organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N,N-Di­methyl-2-[(1E)-({[(methyl­sulfan­yl)methane­thio­yl]amino}­imino)­meth­yl]aniline

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, North Eastern Hill University, Shillong 793 022, Meghalaya, India, and bDepartment of Chemistry, National College, Tiruchirappalli 620 001, Tamilnadu, India
*Correspondence e-mail: mvelusamy@gmail.com

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 16 March 2018; accepted 21 March 2018; online 27 March 2018)

In the title compound, C11H15N3S2, the di­thio­carbazate moiety is rotated by 18.73 (8)° with respect to the benzene ring. The di­thio­carbazate group adopts an E configuration with respect to the C=N bond of the benzyl­idene group. Furthermore, in the solid state the compound exists in the thione tautomeric form. In the crystal, mol­ecules are linked by pairs of weak N—H⋯S hydrogen bonds, forming inversion dimers which are arranged in layers parallel to (010).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Di­thio­carbazate derivatives remain of inter­est to researchers because of their extensive variations in structure and promising biological and catalytic activities (Low et al., 2014[Low, M. L., Maigre, L., Dorlet, P., Guillot, R., Pagès, J. M., Crouse, K. A., Policar, C. & Delsuc, N. (2014). Bioconjugate Chem. 25, 2269-2284.]). Metal complexes of ligands derived from di­thio­carbazic acids have created a significant inter­est in their coordination chemistry (Mahapatra et al., 2013[Mahapatra, M., Kulandaivelu, U., Saiko, P., Graser, G., Szekeres, T., Andrei, G., Snoeck, R., Balzarini, J. & Jayaprakash, V. (2013). Chem. Pap. 67, 650-656.]). As a part of our ongoing research on such mol­ecules, we report herein on the synthesis and crystal structure of the title compound.

The mol­ecule is not completely planar (r.m.s. deviation for all non-H atoms 0.375 Å). The thione sulfur atom (S1) is positioned trans to the azomethine nitro­gen (N1) atom, Fig. 1[link]. The C=S and C—S bond lengths of 1.6606 (17) and 1.7462 (19) Å, respectively, are of the order of those in related di­thio­carbazate based Schiff bases (Basha et al., 2012[Basha, M. T., Chartres, J. D., Pantarat, N., Ali, M. A., Mirza, A. H., Kalinowski, D. S., Richardson, D. R. & Bernhardt, P. V. (2012). Dalton Trans. 41, 6536-6548.]). The observed bond lengths are inter­mediate between C—S and C=S bonds, indicating conjugation effects along the =N—NH—C(=S)—SCH3 chain.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 40% probability level.

In the crystal, the mol­ecules are linked by N—H⋯S hydrogen bonds (Table 1[link], Fig. 2[link]), forming inversion dimers.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H9⋯S1i 0.86 2.62 3.4566 (16) 166
Symmetry code: (i) [-x+1, y, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Dimer formation through N—H⋯S inter­actions.

Synthesis and crystallization

The synthesis of the title compound is illustrated in Fig. 3[link]. A solution of 2-di­methyl­amino benzaldehyde (0.298 g, 2 mmol) in methanol (10 ml) was added to a stirred solution of S-methyl di­thio­carbazate (0.25 g, 2 mmol) in ethanol (15 ml). The mixture was stirred for 10 min then refluxed for 6 h. The reaction mixture was then cooled to room temperature and the yellow solid obtained was filtered off, washed with cold methanol and dried under vacuum over anhydrous CaCl2. This solid was recrystallized from methanol, yielding needle-shaped crystals that were suitable for X-ray diffraction studies.

[Figure 3]
Figure 3
Synthesis of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C11H15N3S2
Mr 253.38
Crystal system, space group Monoclinic, C2/c
Temperature (K) 293
a, b, c (Å) 20.5182 (12), 7.6402 (6), 16.6523 (12)
β (°) 96.863 (6)
V3) 2591.8 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.39
Crystal size (mm) 0.46 × 0.40 × 0.38
 
Data collection
Diffractometer Agilent EOS, Gemini
Absorption correction Multi-scan (SCALE3 ABSPACK; Agilent, 2015[Agilent (2015). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, UK.])
Tmin, Tmax 0.513, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 4778, 2638, 2136
Rint 0.016
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.097, 1.04
No. of reflections 2638
No. of parameters 148
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.25, −0.24
Computer programs: CrysAlis PRO (Agilent, 2015[Agilent (2015). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, UK.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Agilent, 2015); cell refinement: CrysAlis PRO (Agilent, 2015); data reduction: CrysAlis PRO (Agilent, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL (Sheldrick, 2015b).

N,N-Dimethyl-2-[(1E)-({[(methylsulfanyl)methanethioyl]amino}imino)methyl]aniline top
Crystal data top
C11H15N3S2F(000) = 1072
Mr = 253.38Dx = 1.299 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 20.5182 (12) ÅCell parameters from 2638 reflections
b = 7.6402 (6) Åθ = 3.8–26.4°
c = 16.6523 (12) ŵ = 0.39 mm1
β = 96.863 (6)°T = 293 K
V = 2591.8 (3) Å3Needle, yellow
Z = 80.46 × 0.40 × 0.38 mm
Data collection top
Agilent EOS, Gemini
diffractometer
Rint = 0.016
profile data from θ/2θ scansθmax = 26.4°, θmin = 3.8°
Absorption correction: multi-scan
(SCALE3 ABSPACK; Agilent, 2015)
h = 2524
Tmin = 0.513, Tmax = 0.747k = 99
4778 measured reflectionsl = 2011
2638 independent reflections4386 standard reflections every 10 reflections
2136 reflections with I > 2σ(I) intensity decay: 5%
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0435P)2 + 1.4528P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2638 reflectionsΔρmax = 0.25 e Å3
148 parametersΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S20.41502 (2)0.68062 (8)0.46488 (3)0.04706 (17)
S10.53348 (2)0.74013 (8)0.37613 (3)0.05367 (18)
N30.22176 (7)0.6136 (2)0.10219 (9)0.0389 (4)
N20.41551 (7)0.6548 (2)0.31042 (9)0.0418 (4)
H90.43060.65600.26440.050*
N10.35047 (6)0.6156 (2)0.31475 (9)0.0408 (4)
C60.24224 (8)0.5859 (2)0.24910 (10)0.0332 (4)
C10.19790 (8)0.5987 (2)0.17786 (10)0.0343 (4)
C70.31255 (8)0.6169 (2)0.24855 (11)0.0367 (4)
H70.32940.63740.20000.044*
C80.45484 (8)0.6910 (2)0.37801 (11)0.0367 (4)
C50.21800 (9)0.5579 (3)0.32248 (11)0.0421 (4)
H60.24730.54210.36900.051*
C40.15177 (9)0.5530 (3)0.32794 (13)0.0508 (5)
H50.13630.53410.37750.061*
C20.13109 (9)0.5980 (3)0.18530 (12)0.0485 (5)
H30.10100.61250.13940.058*
C100.17401 (10)0.6747 (3)0.03593 (12)0.0568 (6)
H16A0.14030.58810.02440.085*
H16B0.19560.69370.01130.085*
H16C0.15470.78230.05120.085*
C110.25651 (11)0.4594 (3)0.07815 (13)0.0552 (5)
H15A0.28660.41960.12300.083*
H15B0.28030.48880.03380.083*
H15C0.22550.36840.06190.083*
C90.47913 (10)0.7383 (3)0.54339 (12)0.0541 (5)
H12A0.51820.67400.53620.081*
H12B0.46560.71030.59510.081*
H12C0.48790.86150.54090.081*
C30.10867 (9)0.5764 (3)0.25900 (13)0.0554 (6)
H40.06380.57760.26240.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S20.0306 (2)0.0678 (4)0.0429 (3)0.0013 (2)0.00473 (19)0.0017 (2)
S10.0264 (2)0.0880 (4)0.0456 (3)0.0157 (2)0.0003 (2)0.0005 (3)
N30.0346 (8)0.0473 (9)0.0336 (8)0.0023 (7)0.0012 (6)0.0035 (7)
N20.0237 (7)0.0627 (10)0.0384 (8)0.0056 (7)0.0010 (6)0.0039 (8)
N10.0224 (7)0.0569 (10)0.0420 (8)0.0057 (7)0.0008 (6)0.0041 (7)
C60.0259 (8)0.0370 (9)0.0357 (9)0.0046 (7)0.0003 (7)0.0011 (7)
C10.0289 (8)0.0352 (9)0.0376 (9)0.0047 (7)0.0006 (7)0.0018 (8)
C70.0289 (8)0.0438 (10)0.0368 (9)0.0036 (8)0.0019 (7)0.0039 (8)
C80.0267 (8)0.0428 (10)0.0397 (9)0.0005 (7)0.0002 (7)0.0054 (8)
C50.0351 (9)0.0540 (11)0.0359 (10)0.0072 (8)0.0011 (7)0.0005 (8)
C40.0403 (10)0.0688 (14)0.0452 (11)0.0109 (10)0.0126 (8)0.0006 (10)
C20.0277 (9)0.0663 (13)0.0491 (11)0.0051 (9)0.0051 (8)0.0071 (10)
C100.0465 (11)0.0782 (15)0.0428 (11)0.0069 (11)0.0069 (9)0.0143 (11)
C110.0596 (13)0.0564 (13)0.0513 (12)0.0007 (11)0.0132 (10)0.0033 (10)
C90.0476 (12)0.0704 (14)0.0424 (11)0.0024 (10)0.0018 (9)0.0041 (10)
C30.0257 (9)0.0790 (16)0.0625 (13)0.0057 (10)0.0089 (9)0.0060 (12)
Geometric parameters (Å, º) top
S2—C81.7462 (19)C5—H60.9300
S2—C91.795 (2)C4—C31.375 (3)
S1—C81.6606 (17)C4—H50.9300
N3—C11.410 (2)C2—C31.371 (3)
N3—C111.458 (3)C2—H30.9300
N3—C101.462 (2)C10—H16A0.9600
N2—C81.333 (2)C10—H16B0.9600
N2—N11.3781 (19)C10—H16C0.9600
N2—H90.8600C11—H15A0.9600
N1—C71.271 (2)C11—H15B0.9600
C6—C51.390 (2)C11—H15C0.9600
C6—C11.410 (2)C9—H12A0.9600
C6—C71.463 (2)C9—H12B0.9600
C1—C21.391 (2)C9—H12C0.9600
C7—H70.9300C3—H40.9300
C5—C41.373 (2)
C8—S2—C9102.56 (9)C3—C4—H5120.5
C1—N3—C11114.42 (15)C3—C2—C1121.32 (17)
C1—N3—C10115.30 (15)C3—C2—H3119.3
C11—N3—C10110.87 (16)C1—C2—H3119.3
C8—N2—N1119.56 (15)N3—C10—H16A109.5
C8—N2—H9120.2N3—C10—H16B109.5
N1—N2—H9120.2H16A—C10—H16B109.5
C7—N1—N2116.69 (15)N3—C10—H16C109.5
C5—C6—C1119.20 (15)H16A—C10—H16C109.5
C5—C6—C7119.16 (15)H16B—C10—H16C109.5
C1—C6—C7121.42 (15)N3—C11—H15A109.5
C2—C1—C6117.94 (16)N3—C11—H15B109.5
C2—C1—N3122.09 (15)H15A—C11—H15B109.5
C6—C1—N3119.97 (15)N3—C11—H15C109.5
N1—C7—C6119.68 (16)H15A—C11—H15C109.5
N1—C7—H7120.2H15B—C11—H15C109.5
C6—C7—H7120.2S2—C9—H12A109.5
N2—C8—S1121.50 (14)S2—C9—H12B109.5
N2—C8—S2113.21 (12)H12A—C9—H12B109.5
S1—C8—S2125.29 (11)S2—C9—H12C109.5
C4—C5—C6121.56 (17)H12A—C9—H12C109.5
C4—C5—H6119.2H12B—C9—H12C109.5
C6—C5—H6119.2C2—C3—C4120.80 (17)
C5—C4—C3118.95 (18)C2—C3—H4119.6
C5—C4—H5120.5C4—C3—H4119.6
C8—N2—N1—C7166.28 (17)N1—N2—C8—S1179.69 (13)
C5—C6—C1—C25.6 (3)N1—N2—C8—S20.3 (2)
C7—C6—C1—C2168.92 (17)C9—S2—C8—N2179.01 (15)
C5—C6—C1—N3175.15 (16)C9—S2—C8—S11.01 (16)
C7—C6—C1—N310.3 (3)C1—C6—C5—C44.0 (3)
C11—N3—C1—C2114.6 (2)C7—C6—C5—C4170.62 (19)
C10—N3—C1—C215.7 (3)C6—C5—C4—C30.0 (3)
C11—N3—C1—C666.2 (2)C6—C1—C2—C33.4 (3)
C10—N3—C1—C6163.50 (17)N3—C1—C2—C3177.38 (19)
N2—N1—C7—C6176.64 (15)C1—C2—C3—C40.6 (3)
C5—C6—C7—N10.9 (3)C5—C4—C3—C22.4 (3)
C1—C6—C7—N1175.40 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H9···S1i0.862.623.4566 (16)166
Symmetry code: (i) x+1, y, z+1/2.
 

References

First citationAgilent (2015). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, UK.  Google Scholar
First citationBasha, M. T., Chartres, J. D., Pantarat, N., Ali, M. A., Mirza, A. H., Kalinowski, D. S., Richardson, D. R. & Bernhardt, P. V. (2012). Dalton Trans. 41, 6536–6548.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLow, M. L., Maigre, L., Dorlet, P., Guillot, R., Pagès, J. M., Crouse, K. A., Policar, C. & Delsuc, N. (2014). Bioconjugate Chem. 25, 2269–2284.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahapatra, M., Kulandaivelu, U., Saiko, P., Graser, G., Szekeres, T., Andrei, G., Snoeck, R., Balzarini, J. & Jayaprakash, V. (2013). Chem. Pap. 67, 650–656.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds