organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-Fluoro-5-nitro­aniline

CROSSMARK_Color_square_no_text.svg

aR&D centre, Bharathiyar University, Coimbatore 641 046, Tamil Nadu, India, bDepartment of Chemistry, Government Arts College, Tiruvannamalai 606 603, Tamil Nadu, India, cDepartment of Physics, The New College (Autonomous), Chennai 600 014, Tamil Nadu, India, and dDepartment of Physics, Government Arts College, Tiruvannamalai 606 603, Tamil Nadu, India
*Correspondence e-mail: mnizam.new@gmail.com, aruna2075@yahoo.co.in

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 21 February 2018; accepted 13 March 2018; online 23 March 2018)

In the title compound, C6H5FN2O2, the dihedral angle between the nitro group and the benzene ring is 3.68 (2)°, and an intra­molecular N—H⋯F hydrogen bond is observed. The crystal packing is consolidated by C—H⋯O and N—H⋯O hydrogen bonds; together, these generate [110] double chains.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound can be utilized to synthesize dyes and pigments (Qi et al., 2009[Qi, L., Pang, S.-P. & Sun, C.-H. (2009). Chin. J. Energ. Mater. 17, 4-6.]; Hu et al., 2010[Hu, S.-W., Rong, Z.-M. & Liu, Y.-C. (2010). Fine Chem. 27, 170-173.]) but its crystal structure has not yet been determined and is reported here.

The mol­ecular conformation is essentially planar (Fig. 1[link]), with a maximum deviation of 0.062 (2) Å for O2. The dihedral angle between the nitro group and the benzene ring is 3.68 (2)°. The C—N bond distance [1.379 (3) Å] of the NH2 group is short for a C—N single bond, which may indicate a significant contribution from the imino resonance form to the structure. A weak intra­molecular N—H⋯F hydrogen bond is observed (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯F1 0.85 (3) 2.37 (3) 2.718 (3) 105 (2)
N2—H2B⋯O1i 0.85 (3) 2.45 (3) 3.270 (3) 162 (2)
C6—H6⋯O2ii 0.93 2.51 3.348 (3) 150
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{5\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+3, -z+2.
[Figure 1]
Figure 1
The mol­ecular structure with displacement ellipsoids drawn at the 50% probability level.

The crystal packing is consolidated by C—H⋯O and N—H⋯O hydrogen bonds (Fig. 2[link]). The aromatic carbon (C6) atom inter­acts with the nitro group O atom to generate an R22(10) loop. The resulting dimeric units are connected via N—H⋯O hydrogen bonds, forming an R44(16) ring motif. Taken together, [110] double chains arise.

[Figure 2]
Figure 2
The crystal packing of the title compound, viewed down [010]. The hydrogen bonds are shown as dashed lines.

Synthesis and crystallization

2-Fluoro-5-nitro­aniline (4 g) was dissolved in the minimum qu­antity of ethanol and sonicated for 1 h and then placed in an microwave oven for about ten minutes. The resulting paste-like material was dissolved in 10 ml of ethanol and brown blocks were recovered after 48 h as the solvent evaporated.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C6H5FN2O2
Mr 156.12
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 12.1967 (9), 3.7559 (2), 14.4539 (10)
β (°) 102.143 (3)
V3) 647.31 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.14
Crystal size (mm) 0.25 × 0.20 × 0.15
 
Data collection
Diffractometer Bruker KappaCCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.666, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 7982, 1124, 731
Rint 0.040
(sin θ/λ)max−1) 0.594
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.106, 1.09
No. of reflections 1124
No. of parameters 108
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.15, −0.19
Computer programs: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

2-Fluoro-5-nitroaniline top
Crystal data top
C6H5FN2O2F(000) = 320
Mr = 156.12Dx = 1.602 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.1967 (9) ÅCell parameters from 2057 reflections
b = 3.7559 (2) Åθ = 2.5–28.0°
c = 14.4539 (10) ŵ = 0.14 mm1
β = 102.143 (3)°T = 296 K
V = 647.31 (7) Å3Block, brown
Z = 40.25 × 0.20 × 0.15 mm
Data collection top
Bruker KappaCCD
diffractometer
1124 independent reflections
Radiation source: fine-focus sealed tube731 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω and φ scanθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1414
Tmin = 0.666, Tmax = 0.746k = 44
7982 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0453P)2 + 0.1287P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
1124 reflectionsΔρmax = 0.15 e Å3
108 parametersΔρmin = 0.19 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The N-bound H atoms were located in a difference Fourier map and refined with distance restraints: N—H = 0.89 (2) Å. The C-bound H atoms were positioned geometrically and refined using a riding model: C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.24514 (17)1.0767 (5)0.94448 (14)0.0370 (5)
C20.16370 (17)0.9076 (5)0.98328 (16)0.0423 (6)
C30.17626 (19)0.8268 (5)1.07728 (16)0.0430 (6)
H30.11870.71571.09950.052*
C40.27553 (18)0.9127 (5)1.13846 (15)0.0402 (6)
H40.28690.86001.20260.048*
C50.35721 (17)1.0787 (5)1.10151 (13)0.0327 (5)
C60.34464 (17)1.1593 (5)1.00692 (13)0.0343 (5)
H60.40271.26870.98500.041*
N10.46159 (16)1.1836 (4)1.16606 (12)0.0439 (5)
N20.2278 (2)1.1426 (7)0.84863 (14)0.0563 (6)
O10.47362 (16)1.1064 (6)1.24921 (11)0.0826 (7)
O20.53201 (14)1.3472 (5)1.13505 (11)0.0627 (5)
F10.06598 (11)0.8233 (4)0.92311 (10)0.0660 (5)
H2B0.158 (2)1.155 (7)0.8230 (19)0.074 (9)*
H2A0.271 (2)1.293 (7)0.830 (2)0.083 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0376 (13)0.0370 (12)0.0353 (11)0.0103 (11)0.0055 (10)0.0004 (10)
C20.0295 (13)0.0389 (12)0.0552 (14)0.0049 (10)0.0015 (11)0.0096 (11)
C30.0391 (14)0.0358 (12)0.0597 (15)0.0010 (11)0.0231 (12)0.0013 (10)
C40.0499 (15)0.0358 (12)0.0380 (11)0.0044 (11)0.0164 (11)0.0006 (10)
C50.0341 (12)0.0294 (10)0.0345 (11)0.0040 (9)0.0067 (9)0.0024 (9)
C60.0343 (12)0.0341 (11)0.0364 (11)0.0040 (10)0.0117 (10)0.0001 (9)
N10.0433 (12)0.0475 (11)0.0387 (11)0.0041 (10)0.0035 (9)0.0031 (9)
N20.0491 (15)0.0750 (16)0.0400 (12)0.0034 (14)0.0016 (11)0.0038 (11)
O10.0832 (15)0.1230 (16)0.0340 (10)0.0218 (12)0.0053 (9)0.0090 (11)
O20.0414 (10)0.0848 (12)0.0595 (11)0.0144 (10)0.0056 (9)0.0022 (9)
F10.0375 (8)0.0796 (10)0.0755 (10)0.0046 (7)0.0001 (7)0.0135 (8)
Geometric parameters (Å, º) top
C1—N21.379 (3)C4—H40.9300
C1—C61.387 (3)C5—C61.377 (3)
C1—C21.392 (3)C5—N11.465 (3)
C2—F11.357 (2)C6—H60.9300
C2—C31.369 (3)N1—O11.215 (2)
C3—C41.379 (3)N1—O21.216 (2)
C3—H30.9300N2—H2B0.85 (3)
C4—C51.375 (3)N2—H2A0.85 (3)
N2—C1—C6122.8 (2)C4—C5—C6123.2 (2)
N2—C1—C2121.0 (2)C4—C5—N1118.56 (18)
C6—C1—C2116.15 (19)C6—C5—N1118.27 (18)
F1—C2—C3119.0 (2)C5—C6—C1119.77 (19)
F1—C2—C1116.9 (2)C5—C6—H6120.1
C3—C2—C1124.1 (2)C1—C6—H6120.1
C2—C3—C4119.0 (2)O1—N1—O2122.5 (2)
C2—C3—H3120.5O1—N1—C5118.28 (19)
C4—C3—H3120.5O2—N1—C5119.18 (18)
C5—C4—C3117.85 (19)C1—N2—H2B111.9 (18)
C5—C4—H4121.1C1—N2—H2A117 (2)
C3—C4—H4121.1H2B—N2—H2A117 (3)
N2—C1—C2—F12.2 (3)C4—C5—C6—C11.0 (3)
C6—C1—C2—F1179.70 (16)N1—C5—C6—C1177.43 (16)
N2—C1—C2—C3178.47 (19)N2—C1—C6—C5178.51 (18)
C6—C1—C2—C31.0 (3)C2—C1—C6—C51.1 (3)
F1—C2—C3—C4179.95 (17)C4—C5—N1—O13.0 (3)
C1—C2—C3—C40.7 (3)C6—C5—N1—O1178.58 (19)
C2—C3—C4—C50.4 (3)C4—C5—N1—O2176.16 (18)
C3—C4—C5—C60.6 (3)C6—C5—N1—O22.3 (3)
C3—C4—C5—N1177.80 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···F10.85 (3)2.37 (3)2.718 (3)105 (2)
N2—H2B···O1i0.85 (3)2.45 (3)3.270 (3)162 (2)
C6—H6···O2ii0.932.513.348 (3)150
Symmetry codes: (i) x1/2, y+5/2, z1/2; (ii) x+1, y+3, z+2.
 

Acknowledgements

The authors are grateful to the SAIF, IIT, Madras, India, for the data collection.

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHu, S.-W., Rong, Z.-M. & Liu, Y.-C. (2010). Fine Chem. 27, 170–173.  CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationQi, L., Pang, S.-P. & Sun, C.-H. (2009). Chin. J. Energ. Mater. 17, 4–6.  CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds