organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5-Bromo-1-(4-bromo­phen­yl)isatin

CROSSMARK_Color_square_no_text.svg

aCornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK, cSchool of Biosciences, Cardiff University, Cardiff CF10 3AT, UK, and dSchool of Medicine, Cardiff University, Tenovus Building, Heath Park, Cardiff CF14 4XN, UK
*Correspondence e-mail: gelhiti@ksu.edu.sa

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 8 March 2018; accepted 13 March 2018; online 15 March 2018)

In the title compound [systematic name: 5-bromo-1-(4-bromo­phen­yl)-2,3-di­hydro-1H-indole-2,3-dione], C14H7Br2NO2, all of the atoms except the C—H groups in the bromo­benzene ring lie on a (010) crystallographic mirror plane, with the benzene ring completed by reflection. The dihedral angle between the ring systems is constrained to be 90° by symmetry. In the crystal, mol­ecules are linked by weak C—H⋯Br inter­actions in the [001] direction and paired very weak C—H⋯O inter­actions to the same acceptor in the [100] direction, generating (010) sheets. Possible extremely weak ππ stacking occurs between the layers.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

A number of synthetic procedures have been established for obtaining isatins. These include reactions of N′-(2-bromoar­yl)-N,N-di­methyl­ureas with methyl­lithium (1.1 molar equivalents) and tert-butyl­lithium (2.2 molar equivalents) at 0°C followed by treatment with carbon monoxide (Smith et al., 1999[Smith, K., El-Hiti, G. A. & Hawes, A. C. (1999). Synlett, pp. 945-947.], 2003[Smith, K., El-Hiti, G. A. & Hawes, A. C. (2003). Synthesis, pp. 2047-2052.]), oxidative cyclization of 2′-amino­aceto­phenones by use of iodine and tert-butyl hydro­peroxide (TBHP) (Ilangovan & Satish, 2014[Ilangovan, A. & Satish, G. (2014). J. Org. Chem. 79, 4984-4991.]) or aqueous copper(II) acetate in dimethyl sulfoxide (DMSO) at 80°C for 4–10 h (Ilangovan & Satish, 2013[Ilangovan, A. & Satish, G. (2013). Org. Lett. 15, 5726-5729.]), oxidative amidation of 2′-amino­phenyl­acetyl­enes in the presence of I2 in DMSO at 100°C for 5–12 h (Satish et al., 2015[Satish, G., Polu, A., Ramar, T. & Ilangovan, A. (2015). J. Org. Chem. 80, 5167-5175.]), oxidation of indoles with I2/TBHP in DMSO at 80°C for 24 h (Zi et al., 2014[Zi, Y., Cai, Z.-J., Wang, S.-Y. & Ji, S.-J. (2014). Org. Lett. 16, 3094-3097.]), or reactions of di­aryl­amines with oxalyl chloride (Bryant et al., 1993[Bryant, W. M., Huhn, G. F., Jensen, J. H., Pierce, M. E. & Stammbach, C. (1993). Synth. Commun. 23, 1617-1625.]). As part of our studies in this area, we now describe the synthesis and structure of the title compound.

All the atoms except C10 and C11 lie on a (010) crystallographic mirror plane, with the benzene ring completed by reflection (Fig. 1[link]). The dihedral angle between the ring systems is constrained to be 90° by symmetry. In the crystal, the mol­ecules are linked by weak C—H⋯Br inter­actions (Table 1[link]) in the [001] direction and paired C—H⋯O inter­actions to the same acceptor in the [100] direction, generating (010) sheets (Fig. 2[link]). The layers are stacked along the b axis, resulting in possible extremely weak ππ overlap between neighbouring bromo­isatino groups (Fig. 3[link]). The centroid-to-centroid distance between adjacent isatin units is 4.431 (2) Å.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2i 0.93 2.68 3.296 (6) 124
C3—H3⋯O2i 0.93 2.70 3.312 (7) 124
C5—H5⋯Br2ii 0.93 2.84 3.763 (5) 173
Symmetry codes: (i) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (ii) x, y, z+1.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound showing 50% displacement ellipsoids.
[Figure 2]
Figure 2
Inter­molecular inter­actions (dashed lines) in a layer of the structure.
[Figure 3]
Figure 3
Crystal packing viewed along the b axis.

Synthesis and crystallization

A solution of bis­(4-bromo­phen­yl)amine in di­chloro­methane (DCM) was added dropwise to a stirred, boiling solution of oxalyl chloride (2.0 mole equivalents) in DCM. The mixture was heated under reflux for 1 h and the volatiles were removed under reduced pressure. To the residue obtained, DCM and excess anhydrous aluminium chloride (2.2 molar equivalents in portions) were added and the mixture was refluxed for 1 h. Di­chloro­methane was removed under reduced pressure and dilute hydro­chloric acid (1 M) was added and the mixture was stirred for 30 min. The product was extracted with DCM, dried over anhydrous magnesium sulfate and the solvent was removed under vacuum to give the essentially pure product in 91% yield. Recrystallization from aceto­nitrile solution gave the title compound as orange crystals (m.p. 235–236°C).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C14H7Br2NO2
Mr 381.03
Crystal system, space group Orthorhombic, Pnma
Temperature (K) 293
a, b, c (Å) 15.1160 (14), 6.8728 (6), 12.7492 (11)
V3) 1324.5 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 6.12
Crystal size (mm) 0.29 × 0.24 × 0.19
 
Data collection
Diffractometer Agilent SuperNova, Dual, Cu at zero, Atlas
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.377, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 5624, 1801, 1174
Rint 0.041
(sin θ/λ)max−1) 0.703
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.096, 1.06
No. of reflections 1801
No. of parameters 110
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.53, −0.59
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Oxford Diffraction, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CHEMDRAW Ultra (Cambridge Soft, 2001[Cambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001).

5-Bromo-1-(4-bromophenyl)-2,3-dihydro-1H-indole-2,3-dione top
Crystal data top
C14H7Br2NO2Dx = 1.911 Mg m3
Mr = 381.03Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 1378 reflections
a = 15.1160 (14) Åθ = 4.3–25.8°
b = 6.8728 (6) ŵ = 6.12 mm1
c = 12.7492 (11) ÅT = 293 K
V = 1324.5 (2) Å3Block, orange
Z = 40.29 × 0.24 × 0.19 mm
F(000) = 736
Data collection top
Agilent SuperNova, Dual, Cu at zero, Atlas
diffractometer
1174 reflections with I > 2σ(I)
ω scansRint = 0.041
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
θmax = 30.0°, θmin = 3.4°
Tmin = 0.377, Tmax = 1.000h = 1420
5624 measured reflectionsk = 69
1801 independent reflectionsl = 1615
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0277P)2 + 1.353P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.096(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.53 e Å3
1801 reflectionsΔρmin = 0.59 e Å3
110 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0052 (4)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All H atoms were placed in calculated positions and refined using a riding model. C—H bonds were fixed at 0.93 Å and Uiso(H) set to 1.2Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5530 (3)0.2500000.3519 (4)0.0438 (12)
C20.4652 (3)0.2500000.3236 (4)0.0476 (12)
H20.4484930.2500000.2534410.057*
C30.4023 (4)0.2500000.4030 (4)0.0501 (13)
H30.3424670.2500000.3859240.060*
C40.4276 (3)0.2500000.5072 (4)0.0429 (11)
C50.5158 (3)0.2500000.5361 (4)0.0433 (12)
H50.5325550.2500000.6062690.052*
C60.5780 (3)0.2500000.4567 (4)0.0421 (11)
C70.6743 (3)0.2500000.4607 (4)0.0480 (12)
C80.7050 (4)0.2500000.3443 (5)0.0516 (13)
C90.6233 (3)0.2500000.1732 (4)0.0469 (12)
C100.6218 (4)0.0790 (6)0.1197 (3)0.0771 (14)
H100.6250540.0382120.1558970.092*
C110.6156 (4)0.0789 (7)0.0112 (4)0.0831 (15)
H110.6139680.0378430.0256920.100*
C120.6118 (3)0.2500000.0401 (4)0.0535 (14)
N10.6283 (3)0.2500000.2857 (3)0.0484 (10)
O10.7242 (2)0.2500000.5347 (3)0.0650 (11)
O20.7799 (3)0.2500000.3124 (3)0.0666 (11)
Br10.33910 (4)0.2500000.61293 (5)0.0564 (2)
Br20.60700 (6)0.2500000.18928 (5)0.0946 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.055 (3)0.038 (2)0.039 (3)0.0000.003 (2)0.000
C20.053 (3)0.055 (3)0.035 (3)0.0000.005 (2)0.000
C30.050 (3)0.053 (3)0.048 (3)0.0000.005 (2)0.000
C40.049 (3)0.041 (3)0.039 (3)0.0000.003 (2)0.000
C50.058 (3)0.040 (3)0.032 (3)0.0000.009 (2)0.000
C60.051 (3)0.038 (2)0.037 (3)0.0000.005 (2)0.000
C70.052 (3)0.047 (3)0.045 (3)0.0000.011 (2)0.000
C80.055 (4)0.048 (3)0.052 (3)0.0000.002 (3)0.000
C90.050 (3)0.052 (3)0.039 (3)0.0000.001 (2)0.000
C100.135 (4)0.050 (2)0.046 (3)0.007 (3)0.007 (3)0.002 (2)
C110.136 (5)0.063 (3)0.050 (3)0.010 (3)0.013 (3)0.010 (2)
C120.049 (3)0.074 (4)0.037 (3)0.0000.006 (2)0.000
N10.054 (3)0.053 (2)0.038 (3)0.0000.001 (2)0.000
O10.059 (2)0.081 (3)0.055 (3)0.0000.013 (2)0.000
O20.049 (2)0.085 (3)0.066 (3)0.0000.0106 (19)0.000
Br10.0597 (4)0.0578 (3)0.0518 (4)0.0000.0100 (3)0.000
Br20.1138 (7)0.1280 (7)0.0420 (4)0.0000.0233 (4)0.000
Geometric parameters (Å, º) top
C1—C21.374 (7)C7—O11.208 (6)
C1—C61.389 (7)C7—C81.554 (8)
C1—N11.418 (6)C8—O21.203 (6)
C2—C31.390 (7)C8—N11.379 (7)
C2—H20.9300C9—C10i1.359 (5)
C3—C41.382 (7)C9—C101.359 (5)
C3—H30.9300C9—N11.436 (6)
C4—C51.383 (7)C10—C111.386 (6)
C4—Br11.899 (5)C10—H100.9300
C5—C61.381 (7)C11—C121.347 (5)
C5—H50.9300C11—H110.9300
C6—C71.457 (7)C12—Br21.904 (6)
C2—C1—C6121.0 (5)C6—C7—C8105.4 (4)
C2—C1—N1128.3 (5)O2—C8—N1127.4 (6)
C6—C1—N1110.7 (4)O2—C8—C7127.1 (5)
C1—C2—C3118.0 (5)N1—C8—C7105.5 (4)
C1—C2—H2121.0C10i—C9—C10119.7 (5)
C3—C2—H2121.0C10i—C9—N1120.2 (3)
C4—C3—C2120.7 (5)C10—C9—N1120.2 (3)
C4—C3—H3119.7C9—C10—C11120.2 (4)
C2—C3—H3119.7C9—C10—H10119.9
C3—C4—C5121.5 (5)C11—C10—H10119.9
C3—C4—Br1119.2 (4)C12—C11—C10119.1 (4)
C5—C4—Br1119.3 (4)C12—C11—H11120.5
C6—C5—C4117.5 (4)C10—C11—H11120.5
C6—C5—H5121.3C11i—C12—C11121.7 (6)
C4—C5—H5121.3C11i—C12—Br2119.1 (3)
C5—C6—C1121.3 (5)C11—C12—Br2119.1 (3)
C5—C6—C7130.9 (5)C8—N1—C1110.6 (4)
C1—C6—C7107.8 (5)C8—N1—C9125.9 (4)
O1—C7—C6130.6 (5)C1—N1—C9123.5 (4)
O1—C7—C8124.0 (5)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2ii0.932.683.296 (6)124
C3—H3···O2ii0.932.703.312 (7)124
C5—H5···Br2iii0.932.843.763 (5)173
Symmetry codes: (ii) x1/2, y, z+1/2; (iii) x, y, z+1.
 

Funding information

We thank the EPSRC for the grant that supplied the MS instrumentation used in this study. MA thanks the Saudi Arabian Cultural Bureau, London for a scholarship and GAEH thanks King Saud University, Deanship of Scientific Research, Research Chairs for funding his research.

References

First citationBryant, W. M., Huhn, G. F., Jensen, J. H., Pierce, M. E. & Stammbach, C. (1993). Synth. Commun. 23, 1617–1625.  CrossRef CAS Web of Science Google Scholar
First citationCambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIlangovan, A. & Satish, G. (2013). Org. Lett. 15, 5726–5729.  Web of Science CrossRef CAS PubMed Google Scholar
First citationIlangovan, A. & Satish, G. (2014). J. Org. Chem. 79, 4984–4991.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSatish, G., Polu, A., Ramar, T. & Ilangovan, A. (2015). J. Org. Chem. 80, 5167–5175.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, K., El-Hiti, G. A. & Hawes, A. C. (1999). Synlett, pp. 945–947.  CrossRef Google Scholar
First citationSmith, K., El-Hiti, G. A. & Hawes, A. C. (2003). Synthesis, pp. 2047–2052.  Web of Science CrossRef Google Scholar
First citationZi, Y., Cai, Z.-J., Wang, S.-Y. & Ji, S.-J. (2014). Org. Lett. 16, 3094–3097.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds