organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5-Methyl-N′-(5-methyl-1-phenyl-1H-1,2,3-triazole-4-carbon­yl)-1-phenyl-1H-1,2,3-triazole-4-carbohydrazide

CROSSMARK_Color_square_no_text.svg

aCornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, bDepartment of Chemistry, College of Science and Humanities, Shaqra University, Duwadimi, Saudi Arabia, cApplied Organic Chemistry Department, National Research Centre, Dokki, Giza, Egypt, dChemistry Department, Faculty of Science, Damietta University, Egypt, eChemistry Department, Faculty of Science, Jazan University, Jazan 2079, Saudi Arabia, fChemical Industries Division, National Research Centre, Dokki 12622, Giza, Egypt, and gSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
*Correspondence e-mail: gelhiti@ksu.edu.sa

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 8 March 2018; accepted 12 March 2018; online 15 March 2018)

The asymmetric unit of the title compound, C20H18N8O2, comprises one complete mol­ecule and a half mol­ecule completed by crystallographic twofold symmetry leading to Z = 12. The dihedral angles between the planes of the linked phenyl and methyl­triazolyl groups are 69.48 (5) and 44.85 (9)° for the first mol­ecule and 42.88 (9)° for the second. The conformations of the diformyl hydrazyl groups of the mol­ecules are similar as indicated by C—N—N—C torsion angles of −83.4 (2) and −86.4 (3)°. In the crystal, neighbouring mol­ecules are linked by pairs of N—H⋯O hydrogen bonds to form independent columns propagating parallel to the c-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

N,N′-Di­acyl­hydrazines are precursors for heterocycles such as 1,3,4-oxa­diazo­les (Abdel-Wahab et al., 2017[Abdel-Wahab, B. F., Alotaibi, M. H. & El-Hiti, G. A. (2017). Lett. Org. Chem. 14, 591-596.]). Treatment of acid hydrazides with an oxidizing agent gives N,N′-di­acyl­hydrazines (Nikolić et al., 2017[Nikolić, S., Ćirić, L., Roller, A., Lukeš, V., Arion, V. B. & Grgurić-Šipka, S. (2017). New J. Chem. 41, 6857-6865.]; Mogilaiah et al., 2003[Mogilaiah, K., Prashanthi, M. & Reddy, G. R. (2003). Synth. Commun. 33, 3741-3745.]; Prakash et al., 1997[Prakash, O., Sharma, V. & Sadana, A. (1997). Synth. Commun. 27, 3371-3377.]). As part of our studies in this area, we now describe the crystal structure of the title compound.

The asymmetric unit comprises one and a half mol­ecules (Fig. 1[link]). The second mol­ecule is completed by crystallographic twofold symmetry. The dihedral angles between the planes of the linked phenyl and methyl­triazolyl groups are 69.48 (5)° and 44.85 (9)° for the first mol­ecule and 42.88 (9)° for the second. The conformations of the diformyl hydrazyl groups of the two mol­ecules are similar as indicated by the C—N—N—C torsion angles of −83.4 (2)° and −86.4 (3)°. The dihedral angle between the C7 and C13 triazole rings in the first mol­ecule is 63.65 (10) and the equivalent angle between the symmetry-related C27 rings in the second mol­ecule is 61.80 (4)°.

[Figure 1]
Figure 1
The mol­ecular structure showing 50% displacement ellipsoids. Primed and unlabelled atoms are generated by the symmetry operation 1 − x, y, [{1\over 2}] − z.

Neighbouring mol­ecules in the crystal structure are linked by pairs of N—H⋯O hydrogen bonds (Table 1[link]), forming columns parallel to the c-axis direction The two types of mol­ecule form separate columns that alternate along the a-axis direction (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯O1i 0.86 2.24 2.9412 (19) 139
N5—H5A⋯O2ii 0.86 2.23 2.9395 (19) 140
N12—H12⋯O3iii 0.86 2.28 3.098 (2) 158
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) [x, -y+1, z-{\script{1\over 2}}]; (iii) [x, -y+2, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
A segment of the crystal structure viewed down the b axis showing N—H⋯O hydrogen-bonding contacts leading to [001] chains.

Synthesis and crystallization

The synthesis of the title compound has already been reported (Abdel-Wahab et al., 2017[Abdel-Wahab, B. F., Alotaibi, M. H. & El-Hiti, G. A. (2017). Lett. Org. Chem. 14, 591-596.]). Yellow needles of the title compound were recrystallized from di­methyl­formamide solution (yield = 72%; m.p. 279–280°C).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C20H18N8O2
Mr 402.42
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 61.5399 (18), 11.8988 (4), 8.2661 (3)
β (°) 93.301 (3)
V3) 6042.8 (3)
Z 12
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.36 × 0.17 × 0.08
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas
Absorption correction Gaussian (CrysAlis PRO, Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.583, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 28646, 7636, 5320
Rint 0.025
(sin θ/λ)max−1) 0.701
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.162, 1.06
No. of reflections 7636
No. of parameters 410
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.27, −0.24
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CHEMDRAW Ultra (Cambridge Soft, 2001[Cambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001).

5-Methyl-N'-(5-methyl-1-phenyl-1H-1,2,3-triazole-4-carbonyl)-1-phenyl-1H-1,2,3-triazole-4-carbohydrazide top
Crystal data top
C20H18N8O2F(000) = 2520
Mr = 402.42Dx = 1.327 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 61.5399 (18) ÅCell parameters from 7925 reflections
b = 11.8988 (4) Åθ = 3.3–29.3°
c = 8.2661 (3) ŵ = 0.09 mm1
β = 93.301 (3)°T = 296 K
V = 6042.8 (3) Å3Needle, yellow
Z = 120.36 × 0.17 × 0.08 mm
Data collection top
Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas
diffractometer
5320 reflections with I > 2σ(I)
ω scansRint = 0.025
Absorption correction: gaussian
(CrysAlis PRO, Rigaku OD, 2015)
θmax = 29.9°, θmin = 3.0°
Tmin = 0.583, Tmax = 1.000h = 8679
28646 measured reflectionsk = 1616
7636 independent reflectionsl = 1110
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.052 w = 1/[σ2(Fo2) + (0.0711P)2 + 3.1965P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.162(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.27 e Å3
7636 reflectionsΔρmin = 0.24 e Å3
410 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00114 (19)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All hydrogen atoms were placed in calculated positions and refined using a riding model. Aromatic C—H distances were set to 0.93\%A and their U(iso) set to 1.2 times the Ueq for the atoms to which they are bonded. Methyl groups were allowed to rotate about the C—C bond and C—H distances were set to 0.96\%A with U(iso) set to 1.5 times the Ueq for the C atoms to which they are bonded. The N—H bond was set to 0.86 Å and Uiso(H) set to 1.2 times Ueq (N).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.22978 (2)0.37333 (15)0.7766 (2)0.0463 (4)
C20.21677 (3)0.44007 (18)0.6775 (3)0.0629 (5)
H20.2223370.5043020.6309570.075*
C30.19509 (3)0.4103 (2)0.6476 (3)0.0772 (7)
H30.1860760.4547800.5799530.093*
C40.18692 (3)0.3164 (2)0.7165 (3)0.0738 (6)
H40.1722890.2981910.6982050.089*
C50.20016 (3)0.2491 (2)0.8123 (3)0.0787 (7)
H50.1946090.1842750.8574030.094*
C60.22191 (3)0.27693 (19)0.8426 (3)0.0682 (6)
H60.2310250.2307790.9069670.082*
C70.27078 (2)0.36356 (13)0.7642 (2)0.0403 (3)
C80.28629 (2)0.43569 (13)0.83050 (19)0.0398 (3)
C90.27244 (3)0.26166 (16)0.6632 (3)0.0596 (5)
H9A0.2589730.2208410.6619610.089*
H9B0.2840300.2149620.7074880.089*
H9C0.2753850.2830200.5546480.089*
C100.30996 (2)0.43355 (14)0.81230 (19)0.0400 (3)
C110.35563 (2)0.43823 (14)1.00094 (19)0.0410 (4)
C120.37925 (2)0.44678 (14)0.98102 (19)0.0405 (3)
C130.39533 (2)0.37223 (14)1.03065 (19)0.0405 (3)
C140.39412 (3)0.26250 (15)1.1149 (2)0.0547 (4)
H14A0.4063930.2171291.0901010.082*
H14B0.3809180.2246751.0792640.082*
H14C0.3942620.2746831.2297250.082*
C150.43574 (3)0.38279 (15)0.9912 (2)0.0496 (4)
C160.44469 (3)0.3415 (2)1.1341 (3)0.0709 (6)
H160.4364810.3375111.2249570.085*
C170.46606 (4)0.3057 (3)1.1423 (4)0.0966 (9)
H170.4721980.2761291.2384980.116*
C180.47825 (4)0.3137 (3)1.0095 (5)0.0988 (9)
H180.4926340.2893311.0155200.119*
C190.46925 (4)0.3576 (3)0.8671 (4)0.0924 (9)
H190.4776710.3640030.7776210.111*
C200.44778 (3)0.3923 (2)0.8559 (3)0.0682 (6)
H200.4415760.4212800.7594770.082*
C210.60369 (3)0.87144 (15)0.2703 (2)0.0499 (4)
C220.61242 (3)0.77039 (17)0.3228 (3)0.0573 (5)
H220.6033570.7111740.3481830.069*
C230.63484 (3)0.7577 (2)0.3373 (3)0.0714 (6)
H230.6408360.6897950.3731900.086*
C240.64812 (3)0.8442 (2)0.2995 (4)0.0905 (8)
H240.6631560.8352020.3092130.109*
C250.63926 (3)0.9448 (2)0.2467 (5)0.1052 (11)
H250.6483691.0036640.2206100.126*
C260.61691 (3)0.95940 (19)0.2322 (4)0.0810 (8)
H260.6109511.0276250.1971990.097*
C270.56458 (2)0.86275 (14)0.3473 (2)0.0426 (4)
C280.54653 (2)0.91029 (14)0.2699 (2)0.0431 (4)
C290.56739 (3)0.79950 (18)0.5004 (2)0.0601 (5)
H29A0.5674580.7204050.4775530.090*
H29B0.5556010.8165760.5675320.090*
H29C0.5809260.8203370.5558240.090*
C300.52413 (2)0.91587 (15)0.3236 (2)0.0453 (4)
N10.25201 (2)0.40700 (12)0.81303 (18)0.0450 (3)
N20.25575 (2)0.50136 (14)0.9052 (2)0.0619 (5)
N30.27670 (2)0.51714 (14)0.9151 (2)0.0565 (4)
N40.32124 (2)0.50774 (13)0.90749 (17)0.0466 (3)
H4A0.3144720.5529150.9683240.056*
N50.34366 (2)0.51120 (13)0.90730 (18)0.0468 (3)
H5A0.3499650.5593430.8481500.056*
N60.38802 (2)0.53479 (13)0.90331 (19)0.0511 (4)
N70.40897 (2)0.52009 (13)0.9023 (2)0.0536 (4)
N80.41358 (2)0.42055 (12)0.97963 (17)0.0442 (3)
N90.58066 (2)0.88693 (12)0.24842 (18)0.0469 (3)
N100.57279 (2)0.94466 (15)0.1149 (2)0.0624 (5)
N110.55203 (2)0.95812 (15)0.12926 (19)0.0578 (4)
N120.51107 (2)0.98835 (14)0.23792 (18)0.0525 (4)
H120.5163831.0337410.1695300.063*
O10.31841 (2)0.37162 (11)0.71613 (15)0.0521 (3)
O20.34779 (2)0.37352 (11)1.09605 (15)0.0516 (3)
O30.51812 (2)0.86215 (12)0.43867 (16)0.0587 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0314 (7)0.0552 (10)0.0526 (10)0.0040 (7)0.0047 (7)0.0018 (8)
C20.0383 (9)0.0689 (12)0.0812 (14)0.0015 (8)0.0024 (9)0.0135 (11)
C30.0394 (10)0.0916 (16)0.0993 (18)0.0040 (10)0.0081 (10)0.0130 (14)
C40.0346 (9)0.0895 (16)0.0970 (17)0.0123 (10)0.0010 (10)0.0048 (14)
C50.0546 (12)0.0879 (16)0.0931 (17)0.0294 (11)0.0001 (11)0.0166 (13)
C60.0505 (10)0.0772 (14)0.0755 (14)0.0169 (10)0.0081 (9)0.0221 (11)
C70.0336 (7)0.0433 (8)0.0439 (9)0.0005 (6)0.0009 (6)0.0035 (7)
C80.0317 (7)0.0466 (8)0.0413 (8)0.0007 (6)0.0023 (6)0.0003 (7)
C90.0502 (10)0.0512 (10)0.0772 (14)0.0021 (8)0.0016 (9)0.0140 (9)
C100.0330 (7)0.0472 (8)0.0399 (8)0.0024 (6)0.0025 (6)0.0050 (7)
C110.0337 (7)0.0514 (9)0.0379 (8)0.0059 (7)0.0032 (6)0.0044 (7)
C120.0325 (7)0.0501 (9)0.0389 (8)0.0047 (6)0.0016 (6)0.0018 (7)
C130.0343 (7)0.0482 (9)0.0392 (8)0.0029 (6)0.0030 (6)0.0029 (7)
C140.0502 (10)0.0510 (10)0.0634 (12)0.0016 (8)0.0080 (8)0.0086 (9)
C150.0332 (8)0.0532 (10)0.0629 (11)0.0023 (7)0.0063 (7)0.0082 (8)
C160.0448 (10)0.0916 (16)0.0760 (15)0.0142 (10)0.0014 (10)0.0094 (12)
C170.0512 (12)0.117 (2)0.120 (2)0.0285 (14)0.0035 (14)0.0139 (18)
C180.0447 (12)0.105 (2)0.147 (3)0.0245 (13)0.0095 (15)0.017 (2)
C190.0521 (12)0.112 (2)0.116 (2)0.0062 (13)0.0330 (14)0.0272 (18)
C200.0500 (10)0.0825 (14)0.0735 (14)0.0001 (10)0.0175 (10)0.0121 (11)
C210.0314 (7)0.0540 (10)0.0641 (11)0.0051 (7)0.0016 (7)0.0039 (8)
C220.0462 (9)0.0574 (11)0.0679 (12)0.0101 (8)0.0002 (8)0.0007 (9)
C230.0505 (11)0.0766 (14)0.0860 (16)0.0242 (10)0.0061 (10)0.0014 (12)
C240.0347 (10)0.0980 (18)0.138 (2)0.0130 (11)0.0053 (12)0.0087 (17)
C250.0391 (11)0.0823 (17)0.195 (3)0.0061 (11)0.0125 (15)0.0065 (19)
C260.0388 (10)0.0608 (12)0.144 (2)0.0033 (9)0.0096 (12)0.0089 (14)
C270.0355 (7)0.0455 (8)0.0471 (9)0.0008 (6)0.0045 (7)0.0002 (7)
C280.0320 (7)0.0529 (9)0.0445 (9)0.0021 (7)0.0036 (6)0.0050 (7)
C290.0586 (11)0.0672 (12)0.0548 (11)0.0111 (9)0.0057 (9)0.0127 (9)
C300.0321 (7)0.0576 (10)0.0465 (9)0.0072 (7)0.0048 (7)0.0007 (8)
N10.0315 (6)0.0494 (8)0.0542 (8)0.0036 (6)0.0034 (6)0.0026 (6)
N20.0357 (7)0.0674 (10)0.0834 (12)0.0037 (7)0.0106 (7)0.0255 (9)
N30.0338 (7)0.0651 (9)0.0712 (11)0.0041 (6)0.0081 (7)0.0212 (8)
N40.0272 (6)0.0632 (9)0.0496 (8)0.0012 (6)0.0034 (6)0.0075 (7)
N50.0265 (6)0.0646 (9)0.0494 (8)0.0048 (6)0.0024 (6)0.0076 (7)
N60.0341 (7)0.0573 (9)0.0622 (10)0.0013 (6)0.0047 (6)0.0124 (7)
N70.0339 (7)0.0572 (9)0.0702 (10)0.0026 (6)0.0076 (7)0.0125 (8)
N80.0332 (6)0.0499 (8)0.0495 (8)0.0001 (6)0.0040 (6)0.0014 (6)
N90.0321 (6)0.0553 (8)0.0535 (8)0.0055 (6)0.0039 (6)0.0077 (7)
N100.0353 (7)0.0872 (12)0.0656 (10)0.0123 (7)0.0118 (7)0.0286 (9)
N110.0325 (7)0.0834 (11)0.0582 (10)0.0094 (7)0.0094 (6)0.0211 (8)
N120.0261 (6)0.0760 (10)0.0563 (9)0.0002 (6)0.0091 (6)0.0088 (8)
O10.0395 (6)0.0617 (8)0.0555 (7)0.0077 (5)0.0056 (5)0.0080 (6)
O20.0408 (6)0.0638 (8)0.0507 (7)0.0097 (5)0.0077 (5)0.0071 (6)
O30.0441 (6)0.0733 (9)0.0598 (8)0.0107 (6)0.0123 (6)0.0114 (7)
Geometric parameters (Å, º) top
C1—C21.366 (3)C18—C191.375 (4)
C1—C61.371 (3)C18—H180.9300
C1—N11.4403 (19)C19—C201.383 (3)
C2—C31.389 (3)C19—H190.9300
C2—H20.9300C20—H200.9300
C3—C41.364 (3)C21—C261.373 (3)
C3—H30.9300C21—C221.377 (3)
C4—C51.363 (3)C21—N91.4302 (19)
C4—H40.9300C22—C231.386 (3)
C5—C61.387 (3)C22—H220.9300
C5—H50.9300C23—C241.362 (4)
C6—H60.9300C23—H230.9300
C7—N11.3486 (19)C24—C251.377 (4)
C7—C81.374 (2)C24—H240.9300
C7—C91.479 (2)C25—C261.384 (3)
C8—N31.351 (2)C25—H250.9300
C8—C101.474 (2)C26—H260.9300
C9—H9A0.9600C27—N91.350 (2)
C9—H9B0.9600C27—C281.372 (2)
C9—H9C0.9600C27—C291.474 (2)
C10—O11.2217 (19)C28—N111.355 (2)
C10—N41.348 (2)C28—C301.474 (2)
C11—O21.2195 (19)C29—H29A0.9600
C11—N51.353 (2)C29—H29B0.9600
C11—C121.476 (2)C29—H29C0.9600
C12—N61.357 (2)C30—O31.221 (2)
C12—C131.374 (2)C30—N121.351 (2)
C13—N81.3505 (19)N1—N21.369 (2)
C13—C141.484 (2)N2—N31.3003 (19)
C14—H14A0.9600N4—N51.3802 (17)
C14—H14B0.9600N4—H4A0.8600
C14—H14C0.9600N5—H5A0.8600
C15—C161.366 (3)N6—N71.3019 (18)
C15—C201.382 (3)N7—N81.368 (2)
C15—N81.434 (2)N9—N101.365 (2)
C16—C171.380 (3)N10—N111.2994 (18)
C16—H160.9300N12—N12i1.388 (2)
C17—C181.368 (4)N12—H120.8600
C17—H170.9300
C2—C1—C6121.10 (17)C20—C19—H19119.8
C2—C1—N1118.70 (15)C15—C20—C19118.5 (2)
C6—C1—N1120.19 (16)C15—C20—H20120.8
C1—C2—C3118.84 (19)C19—C20—H20120.8
C1—C2—H2120.6C26—C21—C22120.80 (17)
C3—C2—H2120.6C26—C21—N9117.95 (16)
C4—C3—C2120.5 (2)C22—C21—N9121.21 (16)
C4—C3—H3119.7C21—C22—C23119.38 (19)
C2—C3—H3119.7C21—C22—H22120.3
C5—C4—C3120.11 (19)C23—C22—H22120.3
C5—C4—H4119.9C24—C23—C22120.4 (2)
C3—C4—H4119.9C24—C23—H23119.8
C4—C5—C6120.2 (2)C22—C23—H23119.8
C4—C5—H5119.9C23—C24—C25119.84 (19)
C6—C5—H5119.9C23—C24—H24120.1
C1—C6—C5119.2 (2)C25—C24—H24120.1
C1—C6—H6120.4C24—C25—C26120.7 (2)
C5—C6—H6120.4C24—C25—H25119.7
N1—C7—C8103.20 (14)C26—C25—H25119.7
N1—C7—C9124.85 (14)C21—C26—C25118.9 (2)
C8—C7—C9131.95 (14)C21—C26—H26120.5
N3—C8—C7109.91 (13)C25—C26—H26120.5
N3—C8—C10121.97 (14)N9—C27—C28103.39 (14)
C7—C8—C10128.07 (14)N9—C27—C29125.11 (15)
C7—C9—H9A109.5C28—C27—C29131.50 (15)
C7—C9—H9B109.5N11—C28—C27109.76 (13)
H9A—C9—H9B109.5N11—C28—C30121.58 (15)
C7—C9—H9C109.5C27—C28—C30128.64 (15)
H9A—C9—H9C109.5C27—C29—H29A109.5
H9B—C9—H9C109.5C27—C29—H29B109.5
O1—C10—N4123.41 (14)H29A—C29—H29B109.5
O1—C10—C8122.48 (15)C27—C29—H29C109.5
N4—C10—C8114.08 (14)H29A—C29—H29C109.5
O2—C11—N5123.48 (14)H29B—C29—H29C109.5
O2—C11—C12122.96 (15)O3—C30—N12123.03 (15)
N5—C11—C12113.53 (14)O3—C30—C28122.77 (16)
N6—C12—C13109.89 (13)N12—C30—C28114.16 (14)
N6—C12—C11121.82 (14)C7—N1—N2111.19 (12)
C13—C12—C11128.28 (15)C7—N1—C1130.57 (14)
N8—C13—C12103.27 (14)N2—N1—C1118.15 (13)
N8—C13—C14125.91 (14)N3—N2—N1106.73 (13)
C12—C13—C14130.79 (14)N2—N3—C8108.97 (14)
C13—C14—H14A109.5C10—N4—N5120.00 (13)
C13—C14—H14B109.5C10—N4—H4A120.0
H14A—C14—H14B109.5N5—N4—H4A120.0
C13—C14—H14C109.5C11—N5—N4119.44 (13)
H14A—C14—H14C109.5C11—N5—H5A120.3
H14B—C14—H14C109.5N4—N5—H5A120.3
C16—C15—C20121.42 (18)N7—N6—C12108.70 (14)
C16—C15—N8120.36 (16)N6—N7—N8106.98 (13)
C20—C15—N8118.19 (18)C13—N8—N7111.16 (13)
C15—C16—C17119.3 (2)C13—N8—C15130.57 (15)
C15—C16—H16120.4N7—N8—C15118.25 (13)
C17—C16—H16120.4C27—N9—N10111.01 (13)
C18—C17—C16120.3 (3)C27—N9—C21130.64 (15)
C18—C17—H17119.8N10—N9—C21118.03 (14)
C16—C17—H17119.8N11—N10—N9107.05 (13)
C17—C18—C19120.1 (2)N10—N11—C28108.78 (14)
C17—C18—H18120.0C30—N12—N12i118.92 (14)
C19—C18—H18120.0C30—N12—H12120.5
C18—C19—C20120.5 (2)N12i—N12—H12120.5
C18—C19—H19119.8
C10—N4—N5—C1183.4 (2)C30—N12—N12i—C30i86.4 (3)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O1ii0.862.242.9412 (19)139
N5—H5A···O2iii0.862.232.9395 (19)140
N12—H12···O3iv0.862.283.098 (2)158
Symmetry codes: (ii) x, y+1, z+1/2; (iii) x, y+1, z1/2; (iv) x, y+2, z1/2.
 

Footnotes

Additional corresponding author, e-mail: kariukib@cardiff.ac.uk.

Funding information

The project was supported by King Saud University, Deanship of Scientific Research, Research Chairs.

References

First citationAbdel-Wahab, B. F., Alotaibi, M. H. & El-Hiti, G. A. (2017). Lett. Org. Chem. 14, 591–596.  CAS Google Scholar
First citationCambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMogilaiah, K., Prashanthi, M. & Reddy, G. R. (2003). Synth. Commun. 33, 3741–3745.  Web of Science CrossRef CAS Google Scholar
First citationNikolić, S., Ćirić, L., Roller, A., Lukeš, V., Arion, V. B. & Grgurić-Šipka, S. (2017). New J. Chem. 41, 6857–6865.  Google Scholar
First citationPrakash, O., Sharma, V. & Sadana, A. (1997). Synth. Commun. 27, 3371–3377.  CrossRef CAS Web of Science Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds