organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-(4-Chloro­phen­yl)-1,2,3-selena­diazole

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Kandaswami Kandar's College, Velur, Namakkal 638 182, India, bDepartment of Physics, SRM Institute of Science and Technology, Ramapuram Campus, Chennai, India, cDepartment of Chemistry, Sri Sarada College for Women (Autonomous), Fairlands, Salem 600 016, India, and dCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: mnpsy2004@yahoo.com

Edited by R. J. Butcher, Howard University, USA (Received 9 February 2018; accepted 21 March 2018; online 27 March 2018)

In the title compound, C8H5ClN2Se, the dihedral angle between the planes of the selena­diazole and chloro­phenyl rings is 16.6 (2)°. In the crystal, the packing of the mol­ecules is consolidated by weak C—H⋯N hydrogen bonds, which generate [001] chains, and ππ stacking inter­actions are observed between the phenyl and selena­diazole rings, with a centroid–centroid distance of 3.884 (2) Å. There is also a short Se⋯Cl contact of 3.468 (1) Å

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Selenium-containing compounds, such as 1,2,3-selena­diazo­les, are of increasing inter­est owing to their chemical properties and biological applications, such as anti-bacterial, anti-microbial, anti­cancer and insecticidal activities (El-Kashef et al., 1986[El-Kashef, H. S., E-Bayoumy, B. & Aly, T. I. (1986). Egypt. J. Pharm. Sci. 27, 27-30.]; Khanna, 2005[Khanna, P. K. (2005). Phosphorus Sulfur Silicon Relat. Elem. 180, 951-955.]). Selena­diazo­les are the important class of organoselenium compounds utilized in the synthesis of semiconductor nanoparticles (Padmavathi et al., 2002[Padmavathi, V., Sumathi, R. P. & Padmaja, A. (2002). J. Ecobiol. 14, 9-12.]). As part of our studies in this area, the structure of title compound has been determined.

The ORTEP plot of the mol­ecule is shown in Fig. 1[link]. The selena­diazole ring makes a dihedral angle of 16.6 (2)° with the chloro­phenyl ring.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atomic numbering scheme and displacement ellipsoids drawn at the 30% probability level.

In the crystal, the packing of the mol­ecules is consolidated by weak C—H⋯N hydrogen bonds (see Table 1[link]), which generate [001] chains. There is also a short Se12⋯Cl1 contact of 3.468 (1) Å. The crystal structure is further augmented by ππ inter­actions between adjacent selenium and phenyl rings as shown in Fig. 2[link], with a centroid–centroid distance of 3.884 (2) Å.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯N2i 0.93 2.62 3.528 (5) 164
Symmetry code: (i) x, y, z+1.
[Figure 2]
Figure 2
The ππ inter­actions between adjacent selenium and phenyl rings for the asymmetric molecule and its partner.

Synthesis and crystallization

The title compound was synthesized according to the procedure of Baliah & Rangarajan, (1954[Baliah, V. & Rangarajan, T. (1954). J. Chem. Soc. pp. 3068-3070.])and colourless block-shaped crystals were recrystallized from a petroleum ether–ethyl acetate solvent mixture.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C8H5ClN2Se
Mr 243.55
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 10.3353 (9), 14.0058 (12), 5.9540 (4)
β (°) 97.320 (3)
V3) 854.84 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 4.64
Crystal size (mm) 0.15 × 0.15 × 0.10
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.543, 0.654
No. of measured, independent and observed [I > 2σ(I)] reflections 11618, 1787, 1282
Rint 0.042
(sin θ/λ)max−1) 0.630
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.079, 1.07
No. of reflections 1787
No. of parameters 109
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.39
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/1 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

4-(4-Chlorophenyl)-1,2,3-selenadiazole top
Crystal data top
C8H5ClN2SeF(000) = 472
Mr = 243.55Dx = 1.892 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.3353 (9) ÅCell parameters from 1286 reflections
b = 14.0058 (12) Åθ = 2.0–26.6°
c = 5.9540 (4) ŵ = 4.64 mm1
β = 97.320 (3)°T = 296 K
V = 854.84 (12) Å3Block, colorless
Z = 40.15 × 0.15 × 0.10 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
1282 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.042
ω and φ scansθmax = 26.6°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1312
Tmin = 0.543, Tmax = 0.654k = 1717
11618 measured reflectionsl = 67
1787 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.0166P)2 + 1.3536P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1787 reflectionsΔρmax = 0.33 e Å3
109 parametersΔρmin = 0.39 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. H atoms were positioned geometrically (N—H=0.88–0.90 Å and C—H=0.93–0.98 Å) and allowed to ride on their parent atoms,with Uiso(H) = 1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C40.4016 (4)0.3768 (2)0.3085 (5)0.0370 (8)
C50.2945 (4)0.3664 (3)0.4154 (6)0.0497 (9)
H50.2970280.3606090.5715280.060*
C60.5378 (3)0.3794 (2)0.4058 (5)0.0357 (8)
C70.6334 (4)0.4123 (3)0.2806 (6)0.0447 (9)
H70.6084130.4352670.1349660.054*
C80.7636 (4)0.4121 (3)0.3649 (6)0.0492 (10)
H80.8261320.4343180.2782610.059*
C90.7990 (4)0.3782 (3)0.5809 (6)0.0475 (10)
C100.7070 (4)0.3464 (3)0.7105 (6)0.0514 (10)
H100.7321890.3241800.8566600.062*
C110.5777 (4)0.3478 (3)0.6230 (6)0.0471 (10)
H110.5156320.3268630.7120240.057*
N20.2534 (3)0.3807 (3)0.0063 (5)0.0589 (9)
N30.3723 (3)0.3846 (2)0.0764 (5)0.0507 (8)
Se10.14713 (4)0.36506 (3)0.22008 (7)0.05959 (17)
Cl120.96352 (11)0.37587 (10)0.6907 (2)0.0761 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C40.048 (2)0.033 (2)0.0305 (17)0.0043 (16)0.0080 (15)0.0008 (15)
C50.053 (2)0.057 (2)0.039 (2)0.006 (2)0.0058 (18)0.0015 (19)
C60.043 (2)0.0322 (19)0.0322 (18)0.0001 (15)0.0058 (15)0.0028 (14)
C70.048 (2)0.051 (2)0.035 (2)0.0035 (19)0.0031 (17)0.0054 (17)
C80.040 (2)0.060 (3)0.048 (2)0.0045 (19)0.0066 (18)0.0065 (19)
C90.043 (2)0.052 (3)0.046 (2)0.0072 (19)0.0002 (18)0.0043 (18)
C100.058 (3)0.057 (3)0.038 (2)0.010 (2)0.0018 (19)0.0077 (18)
C110.049 (2)0.054 (3)0.040 (2)0.0010 (18)0.0113 (18)0.0072 (17)
N20.050 (2)0.083 (3)0.0423 (19)0.0076 (18)0.0005 (16)0.0051 (17)
N30.044 (2)0.072 (2)0.0366 (17)0.0066 (17)0.0060 (14)0.0065 (15)
Se10.0458 (3)0.0782 (3)0.0553 (3)0.0081 (2)0.00855 (19)0.0042 (2)
Cl120.0480 (7)0.1104 (10)0.0663 (7)0.0161 (6)0.0065 (5)0.0029 (7)
Geometric parameters (Å, º) top
C4—C51.353 (5)C8—C91.376 (5)
C4—N31.381 (4)C8—H80.9300
C4—C61.454 (5)C9—C101.372 (5)
C5—Se11.795 (4)C9—Cl121.742 (4)
C5—H50.9300C10—C111.371 (5)
C6—C111.380 (5)C10—H100.9300
C6—C71.390 (5)C11—H110.9300
C7—C81.376 (5)N2—N31.265 (4)
C7—H70.9300N2—Se11.857 (3)
C5—C4—N3113.1 (3)C9—C8—H8120.9
C5—C4—C6128.6 (3)C10—C9—C8121.1 (4)
N3—C4—C6118.3 (3)C10—C9—Cl12119.7 (3)
C4—C5—Se1111.9 (3)C8—C9—Cl12119.2 (3)
C4—C5—H5124.0C11—C10—C9119.6 (4)
Se1—C5—H5124.0C11—C10—H10120.2
C11—C6—C7117.5 (3)C9—C10—H10120.2
C11—C6—C4121.6 (3)C10—C11—C6121.4 (4)
C7—C6—C4120.9 (3)C10—C11—H11119.3
C8—C7—C6122.2 (3)C6—C11—H11119.3
C8—C7—H7118.9N3—N2—Se1111.0 (2)
C6—C7—H7118.9N2—N3—C4117.6 (3)
C7—C8—C9118.2 (3)C5—Se1—N286.42 (16)
C7—C8—H8120.9
N3—C4—C5—Se10.5 (4)C8—C9—C10—C110.5 (6)
C6—C4—C5—Se1178.7 (3)Cl12—C9—C10—C11179.6 (3)
C5—C4—C6—C1116.3 (6)C9—C10—C11—C60.7 (6)
N3—C4—C6—C11162.8 (3)C7—C6—C11—C101.6 (5)
C5—C4—C6—C7165.0 (4)C4—C6—C11—C10177.1 (3)
N3—C4—C6—C715.9 (5)Se1—N2—N3—C40.1 (4)
C11—C6—C7—C81.4 (5)C5—C4—N3—N20.4 (5)
C4—C6—C7—C8177.4 (3)C6—C4—N3—N2178.9 (3)
C6—C7—C8—C90.2 (6)C4—C5—Se1—N20.3 (3)
C7—C8—C9—C100.8 (6)N3—N2—Se1—C50.1 (3)
C7—C8—C9—Cl12179.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···N2i0.932.623.528 (5)164
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

The authors thank the TBI consultancy, University of Madras, India, for the data collection

References

First citationBaliah, V. & Rangarajan, T. (1954). J. Chem. Soc. pp. 3068–3070.  CrossRef Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl-Kashef, H. S., E-Bayoumy, B. & Aly, T. I. (1986). Egypt. J. Pharm. Sci. 27, 27–30.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKhanna, P. K. (2005). Phosphorus Sulfur Silicon Relat. Elem. 180, 951–955.  Web of Science CrossRef CAS Google Scholar
First citationPadmavathi, V., Sumathi, R. P. & Padmaja, A. (2002). J. Ecobiol. 14, 9–12.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds