bound to six O atoms of six formate anions whereas the other Ni2+ cation is bound to four O atoms of water molecules and to two formate O atoms. In this way, the formate anions bridge the two types of Ni2+ cations into a three-dimensional framework. O—H⋯O hydrogen bonds of medium strength between water molecules and formate O atoms consolidate the packing.
of poly[diaquadi-Keywords: crystal structure; redetermination; nickel; formate; hydrogen bonding.
CCDC reference: 1829415
Structure description
Recycling of tungsten carbide from WC–Ni hard metals or composites thereof can be achieved by debinding WC–Ni with formic acid to selectively dissolve nickel. Nickel formate then can either be crystallized as the dihydrate from the obtained solution, or formic acid can be regenerated through 2 from the intermediate nickel sulfate solution by adding caustic soda (Weissensteiner, 2012). In the course of these studies it became apparent that a redetermination of the of nickel formate dihydrate, Ni(HCOO)2·2H2O, (Krogmann & Mattes, 1963) was desirable in terms of higher precision and accuracy and for an unambiguous assignment of the hydrogen-bonding scheme. Although a profile using the has been performed on this material, leading to precise room-temperature lattice parameters (Kellerman et al., 2016), improved structural data are still missing.
with sulfuric acid. In the latter case, nickel can be precipitated as Ni(OH)The 2·2H2O comprises two Ni2+ cations on inversion centres, one on 2b (Ni1), one on 2a (Ni2), and two formate anions and two water molecules in general positions. The Ni2+ cations are stacked in rows parallel to [101]. Both cations have a distorted octahedral coordination environment by oxygen atoms, but with different types of ligands. Ni1 is bound to six O atoms of six formate anions (O1–O3 and symmetry-related counterparts), whereas Ni2 is bound to four O atoms of two pairs of water molecules (O5, O6 and symmetry-related counterparts) and two formate anions (O4 and its symmetry-related counterpart). Relevant bond lengths and a comparison with the previous determination are collated in Table 1. In general, bond lengths and angles are similar to related divalent first-row transition metal formates (Viertelhaus et al., 2005).
of Ni(HCOO)
|
Each of the two formate anions bridges two Ni2+ cations, thus creating a three-dimensional framework. O—H⋯O hydrogen bonds of medium strength and with nearly linear O—H⋯O angles between water molecules as donor groups and each of the formate carboxylate O atoms as acceptor groups help to consolidate this arrangement (Fig. 1, Table 2). In comparison with the previous determination, the H-atom positions are unambiguous and were clearly discernible from difference maps.
Synthesis and crystallization
Crystals of the title compound were harvested from a saturated aqueous solution of nickel formate (Königswarter & Ebell, Chemische Fabrik GmbH, Germany) that was stored in a closed glass bottle for several months.
Refinement
Crystal data, data collection and structure . Starting coordinates for were taken from the previous determination (Krogmann & Mattes, 1963).
details are summarized in Table 3Structural data
CCDC reference: 1829415
https://doi.org/10.1107/S2414314618004285/hb4217sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314618004285/hb4217Isup2.hkl
Data collection: APEX3 (Bruker, 2015); cell
SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: coordinates from previous determination; program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: ATOMS (Dowty, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).[Ni(CHO2)2(H2O)2] | F(000) = 376 |
Mr = 184.78 | Dx = 2.228 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 8.5806 (4) Å | Cell parameters from 9891 reflections |
b = 7.0202 (3) Å | θ = 2.4–39.9° |
c = 9.2257 (4) Å | µ = 3.48 mm−1 |
β = 97.551 (1)° | T = 100 K |
V = 550.91 (4) Å3 | Plate, green |
Z = 4 | 0.12 × 0.10 × 0.02 mm |
Bruker APEXII CCD diffractometer | 2591 reflections with I > 2σ(I) |
ω– and φ–scans | Rint = 0.036 |
Absorption correction: multi-scan (SADABS; Bruker, 2015) | θmax = 40.1°, θmin = 2.4° |
Tmin = 0.667, Tmax = 0.748 | h = −15→15 |
44072 measured reflections | k = −12→12 |
3433 independent reflections | l = −16→16 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.021 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.049 | w = 1/[σ2(Fo2) + (0.0181P)2 + 0.2503P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
3433 reflections | Δρmax = 0.52 e Å−3 |
101 parameters | Δρmin = −0.55 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. H atoms bound to O atoms were located from a difference map and were refined freely. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.500000 | 1.000000 | 0.500000 | 0.00423 (3) | |
Ni2 | 0.000000 | 1.000000 | 0.000000 | 0.00564 (3) | |
O1 | 0.40966 (7) | 1.27481 (9) | 0.09909 (7) | 0.00780 (10) | |
O2 | 0.40368 (7) | 1.10493 (9) | 0.30080 (7) | 0.00783 (10) | |
O3 | 0.29319 (7) | 0.84112 (9) | 0.49822 (7) | 0.00847 (10) | |
O4 | 0.06317 (8) | 0.72530 (10) | 0.07671 (8) | 0.01179 (11) | |
O5 | 0.08832 (8) | 1.11264 (12) | 0.19580 (8) | 0.01638 (14) | |
O6 | −0.21606 (8) | 0.97254 (10) | 0.07381 (7) | 0.00910 (10) | |
C1 | 0.46712 (10) | 1.22417 (12) | 0.22586 (9) | 0.00844 (12) | |
H1 | 0.563988 | 1.279365 | 0.267077 | 0.010* | |
C2 | 0.17660 (10) | 0.61599 (12) | 0.06198 (10) | 0.00963 (13) | |
H2 | 0.174105 | 0.491537 | 0.102054 | 0.012* | |
H5 | −0.2593 (18) | 1.071 (3) | 0.0623 (17) | 0.023 (4)* | |
H3 | 0.188 (2) | 1.098 (3) | 0.2325 (18) | 0.039 (5)* | |
H4 | 0.036 (2) | 1.148 (3) | 0.2609 (19) | 0.033 (5)* | |
H6 | −0.278 (2) | 0.898 (3) | 0.0248 (18) | 0.031 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.00443 (5) | 0.00435 (5) | 0.00395 (5) | −0.00014 (4) | 0.00061 (4) | −0.00003 (4) |
Ni2 | 0.00466 (5) | 0.00628 (6) | 0.00601 (6) | 0.00038 (4) | 0.00083 (4) | −0.00025 (5) |
O1 | 0.0087 (2) | 0.0080 (2) | 0.0065 (2) | −0.00071 (19) | 0.00013 (18) | 0.00185 (18) |
O2 | 0.0081 (2) | 0.0087 (2) | 0.0066 (2) | −0.00015 (19) | 0.00077 (18) | 0.00260 (19) |
O3 | 0.0065 (2) | 0.0094 (2) | 0.0098 (2) | −0.00125 (19) | 0.00243 (18) | −0.00016 (19) |
O4 | 0.0090 (2) | 0.0106 (3) | 0.0168 (3) | 0.0033 (2) | 0.0056 (2) | 0.0040 (2) |
O5 | 0.0071 (2) | 0.0307 (4) | 0.0112 (3) | −0.0001 (3) | 0.0010 (2) | −0.0095 (3) |
O6 | 0.0071 (2) | 0.0090 (3) | 0.0113 (3) | −0.00036 (19) | 0.00169 (19) | −0.00004 (19) |
C1 | 0.0084 (3) | 0.0081 (3) | 0.0084 (3) | −0.0013 (2) | −0.0006 (2) | 0.0017 (2) |
C2 | 0.0082 (3) | 0.0089 (3) | 0.0120 (3) | 0.0016 (2) | 0.0023 (2) | 0.0013 (3) |
Ni1—O1i | 2.0302 (6) | Ni2—O4iv | 2.1007 (7) |
Ni1—O1ii | 2.0302 (6) | O1—C1 | 1.2593 (10) |
Ni1—O2 | 2.0503 (6) | O2—C1 | 1.2546 (10) |
Ni1—O2iii | 2.0504 (6) | O3—C2v | 1.2618 (10) |
Ni1—O3iii | 2.0942 (6) | O4—C2 | 1.2607 (10) |
Ni1—O3 | 2.0942 (6) | O5—H3 | 0.89 (2) |
Ni2—O5iv | 2.0255 (7) | O5—H4 | 0.832 (18) |
Ni2—O5 | 2.0256 (7) | O6—H5 | 0.787 (18) |
Ni2—O6 | 2.0663 (6) | O6—H6 | 0.837 (18) |
Ni2—O6iv | 2.0664 (6) | C1—H1 | 0.9500 |
Ni2—O4 | 2.1006 (7) | C2—H2 | 0.9500 |
O1i—Ni1—O1ii | 180.00 (3) | O6—Ni2—O4 | 90.36 (3) |
O1i—Ni1—O2 | 89.49 (2) | O6iv—Ni2—O4 | 89.64 (3) |
O1ii—Ni1—O2 | 90.51 (2) | O5iv—Ni2—O4iv | 90.47 (3) |
O1i—Ni1—O2iii | 90.51 (2) | O5—Ni2—O4iv | 89.53 (3) |
O1ii—Ni1—O2iii | 89.49 (2) | O6—Ni2—O4iv | 89.64 (3) |
O2—Ni1—O2iii | 180.00 (4) | O6iv—Ni2—O4iv | 90.36 (3) |
O1i—Ni1—O3iii | 87.42 (2) | O4—Ni2—O4iv | 180.0 |
O1ii—Ni1—O3iii | 92.58 (2) | C1—O1—Ni1vi | 120.79 (5) |
O2—Ni1—O3iii | 93.27 (2) | C1—O2—Ni1 | 125.50 (6) |
O2iii—Ni1—O3iii | 86.73 (2) | C2v—O3—Ni1 | 126.31 (6) |
O1i—Ni1—O3 | 92.58 (2) | C2—O4—Ni2 | 133.73 (6) |
O1ii—Ni1—O3 | 87.42 (2) | Ni2—O5—H3 | 121.7 (12) |
O2—Ni1—O3 | 86.73 (2) | Ni2—O5—H4 | 126.1 (12) |
O2iii—Ni1—O3 | 93.27 (2) | H3—O5—H4 | 110.0 (16) |
O3iii—Ni1—O3 | 180.0 | Ni2—O6—H5 | 107.5 (12) |
O5iv—Ni2—O5 | 180.00 (2) | Ni2—O6—H6 | 114.6 (11) |
O5iv—Ni2—O6 | 90.62 (3) | H5—O6—H6 | 103.0 (16) |
O5—Ni2—O6 | 89.38 (3) | O2—C1—O1 | 123.70 (8) |
O5iv—Ni2—O6iv | 89.38 (3) | O2—C1—H1 | 118.1 |
O5—Ni2—O6iv | 90.62 (3) | O1—C1—H1 | 118.1 |
O6—Ni2—O6iv | 180.0 | O4—C2—O3vii | 125.14 (8) |
O5iv—Ni2—O4 | 89.53 (3) | O4—C2—H2 | 117.4 |
O5—Ni2—O4 | 90.47 (3) | O3vii—C2—H2 | 117.4 |
Symmetry codes: (i) x, −y+5/2, z+1/2; (ii) −x+1, y−1/2, −z+1/2; (iii) −x+1, −y+2, −z+1; (iv) −x, −y+2, −z; (v) x, −y+3/2, z+1/2; (vi) −x+1, y+1/2, −z+1/2; (vii) x, −y+3/2, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O6—H5···O3viii | 0.787 (18) | 1.985 (18) | 2.7312 (9) | 158.1 (16) |
O5—H3···O2 | 0.89 (2) | 1.87 (2) | 2.7522 (9) | 171.2 (19) |
O5—H4···O4viii | 0.832 (18) | 1.898 (18) | 2.7271 (10) | 174.1 (17) |
O6—H6···O1iv | 0.837 (18) | 1.926 (18) | 2.7610 (9) | 175.5 (16) |
Symmetry codes: (iv) −x, −y+2, −z; (viii) −x, y+1/2, −z+1/2. |
current refinement | previous refinementa | |
Ni1—O1i | 2.0302 (6) | 2.026 (8) |
Ni1—O2 | 2.0503 (6) | 2.061 (8) |
Ni1—O3 | 2.0942 (6) | 2.097 (8) |
Ni2—O5 | 2.0256 (7) | 2.042 (8) |
Ni2—O6 | 2.0663 (6) | 2.059 (8) |
Ni2—O4 | 2.1006 (7) | 2.090 (8) |
O1—C1 | 1.2593 (10) | 1.256 (8) |
O2—C1 | 1.2546 (10) | 1.222 (8) |
O3—C2ii | 1.2618 (10) | 1.278 (8) |
O4—C2 | 1.2607 (10) | 1.247 (8) |
Symmetry codes: (i) -x + 1, y - 1/2, -z + 1/2; (ii) x, -y + 3/2, z + 1/2. Notes: (a) Krogmann & Mattes (1963); lattice parameters a = 8.60 (1), b = 7.06 (1), c = 9.21 (2) Å, β = 96.50 (10)° from single-crystal data at room temperature; (b) lattice parameters a = 8.5951 (1), b = 7.0688 (5), c = 9.2152 (2) Å, β = 97.41 (1)° from Rietveld profile refinement at room temperature (Kellerman et al., 2016). |
Acknowledgements
Dr Christian Weissensteiner kindly supplied the crystals used for this redetermination.
Funding information
The X-ray centre of TU Wien is acknowledged for financial support and for providing access to the single-crystal X-ray diffractometer.
References
Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA. Google Scholar
Dowty, E. (2006). ATOMS. Shape Software, Kingsport, Tennessee, USA. Google Scholar
Kellerman, D. G., Barykina, Yu. A., Zheleznikov, K. A., Tyutyunnik, A. P. & Krasilnikov, V. N. (2016). Phys. Status Solidi B, 253, 2209–2216. CrossRef CAS Google Scholar
Krogmann, K. & Mattes, R. (1963). Z. Kristallogr. 118, 291–302. CrossRef CAS Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Viertelhaus, M., Adler, P., Clérac, R., Anson, C. E. & Powell, A. (2005). Eur. J. Inorg. Chem. pp. 692–703. CSD CrossRef Google Scholar
Weissensteiner, C. (2012). Diploma thesis, TU Wien, Austria. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.