organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

[1,4-Bis(4-meth­­oxy­phen­yl)but-3-yn-2-yl](cyano)­methyl­amine

CROSSMARK_Color_square_no_text.svg

aLife and Health Sciences Department, University of North Texas at Dallas, 7300 University Hills Blvd, Dallas, TX 75241, USA, and bDepartment of Chemistry and Biochemistry, University of Texas at Arlington, 701 S. Nedderman Dr., Arlington, TX 76019, USA
*Correspondence e-mail: myousuf@untdallas.edu

Edited by R. J. Butcher, Howard University, USA (Received 26 February 2018; accepted 6 March 2018; online 23 March 2018)

The title compound, C20H20N2O2, crystallizes in the P21/c space group with one mol­ecule in the asymmetric unit. It contains an amine with a cyano substituent and hence is classified as a cyanamide. One terminal CH3 group is disordered over two positions with occupancies of 0.874 (9)/0.126 (9).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Some of us have been involved in the synthesis of cyanamides from N-methyl propargyl­amines and using this as a starting point to produce propargyl guanidine derivatives, specifically adapting reports from Looper (Gainer et al., 2011[Gainer, M. J., Bennett, N. R., Takahashi, Y. & Looper, R. E. (2011). Angew. Chem. Int. Ed. 50, 684-687.]) and van der Eycken (Ermolat'ev et al., 2010[Ermolat'ev, D. S., Bariwal, J. B., Steenackers, H. P. L., De Keersmaecker, S. C. J. & Van der Eycken, E. V. (2010). Angew. Chem. Int. Ed. 49, 9465-9468.]). Originally, a very inter­esting spiro­cyclization compound was produced while attempting to synthesize the title compound (Singh et al., 2016[Singh, R. P., Spears, J. A., Dalipe, A., Yousufuddin, M. & Lovely, C. J. (2016). Tetrahedron Lett. 57, 3096-3099.]). It was later discovered that using potassium carbonate as the base afforded the intended cyanamide in good yield.

The title compound crystallizes in the monoclinic crystal system, P21/c. There is one mol­ecule in the asymmetric unit yielding a Z value of 4. The compound contains one cyano bond with an observed C≡N bond distance of 1.143 (2) Å and one C≡C bond with a distance of 1.189 (3) Å. One terminal CH3 group (C12) is disordered over two positions with occupancies of 0.874 (9)/0.126 (9). Inter­molecular C—H⋯O inter­actions are observed in the crystal (Table 1[link]) as well as ππ inter­actions between C4–C9 phenyl rings [centroid–centroid distance = 3.8766 (14) Å, symmetry operation 1 − x, 1 − y, 2 − z].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12A—H12B⋯O2i 0.96 2.48 3.366 (4) 154
C12B—H12D⋯O2i 0.96 2.53 3.24 (2) 131
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Synthesis and crystallization

The title compound was synthesized and crystallized following the procedure reported by our group (Singh et al., 2016[Singh, R. P., Spears, J. A., Dalipe, A., Yousufuddin, M. & Lovely, C. J. (2016). Tetrahedron Lett. 57, 3096-3099.]).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. One terminal CH3 group (C12) is disordered over two positions with occupancies of 0.874 (9)/0.126 (9).

Table 2
Experimental details

Crystal data
Chemical formula C20H20N2O2
Mr 320.38
Crystal system, space group Monoclinic, P21/c
Temperature (K) 299
a, b, c (Å) 15.6203 (19), 8.6349 (11), 13.9758 (17)
β (°) 108.948 (2)
V3) 1782.9 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.25 × 0.15 × 0.05
 
Data collection
Diffractometer Bruker D8 QUEST CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, WI, USA])
Tmin, Tmax 0.687, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 15747, 3209, 2256
Rint 0.032
(sin θ/λ)max−1) 0.599
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.124, 1.04
No. of reflections 3209
No. of parameters 231
No. of restraints 6
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.11, −0.15
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, WI, USA]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

[1,4-Bis(4-methoxyphenyl)but-3-yn-2-yl](cyano)methylamine top
Crystal data top
C20H20N2O2F(000) = 680
Mr = 320.38Dx = 1.194 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.6203 (19) ÅCell parameters from 4903 reflections
b = 8.6349 (11) Åθ = 2.8–24.2°
c = 13.9758 (17) ŵ = 0.08 mm1
β = 108.948 (2)°T = 299 K
V = 1782.9 (4) Å3Plate, colourless
Z = 40.25 × 0.15 × 0.05 mm
Data collection top
Bruker D8 QUEST CCD
diffractometer
2256 reflections with I > 2σ(I)
φ and ω scansRint = 0.032
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 25.2°, θmin = 2.8°
Tmin = 0.687, Tmax = 0.745h = 1818
15747 measured reflectionsk = 1010
3209 independent reflectionsl = 1616
Refinement top
Refinement on F26 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0517P)2 + 0.390P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3209 reflectionsΔρmax = 0.11 e Å3
231 parametersΔρmin = 0.15 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C) for other H atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.57799 (10)0.79026 (19)1.22133 (10)0.0801 (4)
O20.06643 (10)0.24335 (17)0.21707 (11)0.0851 (5)
N10.15952 (10)0.63823 (18)0.62029 (11)0.0588 (4)
N20.18905 (13)0.8975 (2)0.56414 (16)0.0865 (6)
C10.23575 (13)0.5294 (2)0.66066 (13)0.0610 (5)
H10.2099640.4291380.6697410.073*
C20.29652 (14)0.5784 (2)0.76050 (15)0.0697 (6)
C30.34778 (14)0.6166 (2)0.84027 (15)0.0679 (5)
C40.40886 (13)0.6616 (2)0.93728 (13)0.0587 (5)
C50.48196 (16)0.7550 (3)0.94619 (15)0.0797 (6)
H50.4925690.7887600.8878630.096*
C60.54045 (14)0.8005 (3)1.03945 (15)0.0734 (6)
H60.5895650.8640711.0435710.088*
C70.52533 (13)0.7510 (2)1.12534 (13)0.0578 (5)
C80.45402 (15)0.6558 (3)1.11778 (15)0.0775 (6)
H80.4443830.6202861.1762680.093*
C90.39607 (14)0.6114 (3)1.02494 (15)0.0726 (6)
H90.3475670.5466561.0213900.087*
C100.65565 (16)0.8814 (3)1.23183 (17)0.0907 (7)
H10A0.6953840.8270801.2035000.136*
H10B0.6864690.9011421.3022420.136*
H10C0.6378420.9778601.1968840.136*
C110.17720 (13)0.7776 (3)0.59205 (14)0.0597 (5)
C12A0.0877 (2)0.6328 (4)0.6658 (4)0.0891 (13)0.874 (9)
H12A0.1117320.6623930.7357170.134*0.874 (9)
H12B0.0639440.5295300.6610010.134*0.874 (9)
H12C0.0402080.7029940.6307890.134*0.874 (9)
C12B0.0668 (17)0.581 (3)0.601 (3)0.101 (5)0.126 (9)
H12D0.0614460.5361970.6613230.151*0.126 (9)
H12E0.0535910.5033920.5484610.151*0.126 (9)
H12F0.0248690.6650250.5791170.151*0.126 (9)
C130.28728 (13)0.5050 (2)0.58608 (14)0.0659 (5)
H13A0.3121400.6033130.5742490.079*
H13B0.3375060.4350890.6159010.079*
C140.22912 (12)0.4395 (2)0.48628 (13)0.0555 (5)
C150.20917 (13)0.2831 (2)0.47567 (14)0.0635 (5)
H150.2328700.2181690.5310610.076*
C160.15548 (13)0.2209 (2)0.38592 (15)0.0664 (5)
H160.1434940.1151570.3809550.080*
C170.11941 (12)0.3153 (2)0.30326 (14)0.0584 (5)
C180.13769 (14)0.4706 (2)0.31150 (14)0.0678 (5)
H180.1133170.5352830.2561010.081*
C190.19235 (14)0.5311 (2)0.40214 (15)0.0681 (5)
H190.2047280.6366970.4065760.082*
C200.02856 (19)0.3332 (3)0.12903 (17)0.1032 (9)
H20A0.0089870.4127100.1423820.155*
H20B0.0073070.2680240.0752590.155*
H20C0.0762060.3798360.1095880.155*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0736 (9)0.1082 (12)0.0514 (8)0.0065 (9)0.0106 (7)0.0141 (8)
O20.0909 (11)0.0813 (10)0.0642 (9)0.0046 (8)0.0006 (8)0.0114 (8)
N10.0566 (9)0.0574 (10)0.0596 (9)0.0005 (7)0.0148 (7)0.0001 (8)
N20.0871 (14)0.0658 (12)0.1086 (15)0.0003 (10)0.0345 (12)0.0091 (11)
C10.0661 (12)0.0548 (11)0.0544 (11)0.0019 (9)0.0090 (9)0.0019 (9)
C20.0731 (14)0.0681 (13)0.0587 (12)0.0082 (10)0.0088 (11)0.0032 (10)
C30.0710 (13)0.0663 (13)0.0584 (12)0.0130 (10)0.0099 (11)0.0042 (10)
C40.0577 (11)0.0607 (12)0.0512 (11)0.0116 (9)0.0087 (9)0.0052 (9)
C50.0895 (16)0.0968 (17)0.0489 (12)0.0125 (13)0.0173 (11)0.0062 (11)
C60.0706 (13)0.0878 (15)0.0578 (12)0.0164 (11)0.0152 (10)0.0005 (11)
C70.0553 (11)0.0689 (12)0.0463 (10)0.0082 (9)0.0124 (8)0.0071 (9)
C80.0776 (14)0.1084 (18)0.0496 (11)0.0138 (13)0.0250 (11)0.0049 (11)
C90.0632 (12)0.0891 (15)0.0663 (13)0.0110 (11)0.0221 (10)0.0096 (11)
C100.0737 (15)0.1042 (18)0.0751 (15)0.0065 (13)0.0020 (12)0.0140 (13)
C110.0534 (11)0.0636 (13)0.0589 (11)0.0006 (10)0.0140 (9)0.0054 (10)
C12A0.089 (2)0.076 (2)0.120 (3)0.0040 (16)0.059 (2)0.0020 (19)
C12B0.098 (9)0.081 (9)0.128 (10)0.004 (8)0.042 (9)0.006 (8)
C130.0585 (11)0.0669 (12)0.0658 (12)0.0025 (10)0.0113 (10)0.0093 (10)
C140.0556 (10)0.0541 (11)0.0559 (11)0.0045 (8)0.0168 (8)0.0043 (9)
C150.0710 (13)0.0553 (12)0.0576 (11)0.0058 (9)0.0120 (10)0.0066 (9)
C160.0756 (13)0.0489 (11)0.0681 (13)0.0048 (10)0.0143 (11)0.0019 (10)
C170.0573 (11)0.0607 (12)0.0541 (11)0.0010 (9)0.0137 (9)0.0057 (9)
C180.0860 (14)0.0591 (12)0.0524 (11)0.0105 (10)0.0144 (10)0.0057 (9)
C190.0891 (14)0.0472 (11)0.0660 (13)0.0001 (10)0.0225 (11)0.0002 (10)
C200.1074 (19)0.119 (2)0.0610 (14)0.0096 (17)0.0036 (13)0.0046 (14)
Geometric parameters (Å, º) top
O1—C71.369 (2)C10—H10B0.9600
O1—C101.413 (3)C10—H10C0.9600
O2—C171.369 (2)C12A—H12A0.9600
O2—C201.412 (3)C12A—H12B0.9600
N1—C111.323 (3)C12A—H12C0.9600
N1—C12A1.459 (3)C12B—H12D0.9600
N1—C12B1.47 (3)C12B—H12E0.9600
N1—C11.478 (2)C12B—H12F0.9600
N2—C111.143 (2)C13—C141.506 (2)
C1—C21.472 (3)C13—H13A0.9700
C1—C131.524 (3)C13—H13B0.9700
C1—H10.9800C14—C191.378 (3)
C2—C31.189 (3)C14—C151.383 (3)
C3—C41.435 (3)C15—C161.372 (2)
C4—C51.370 (3)C15—H150.9300
C4—C91.374 (3)C16—C171.376 (3)
C5—C61.384 (3)C16—H160.9300
C5—H50.9300C17—C181.368 (3)
C6—C71.365 (3)C18—C191.380 (3)
C6—H60.9300C18—H180.9300
C7—C81.361 (3)C19—H190.9300
C8—C91.374 (3)C20—H20A0.9600
C8—H80.9300C20—H20B0.9600
C9—H90.9300C20—H20C0.9600
C10—H10A0.9600
C7—O1—C10117.52 (16)N1—C12A—H12B109.5
C17—O2—C20118.68 (17)H12A—C12A—H12B109.5
C11—N1—C12A115.07 (19)N1—C12A—H12C109.5
C11—N1—C12B122.7 (10)H12A—C12A—H12C109.5
C11—N1—C1118.17 (16)H12B—C12A—H12C109.5
C12A—N1—C1116.83 (19)N1—C12B—H12D109.5
C12B—N1—C1118.6 (10)N1—C12B—H12E109.5
C2—C1—N1111.74 (15)H12D—C12B—H12E109.5
C2—C1—C13111.52 (16)N1—C12B—H12F109.5
N1—C1—C13111.45 (15)H12D—C12B—H12F109.5
C2—C1—H1107.3H12E—C12B—H12F109.5
N1—C1—H1107.3C14—C13—C1113.05 (15)
C13—C1—H1107.3C14—C13—H13A109.0
C3—C2—C1178.0 (2)C1—C13—H13A109.0
C2—C3—C4179.2 (2)C14—C13—H13B109.0
C5—C4—C9117.56 (18)C1—C13—H13B109.0
C5—C4—C3121.59 (19)H13A—C13—H13B107.8
C9—C4—C3120.85 (19)C19—C14—C15116.85 (17)
C4—C5—C6121.91 (19)C19—C14—C13122.28 (18)
C4—C5—H5119.0C15—C14—C13120.86 (17)
C6—C5—H5119.0C16—C15—C14122.01 (18)
C7—C6—C5119.3 (2)C16—C15—H15119.0
C7—C6—H6120.3C14—C15—H15119.0
C5—C6—H6120.3C15—C16—C17119.82 (18)
C8—C7—C6119.46 (18)C15—C16—H16120.1
C8—C7—O1116.22 (17)C17—C16—H16120.1
C6—C7—O1124.32 (19)C18—C17—O2124.68 (17)
C7—C8—C9120.91 (19)C18—C17—C16119.52 (17)
C7—C8—H8119.5O2—C17—C16115.80 (17)
C9—C8—H8119.5C17—C18—C19119.89 (18)
C8—C9—C4120.8 (2)C17—C18—H18120.1
C8—C9—H9119.6C19—C18—H18120.1
C4—C9—H9119.6C14—C19—C18121.89 (18)
O1—C10—H10A109.5C14—C19—H19119.1
O1—C10—H10B109.5C18—C19—H19119.1
H10A—C10—H10B109.5O2—C20—H20A109.5
O1—C10—H10C109.5O2—C20—H20B109.5
H10A—C10—H10C109.5H20A—C20—H20B109.5
H10B—C10—H10C109.5O2—C20—H20C109.5
N2—C11—N1177.0 (2)H20A—C20—H20C109.5
N1—C12A—H12A109.5H20B—C20—H20C109.5
C11—N1—C1—C269.5 (2)C3—C4—C9—C8179.32 (19)
C12A—N1—C1—C274.5 (3)C2—C1—C13—C14174.28 (17)
C12B—N1—C1—C2118.6 (19)N1—C1—C13—C1460.1 (2)
C11—N1—C1—C1356.0 (2)C1—C13—C14—C1999.5 (2)
C12A—N1—C1—C13160.0 (3)C1—C13—C14—C1579.6 (2)
C12B—N1—C1—C13115.9 (19)C19—C14—C15—C160.1 (3)
C9—C4—C5—C61.1 (3)C13—C14—C15—C16179.21 (18)
C3—C4—C5—C6179.1 (2)C14—C15—C16—C170.3 (3)
C4—C5—C6—C70.1 (3)C20—O2—C17—C181.2 (3)
C5—C6—C7—C81.1 (3)C20—O2—C17—C16179.0 (2)
C5—C6—C7—O1179.14 (19)C15—C16—C17—C180.1 (3)
C10—O1—C7—C8176.30 (19)C15—C16—C17—O2179.76 (17)
C10—O1—C7—C63.4 (3)O2—C17—C18—C19179.79 (18)
C6—C7—C8—C91.3 (3)C16—C17—C18—C190.3 (3)
O1—C7—C8—C9178.92 (19)C15—C14—C19—C180.4 (3)
C7—C8—C9—C40.3 (3)C13—C14—C19—C18178.73 (18)
C5—C4—C9—C81.0 (3)C17—C18—C19—C140.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12A—H12B···O2i0.962.483.366 (4)154
C12B—H12D···O2i0.962.533.24 (2)131
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Center for Nanostructured Materials at the University of Texas at Arlington for the use of their diffractometer and the Robert A. Welch Foundation (4-1362) for supporting our research program.

References

First citationBruker (2016). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, WI, USA  Google Scholar
First citationErmolat'ev, D. S., Bariwal, J. B., Steenackers, H. P. L., De Keersmaecker, S. C. J. & Van der Eycken, E. V. (2010). Angew. Chem. Int. Ed. 49, 9465–9468.  CAS Google Scholar
First citationGainer, M. J., Bennett, N. R., Takahashi, Y. & Looper, R. E. (2011). Angew. Chem. Int. Ed. 50, 684–687.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, R. P., Spears, J. A., Dalipe, A., Yousufuddin, M. & Lovely, C. J. (2016). Tetrahedron Lett. 57, 3096–3099.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds