organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N-[(1R,2S)-1-(4-Bromo­phen­yl)-2-fluoro-3-(2-methyl­phenyl)-3-oxoprop­yl]-4-nitro­benzamide

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, People's Republic of China
*Correspondence e-mail: ya.li@sues.edu.cn

Edited by K. Fejfarova, Institute of Biotechnology CAS, Czech Republic (Received 6 March 2018; accepted 20 March 2018; online 23 March 2018)

The title compound, C23H18BrFN2O4, contains two chiral carbon centres and the absolute configuration has been confirmed as (1R,2S). The dihedral angles between the three phenyl rings are 12.4 (4), 34.2 (4) and 44.5 (4)°. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds into chains, which which are further connected by C—H⋯O inter­actions, generating a three dimensional network structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Fluorine is highly important in medicinal chemistry (Wang et al., 2014[Wang, J., Sánchez-Roselló, M., Aceña, J. L., del Pozo, C., Sorochinsky, A. E., Fustero, S., Soloshonok, V. A. & Liu, H. (2014). Chem. Rev. 114, 2432-2506.]). The introduction of fluorine into a bioactive mol­ecule often improves the binding affinity, metabolic stability, and bioavailability (Purser et al., 2008[Purser, S., Moore, P. R., Swallow, S. & Gouverneur, V. (2008). Chem. Soc. Rev. 37, 320-330.]). In this context, the β-fluoro­amine motif is an important structural motif and has been found in a number of drug candidates (Murray et al., 2003[Murray, T. K., Whalley, K., Robinson, C. S., Ward, M. A., Hicks, E., Lodge, D., Vandergriff, J. L., Baumbarger, P., Siuda, E., Gates, M., Ogden, A. M., Skolnick, P., Zimmerman, D. M., Nisenbaum, E. S., Bleakman, D. & O'Neill, M. J. (2003). J. Pharmacol. Exp. Ther. 306, 752-762.]; Li et al., 2016[Li, Y., Li, X., Shang, H., Chen, X. & Ren, X. (2016). J. Org. Chem. 81, 9858-9866.]). It is generally believed that a β-fluoro substitution lowers the pKa value of the neighboring amines, and can thus modulate many pharmacological properties (Morgenthaler et al., 2007[Morgenthaler, M., Schweizer, E., Hoffmann-Röder, A., Benini, F., Martin, R. E., Jaeschke, G., Wagner, B., Fischer, H., Bendels, S., Zimmerli, D., Schneider, J., Diederich, F., Kansy, M. & Müller, K. (2007). ChemMedChem, 2, 1100-1115.]).

In the title compound (Fig. 1[link]), the fluoro and amino substituents adopt an anti configuration and the absolute configuration of the two chiral carbon centres, C8 and C9, has been determined as (1R,2S). In the crystal, mol­ecules are linked by classical N—H⋯O hydrogen bonds (Table 1[link], Fig. 2[link]) into [001] chains, which which are further connected by C—H⋯O inter­actions, generating a three-dimensional network structure.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯F1 0.86 (8) 2.36 (6) 2.728 (9) 106 (5)
N1—H1A⋯O2i 0.86 (8) 2.42 (8) 3.263 (10) 166 (4)
C9—H9⋯F1ii 0.98 2.39 3.364 (8) 175
C8—H8⋯O4iii 0.98 2.50 3.387 (12) 150
C9—H9⋯O2 0.98 2.37 2.758 (9) 103
Symmetry codes: (i) x, y, z+1; (ii) x, y, z-1; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+2].
[Figure 1]
Figure 1
Mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
Inter­molecular N—H⋯O inter­actions in the title compound, shown as dashed lines.

Synthesis and crystallization

Sodium bis­(tri­methyl­sil­yl)amide (NaHMDS, 1.5 ml, 1.0 mol/l in THF) was added to a solution of 2-fluoro-1-(o-tol­yl)ethan-1-one (228 mg, 1.5 mmol), (RS)-N-(4-bromo­benzyl­idene)-2-methyl­propane-2-sulfinamide (288 mg, 1.0 mmol) and Et2O (4 ml) at 203 K. The reaction mixture was stirred for 30 min, followed by a routine work-up to give the crude condensation inter­mediate. Without further purification, the crude inter­mediate was dissolved in 5 mL HCl/MeOH (4 mol l−1) at room temperature and the mixture was stirred for 20 min. The volatile materials were removed under vacuum, followed by the addition of 4-nitro­benzoyl chloride (184 mg, 1.0 mmol), NEt3 (202 mg, 2.0 mmol) and THF (3.0 mL). After 3 h, H2O (5 ml) was added, and the quenched reaction mixture was extracted with ethyl acetate (3 × 20 mL). The combined organic layers were dried over anhydrous Na2SO4. Evaporation of the solvent under vacuum was followed by flash chromatography to give the title compound (218 mg, 45%). The resulting compound was recrystallized from ethyl acetate/hexane (1:2) to give colourless crystals.

1H NMR (400 MHz, CDCl3) δ = 8.33 (d, J = 8.0 Hz, 2H), 7.95 (d, J = 8.0 Hz, 2H), 7.48–7.54 (m, 4H), 7.28–7.34 (m, 4H), 7.21 (d, J = 8.0 Hz, 1H), 5.88 (dd, J = 48.0, 4.0 Hz, 1H), 5.74 (dd, J = 24.0, 8.0 Hz, 1H), 2.38 (s, 3H).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C23H18BrFN2O4
Mr 485.30
Crystal system, space group Orthorhombic, P21212
Temperature (K) 293
a, b, c (Å) 18.883 (3), 21.006 (3), 5.3312 (8)
V3) 2114.6 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.99
Crystal size (mm) 0.22 × 0.14 × 0.10
 
Data collection
Diffractometer Bruker SMART CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.528, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 17885, 3736, 2701
Rint 0.048
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.150, 1.13
No. of reflections 3736
No. of parameters 285
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.33, −0.36
Absolute structure Flack x determined using 848 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.008 (19)
Computer programs: SMART and SAINT (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

N-[(1R,2S)-1-(4-Bromophenyl)-2-fluoro-3-(2-methylphenyl)-3-oxopropyl]-4-nitrobenzamide top
Crystal data top
C23H18BrFN2O4Dx = 1.524 Mg m3
Mr = 485.30Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P21212Cell parameters from 1711 reflections
a = 18.883 (3) Åθ = 4.7–39.6°
b = 21.006 (3) ŵ = 1.99 mm1
c = 5.3312 (8) ÅT = 293 K
V = 2114.6 (5) Å3Prismatic, colorless
Z = 40.22 × 0.14 × 0.10 mm
F(000) = 984
Data collection top
Bruker SMART CCD area detector
diffractometer
2701 reflections with I > 2σ(I)
phi and ω scansRint = 0.048
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
θmax = 25.0°, θmin = 1.5°
Tmin = 0.528, Tmax = 0.746h = 2221
17885 measured reflectionsk = 2024
3736 independent reflectionsl = 66
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.064 w = 1/[σ2(Fo2) + (0.0302P)2 + 2.9914P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.150(Δ/σ)max < 0.001
S = 1.13Δρmax = 0.33 e Å3
3736 reflectionsΔρmin = 0.35 e Å3
285 parametersAbsolute structure: Flack x determined using 848 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.008 (19)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.36145 (6)0.99683 (5)0.9915 (3)0.1162 (5)
F10.1370 (2)0.7403 (3)1.2524 (9)0.0816 (15)
N10.2301 (4)0.6919 (4)0.9107 (14)0.0550 (17)
N20.4240 (5)0.4409 (4)1.008 (3)0.106 (3)
O10.0800 (3)0.6433 (3)1.0115 (15)0.0865 (18)
O20.2587 (3)0.6735 (3)0.5099 (13)0.0710 (15)
O30.4463 (5)0.4374 (5)1.221 (3)0.149 (4)
O40.4313 (6)0.3998 (4)0.858 (2)0.167 (5)
C10.0043 (5)0.7710 (4)0.6813 (16)0.071 (2)
H10.01170.80310.78740.085*
C20.0520 (4)0.7856 (5)0.497 (2)0.085 (3)
H20.06780.82730.47730.102*
C30.0764 (5)0.7387 (6)0.343 (2)0.087 (3)
H30.10970.74800.22000.104*
C40.0519 (5)0.6781 (5)0.370 (2)0.082 (3)
H40.06840.64670.26200.098*
C50.0032 (4)0.6617 (4)0.5536 (15)0.064 (2)
C60.0211 (3)0.7095 (4)0.7142 (15)0.0513 (19)
C70.0723 (4)0.6953 (4)0.9182 (16)0.058 (2)
C80.1210 (3)0.7495 (4)1.0053 (16)0.0534 (16)
H80.09680.79040.98450.064*
C90.1898 (4)0.7495 (3)0.8539 (13)0.0465 (17)
H90.17710.74800.67580.056*
C100.2325 (4)0.8094 (3)0.8961 (14)0.0474 (18)
C110.2781 (4)0.8167 (4)1.0955 (16)0.062 (2)
H110.28340.78401.21160.075*
C120.3163 (5)0.8729 (5)1.1241 (18)0.076 (3)
H120.34710.87761.25890.091*
C130.3085 (4)0.9206 (4)0.955 (2)0.073 (3)
C140.2650 (5)0.9136 (4)0.757 (2)0.081 (3)
H140.26070.94620.63950.097*
C150.2266 (4)0.8581 (4)0.7278 (19)0.071 (2)
H150.19630.85380.59130.085*
C160.0228 (6)0.5939 (4)0.564 (2)0.114 (4)
H16A0.00560.57100.42100.170*
H16B0.00560.57400.71480.170*
H16C0.07360.59350.56460.170*
C170.2622 (4)0.6593 (4)0.7316 (17)0.0533 (19)
C180.3041 (4)0.6024 (3)0.8126 (16)0.055 (2)
C190.3049 (5)0.5494 (4)0.663 (2)0.083 (3)
H190.27860.54890.51530.100*
C200.3442 (6)0.4969 (5)0.727 (2)0.100 (3)
H200.34400.46090.62530.120*
C210.3828 (4)0.4981 (4)0.938 (2)0.076 (3)
C220.3846 (5)0.5492 (5)1.088 (2)0.087 (3)
H220.41260.54921.23120.104*
C230.3442 (4)0.6025 (4)1.026 (2)0.075 (3)
H230.34460.63811.12990.090*
H1A0.231 (3)0.683 (3)1.068 (15)0.035 (19)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1014 (7)0.0852 (7)0.1621 (12)0.0295 (6)0.0183 (9)0.0316 (10)
F10.063 (3)0.135 (5)0.047 (3)0.006 (3)0.002 (2)0.003 (3)
N10.061 (4)0.065 (5)0.039 (4)0.016 (3)0.006 (3)0.002 (3)
N20.099 (6)0.060 (6)0.160 (11)0.023 (5)0.035 (9)0.036 (8)
O10.092 (4)0.072 (4)0.096 (5)0.005 (3)0.010 (5)0.024 (4)
O20.085 (4)0.074 (4)0.053 (4)0.017 (3)0.002 (4)0.001 (4)
O30.124 (7)0.131 (8)0.192 (12)0.057 (6)0.012 (8)0.065 (9)
O40.218 (11)0.070 (6)0.212 (12)0.062 (7)0.062 (9)0.029 (7)
C10.070 (5)0.070 (6)0.073 (6)0.012 (5)0.018 (5)0.010 (4)
C20.080 (5)0.088 (6)0.088 (7)0.034 (5)0.019 (6)0.005 (7)
C30.061 (5)0.119 (9)0.081 (7)0.017 (6)0.019 (5)0.009 (7)
C40.066 (5)0.096 (8)0.083 (7)0.022 (5)0.016 (5)0.012 (6)
C50.066 (4)0.063 (5)0.064 (6)0.016 (4)0.007 (5)0.001 (4)
C60.040 (4)0.056 (5)0.058 (5)0.000 (3)0.002 (3)0.003 (4)
C70.051 (4)0.057 (5)0.065 (6)0.008 (4)0.002 (4)0.002 (4)
C80.054 (4)0.063 (4)0.044 (4)0.011 (3)0.009 (4)0.001 (4)
C90.053 (4)0.049 (4)0.037 (4)0.006 (3)0.005 (3)0.000 (3)
C100.050 (4)0.051 (4)0.042 (4)0.008 (3)0.004 (3)0.004 (3)
C110.068 (5)0.062 (5)0.057 (6)0.003 (4)0.006 (4)0.004 (4)
C120.066 (5)0.099 (7)0.063 (6)0.002 (5)0.004 (5)0.022 (6)
C130.064 (5)0.072 (6)0.081 (7)0.005 (4)0.012 (5)0.009 (6)
C140.096 (6)0.063 (6)0.084 (7)0.001 (5)0.004 (6)0.011 (5)
C150.072 (5)0.068 (6)0.073 (6)0.001 (4)0.018 (5)0.008 (5)
C160.162 (11)0.062 (6)0.117 (10)0.005 (6)0.027 (8)0.015 (6)
C170.048 (4)0.053 (5)0.059 (6)0.005 (3)0.002 (4)0.000 (4)
C180.054 (4)0.040 (4)0.070 (6)0.008 (3)0.012 (4)0.001 (4)
C190.098 (7)0.048 (5)0.103 (8)0.005 (5)0.016 (6)0.011 (5)
C200.129 (9)0.043 (5)0.129 (10)0.007 (6)0.005 (8)0.012 (7)
C210.069 (5)0.051 (5)0.108 (9)0.011 (4)0.027 (5)0.015 (6)
C220.074 (6)0.085 (7)0.103 (9)0.021 (5)0.001 (5)0.011 (6)
C230.074 (5)0.060 (5)0.091 (7)0.014 (4)0.006 (6)0.012 (5)
Geometric parameters (Å, º) top
Br1—C131.897 (8)C9—H90.9800
F1—C81.365 (9)C10—C151.366 (11)
N1—C171.323 (11)C10—C111.377 (11)
N1—C91.460 (9)C11—C121.391 (12)
N1—H1A0.86 (8)C11—H110.9300
N2—O41.187 (16)C12—C131.357 (13)
N2—O31.209 (17)C12—H120.9300
N2—C211.478 (12)C13—C141.348 (14)
O1—C71.209 (9)C14—C151.382 (12)
O2—C171.220 (10)C14—H140.9300
C1—C21.369 (12)C15—H150.9300
C1—C61.388 (11)C16—H16A0.9600
C1—H10.9300C16—H16B0.9600
C2—C31.362 (13)C16—H16C0.9600
C2—H20.9300C17—C181.497 (10)
C3—C41.362 (13)C18—C231.367 (12)
C3—H30.9300C18—C191.372 (11)
C4—C51.386 (12)C19—C201.371 (13)
C4—H40.9300C19—H190.9300
C5—C61.397 (10)C20—C211.343 (14)
C5—C161.507 (12)C20—H200.9300
C6—C71.486 (11)C21—C221.337 (14)
C7—C81.535 (10)C22—C231.395 (12)
C8—C91.529 (10)C22—H220.9300
C8—H80.9800C23—H230.9300
C9—C101.510 (10)
C17—N1—C9121.2 (7)C10—C11—C12120.3 (8)
C17—N1—H1A125 (5)C10—C11—H11119.8
C9—N1—H1A114 (5)C12—C11—H11119.8
O4—N2—O3123.2 (12)C13—C12—C11119.8 (9)
O4—N2—C21118.8 (15)C13—C12—H12120.1
O3—N2—C21117.9 (13)C11—C12—H12120.1
C2—C1—C6121.8 (8)C14—C13—C12120.4 (9)
C2—C1—H1119.1C14—C13—Br1119.6 (8)
C6—C1—H1119.1C12—C13—Br1119.9 (8)
C3—C2—C1119.5 (9)C13—C14—C15120.0 (9)
C3—C2—H2120.3C13—C14—H14120.0
C1—C2—H2120.3C15—C14—H14120.0
C4—C3—C2119.8 (9)C10—C15—C14121.1 (9)
C4—C3—H3120.1C10—C15—H15119.4
C2—C3—H3120.1C14—C15—H15119.4
C3—C4—C5122.2 (9)C5—C16—H16A109.5
C3—C4—H4118.9C5—C16—H16B109.5
C5—C4—H4118.9H16A—C16—H16B109.5
C4—C5—C6118.1 (8)C5—C16—H16C109.5
C4—C5—C16118.6 (9)H16A—C16—H16C109.5
C6—C5—C16123.3 (8)H16B—C16—H16C109.5
C1—C6—C5118.6 (7)O2—C17—N1123.3 (8)
C1—C6—C7120.2 (7)O2—C17—C18120.2 (8)
C5—C6—C7121.2 (7)N1—C17—C18116.6 (8)
O1—C7—C6124.1 (7)C23—C18—C19118.7 (8)
O1—C7—C8118.2 (7)C23—C18—C17122.1 (7)
C6—C7—C8117.6 (7)C19—C18—C17119.1 (8)
F1—C8—C9108.7 (5)C20—C19—C18120.9 (10)
F1—C8—C7108.6 (6)C20—C19—H19119.5
C9—C8—C7110.5 (6)C18—C19—H19119.5
F1—C8—H8109.7C21—C20—C19119.3 (10)
C9—C8—H8109.7C21—C20—H20120.4
C7—C8—H8109.7C19—C20—H20120.4
N1—C9—C10112.4 (6)C22—C21—C20121.8 (9)
N1—C9—C8109.4 (6)C22—C21—N2119.3 (12)
C10—C9—C8112.0 (6)C20—C21—N2118.9 (11)
N1—C9—H9107.6C21—C22—C23119.5 (10)
C10—C9—H9107.6C21—C22—H22120.3
C8—C9—H9107.6C23—C22—H22120.3
C15—C10—C11118.3 (7)C18—C23—C22119.9 (9)
C15—C10—C9118.9 (7)C18—C23—H23120.1
C11—C10—C9122.8 (7)C22—C23—H23120.1
C6—C1—C2—C30.9 (15)C9—C10—C11—C12179.7 (7)
C1—C2—C3—C41.4 (16)C10—C11—C12—C130.1 (13)
C2—C3—C4—C51.1 (16)C11—C12—C13—C141.2 (14)
C3—C4—C5—C60.2 (14)C11—C12—C13—Br1179.3 (6)
C3—C4—C5—C16178.1 (10)C12—C13—C14—C151.5 (15)
C2—C1—C6—C50.0 (13)Br1—C13—C14—C15179.5 (7)
C2—C1—C6—C7179.3 (8)C11—C10—C15—C140.5 (13)
C4—C5—C6—C10.4 (11)C9—C10—C15—C14179.5 (8)
C16—C5—C6—C1177.4 (9)C13—C14—C15—C100.6 (15)
C4—C5—C6—C7178.9 (8)C9—N1—C17—O22.3 (12)
C16—C5—C6—C73.3 (12)C9—N1—C17—C18177.8 (6)
C1—C6—C7—O1155.6 (9)O2—C17—C18—C23140.8 (8)
C5—C6—C7—O123.7 (12)N1—C17—C18—C2339.3 (10)
C1—C6—C7—C827.8 (10)O2—C17—C18—C1936.2 (11)
C5—C6—C7—C8152.9 (7)N1—C17—C18—C19143.7 (9)
O1—C7—C8—F132.7 (10)C23—C18—C19—C201.2 (14)
C6—C7—C8—F1150.5 (6)C17—C18—C19—C20178.3 (9)
O1—C7—C8—C986.5 (9)C18—C19—C20—C210.8 (16)
C6—C7—C8—C990.3 (7)C19—C20—C21—C220.5 (16)
C17—N1—C9—C1097.0 (8)C19—C20—C21—N2179.0 (9)
C17—N1—C9—C8137.8 (7)O4—N2—C21—C22168.2 (10)
F1—C8—C9—N152.9 (8)O3—N2—C21—C2214.7 (15)
C7—C8—C9—N166.3 (8)O4—N2—C21—C2012.3 (14)
F1—C8—C9—C1072.5 (7)O3—N2—C21—C20164.8 (11)
C7—C8—C9—C10168.4 (6)C20—C21—C22—C231.3 (15)
N1—C9—C10—C15139.4 (7)N2—C21—C22—C23178.1 (8)
C8—C9—C10—C1596.9 (8)C19—C18—C23—C220.3 (13)
N1—C9—C10—C1139.5 (9)C17—C18—C23—C22177.3 (8)
C8—C9—C10—C1184.2 (8)C21—C22—C23—C180.9 (14)
C15—C10—C11—C120.7 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···F10.86 (8)2.36 (6)2.728 (9)106 (5)
N1—H1A···O2i0.86 (8)2.42 (8)3.263 (10)166 (4)
C9—H9···F1ii0.982.393.364 (8)175
C8—H8···O4iii0.982.503.387 (12)150
C9—H9···O20.982.372.758 (9)103
Symmetry codes: (i) x, y, z+1; (ii) x, y, z1; (iii) x+1/2, y+1/2, z+2.
 

Funding information

The authors thank the Innovation Program of Shanghai University Students (cs1704003) for financial support.

References

First citationBruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, Y., Li, X., Shang, H., Chen, X. & Ren, X. (2016). J. Org. Chem. 81, 9858–9866.  CSD CrossRef CAS Google Scholar
First citationMorgenthaler, M., Schweizer, E., Hoffmann-Röder, A., Benini, F., Martin, R. E., Jaeschke, G., Wagner, B., Fischer, H., Bendels, S., Zimmerli, D., Schneider, J., Diederich, F., Kansy, M. & Müller, K. (2007). ChemMedChem, 2, 1100–1115.  CrossRef CAS Google Scholar
First citationMurray, T. K., Whalley, K., Robinson, C. S., Ward, M. A., Hicks, E., Lodge, D., Vandergriff, J. L., Baumbarger, P., Siuda, E., Gates, M., Ogden, A. M., Skolnick, P., Zimmerman, D. M., Nisenbaum, E. S., Bleakman, D. & O'Neill, M. J. (2003). J. Pharmacol. Exp. Ther. 306, 752–762.  CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPurser, S., Moore, P. R., Swallow, S. & Gouverneur, V. (2008). Chem. Soc. Rev. 37, 320–330.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, J., Sánchez-Roselló, M., Aceña, J. L., del Pozo, C., Sorochinsky, A. E., Fustero, S., Soloshonok, V. A. & Liu, H. (2014). Chem. Rev. 114, 2432–2506.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds