organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2,2′-Disulfanediylbis(pyridine N-oxide)–hydrogen peroxide (1/1)

CROSSMARK_Color_square_no_text.svg

aGeorgia Southern University, 11935 Abercorn Street, Savannah, GA 31419, USA
*Correspondence e-mail: wlynch@georgiasouthern.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 30 January 2018; accepted 23 February 2018; online 2 March 2018)

In the title co-crystal, C10H8N2O2S2·H2O2, both mol­ecules are generated by crystallographic twofold symmetry; the dihedral angle between the pyridine rings is 101.16 (9)°. In the crystal, the components are linked by O—H⋯O hydrogen bonds to generate [010] chains of alternating 2,2′-di­thio­bis­(pyridine N-oxide) and hydrogen peroxide mol­ecules. The structure was refined as a two-component inversion twin.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The anti­fungal and anti­bacterial properties of the bis­pyri­thione family have made the compound 2,2′-di­thio­bis­(pyridine N-oxide) of inter­est for many years (O'Donnell et al., 2009[O'Donnell, G., Poeschl, R., Zimhony, O., Gunaratnam, M., Moreira, J. B. C., Neidle, S., Evangelopoulos, D., Bhakta, S., Malkinson, J. P., Boshoff, H. I., Lenaerts, A. & Gibbons, S. (2009). J. Nat. Prod. 72, 360-365.]; Paulus, 1993[Paulus, W. (1993). In Microbicides for the Protection of Materials: A Handbook. London: Chapman and Hall.]; Zhang et al., 2001[Zhang, Y. P., Fan, L. Y. & Tang, N. (2001). Inorg. Chem. 17, 427-429.]). A number of reports on the improved synthesis of the di­thio­bis compound have also been reported (e.g. Li et al., 2012[Li, S., Li, R. L., Zhang, Z., Zhu, K. & Wang, G. (2012). Adv. Mater. Res. 554-556, 868-873.]).

The title compound, C10H8N2O2S2.H2O2, is a co-crystal (Fig. 1[link]) formed via a hydrogen-bonding network inter­linking the di­thio­bis­(pyridine N-oxide) mol­ecules with a C22(12) assembly. The hydrogen bond is formed between the peroxide OH moiety and the pyridine N-oxide O atom with O⋯O = 2.672 (3) Å (Table 1[link]). The hydrogen bonding network generates [010] chains (Fig. 2[link]) of alternating di­thio­bis­(pyridine N-oxide) and hydrogen peroxide mol­ecules. The O2—O2ii and S1—S1i bond distances are 1.454 (4) and 2.067 (2) Å, respectively [symmetry codes: (i) 1 – x, –y, z; (ii) 1–x, 1 – y, z]. Both the hydrogen peroxide and the di­sulfide mol­ecules are generated by crystallographic twofold symmetry. The torsion angle between the pyridine N-oxide rings is slightly greater than perpendicular at 101.16 (9)°. The torsion angle C1—S1—S1i—C1i that bridges the pyridine rings is slighly less at 100.43 (13)°.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1 0.95 (3) 1.73 (3) 2.672 (3) 174 (3)
[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (i) −x + 1, −y + 1, z; (ii) 1 − x, 1 − y, z.]
[Figure 2]
Figure 2
Crystal packing diagram of title compound viewed along [001]. Hydrogen bonds are colored red.

The hydrogen peroxide H2A—O2—O2ii—H2Aii torsion angle is equal to 133.86 (7)°. Similar compounds have been observed to have this torsion angle much closer to 90°. For example the hydrogen peroxide torsion angle in the (Z)-N-benzyl­idene-1-phenyl-methanamine oxide solvate is reported to be 88° (Churakov et al., 2017[Churakov, A. V., Prikhodchenko, P. V., Medvedev, A. G. & Mikhaylov, A. A. (2017). Acta Cryst. E73, 1666-1669.]) while a piperizine N-oxide derivative (Ravikumar et al., 2005[Ravikumar, K., Sridhar, B., Manjunatha, S. G. & Thomas, S. (2005). Acta Cryst. E61, o2515-o2517.]) is found to be 90°. Similar torsion angles of 101° and lower have been observed in phosphine oxide hydrogen peroxide adducts (see for example Ahn et al., 2015[Ahn, S. H., Cluff, K. J., Bhuvanesh, N. & Blümel, J. (2015). Angew. Chem. Int. Ed. 54, 13341-13345.]). This large angle can be attributed to the lowest energy confirmation imposed by the solid-state supra­molecular structure where the O1⋯O2—O2ii⋯O1ii pseudo torsion angle (via the hydrogen bonds) is 140.06 (6)°.

Synthesis and crystallization

The title compound was synthesized by modification of the literature procedure (Bernstein & Losee, 1956[Bernstein, J. & Losee, K. A. (1956). US2742476[P]: 1956-04-17.]): 2.0 g of 2-pyridine­thiol-N-oxide was dissolved in 15 ml of water. To this was slowly added 1.9 ml of 30% hydrogen peroxide. The reaction mixture was stirred for 1 h and a white solid was collected by filtration. The white solid was determined to be 2,2′-di­thio­bis­(pyridine N-oxide) as confirmed by 1H NMR and melting point. The filtrate was allowed to stand for 4 days, at which time colorless prisms of the title compound were collected in a yield of 12%.

Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 2[link]. The structure was refined with inversion twinning as the Flack parameter indicated racemic twinning.

Table 2
Experimental details

Crystal data
Chemical formula C10H8N2O2S2·H2O2
Mr 286.32
Crystal system, space group Orthorhombic, P21212
Temperature (K) 173
a, b, c (Å) 11.232 (2), 12.283 (3), 4.401 (1)
V3) 607.2 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.45
Crystal size (mm) 0.60 × 0.10 × 0.10
 
Data collection
Diffractometer Rigaku XtaLAB mini CCD
Absorption correction Multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.890, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 6396, 1386, 1316
Rint 0.045
(sin θ/λ)max−1) 0.648
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.059, 1.05
No. of reflections 1386
No. of parameters 87
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.13, −0.18
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.36 (10)
Computer programs: CrystalClear (Rigaku, 2009[Rigaku (2009). CrystalClear. Rigaku Corporation, Tokyo, Japan.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrystalClear (Rigaku, 2009); cell refinement: CrystalClear (Rigaku, 2009); data reduction: CrystalClear (Rigaku, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

2,2'-(Disulfanediyl)bis(pyridine N-oxide)–hydrogen peroxide (1/1) top
Crystal data top
C10H8N2O2S2·H2O2Dx = 1.566 Mg m3
Mr = 286.32Mo Kα radiation, λ = 0.71075 Å
Orthorhombic, P21212Cell parameters from 1941 reflections
a = 11.232 (2) Åθ = 2.5–27.5°
b = 12.283 (3) ŵ = 0.45 mm1
c = 4.401 (1) ÅT = 173 K
V = 607.2 (2) Å3Prism, colorless
Z = 20.60 × 0.10 × 0.10 mm
F(000) = 296
Data collection top
Rigaku XtaLAB mini CCD
diffractometer
1386 independent reflections
Radiation source: Sealed Tube1316 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.045
Detector resolution: 13.6612 pixels mm-1θmax = 27.4°, θmin = 2.5°
profile data from ω–scansh = 1414
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
k = 1515
Tmin = 0.890, Tmax = 1.000l = 55
6396 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.024 w = 1/[σ2(Fo2) + (0.025P)2 + 0.1P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.059(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.13 e Å3
1386 reflectionsΔρmin = 0.18 e Å3
87 parametersAbsolute structure: Refined as an inversion twin
0 restraintsAbsolute structure parameter: 0.36 (10)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component inversion twin. Carbon-bound H-atoms were placed in calculated positions (C—H = 0.95 Å) and were included in the refinement in the riding model approximation,with Uiso(H) set to 1.2Uequiv(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.53255 (4)0.07871 (4)0.37729 (11)0.02740 (14)
O10.56020 (13)0.28267 (12)0.5366 (4)0.0341 (4)
N10.46320 (15)0.24721 (13)0.6798 (4)0.0262 (4)
C10.43106 (16)0.14203 (15)0.6311 (5)0.0238 (4)
C20.32900 (17)0.10057 (17)0.7678 (5)0.0285 (4)
H20.3050690.0293910.7296310.034*
C30.2635 (2)0.16604 (18)0.9608 (5)0.0331 (5)
H30.1954530.1390371.0548220.040*
C40.2999 (2)0.27245 (19)1.0134 (5)0.0352 (5)
H40.2566190.3168321.1441950.042*
C50.40004 (19)0.31208 (17)0.8720 (6)0.0341 (5)
H50.4246550.3832440.9075840.041*
O20.56329 (15)0.48760 (13)0.3328 (5)0.0470 (5)
H2A0.559 (3)0.417 (2)0.416 (6)0.067 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0285 (2)0.0256 (2)0.0281 (2)0.00163 (19)0.0033 (2)0.0034 (2)
O10.0291 (8)0.0270 (8)0.0460 (9)0.0033 (6)0.0009 (7)0.0068 (7)
N10.0260 (8)0.0239 (8)0.0286 (8)0.0002 (7)0.0048 (7)0.0020 (7)
C10.0246 (9)0.0228 (9)0.0241 (9)0.0013 (7)0.0048 (8)0.0020 (8)
C20.0276 (10)0.0289 (10)0.0290 (10)0.0025 (8)0.0022 (8)0.0004 (9)
C30.0279 (10)0.0403 (13)0.0310 (12)0.0019 (9)0.0013 (9)0.0000 (9)
C40.0366 (12)0.0379 (13)0.0312 (11)0.0110 (10)0.0020 (9)0.0083 (10)
C50.0401 (11)0.0253 (10)0.0369 (11)0.0033 (8)0.0075 (11)0.0054 (10)
O20.0433 (9)0.0287 (9)0.0688 (11)0.0072 (7)0.0155 (9)0.0110 (9)
Geometric parameters (Å, º) top
S1—C11.775 (2)C3—C41.389 (4)
S1—S1i2.067 (2)C3—H30.9300
O1—N11.332 (2)C4—C51.374 (3)
N1—C11.358 (3)C4—H40.9300
N1—C51.362 (3)C5—H50.9300
C1—C21.391 (3)O2—O2ii1.454 (4)
C2—C31.382 (3)O2—H2A0.95 (3)
C2—H20.9300
C1—S1—S1i100.52 (9)C2—C3—C4119.5 (2)
O1—N1—C1117.00 (16)C2—C3—H3120.2
O1—N1—C5121.92 (17)C4—C3—H3120.2
C1—N1—C5121.07 (19)C5—C4—C3119.9 (2)
N1—C1—C2119.93 (18)C5—C4—H4120.0
N1—C1—S1110.19 (15)C3—C4—H4120.0
C2—C1—S1129.85 (16)N1—C5—C4120.0 (2)
C3—C2—C1119.5 (2)N1—C5—H5120.0
C3—C2—H2120.3C4—C5—H5120.0
C1—C2—H2120.3O2ii—O2—H2A98.1 (18)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O10.95 (3)1.73 (3)2.672 (3)174 (3)
 

Funding information

The authors acknowledge financial support from Armstrong State University.

References

First citationAhn, S. H., Cluff, K. J., Bhuvanesh, N. & Blümel, J. (2015). Angew. Chem. Int. Ed. 54, 13341–13345.  Web of Science CSD CrossRef CAS Google Scholar
First citationBernstein, J. & Losee, K. A. (1956). US2742476[P]: 1956-04-17.  Google Scholar
First citationChurakov, A. V., Prikhodchenko, P. V., Medvedev, A. G. & Mikhaylov, A. A. (2017). Acta Cryst. E73, 1666–1669.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLi, S., Li, R. L., Zhang, Z., Zhu, K. & Wang, G. (2012). Adv. Mater. Res. 554–556, 868–873.  CrossRef CAS Google Scholar
First citationO'Donnell, G., Poeschl, R., Zimhony, O., Gunaratnam, M., Moreira, J. B. C., Neidle, S., Evangelopoulos, D., Bhakta, S., Malkinson, J. P., Boshoff, H. I., Lenaerts, A. & Gibbons, S. (2009). J. Nat. Prod. 72, 360–365.  CAS Google Scholar
First citationPaulus, W. (1993). In Microbicides for the Protection of Materials: A Handbook. London: Chapman and Hall.  Google Scholar
First citationRavikumar, K., Sridhar, B., Manjunatha, S. G. & Thomas, S. (2005). Acta Cryst. E61, o2515–o2517.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2009). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhang, Y. P., Fan, L. Y. & Tang, N. (2001). Inorg. Chem. 17, 427–429.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds