inorganic compounds
Al10Ni3Fe0.83, an Fe-depleted phase in the Al–Ni–Fe system
aState Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People's Republic of China
*Correspondence e-mail: chzfan@ysu.edu.cn
Crystals of the phase Al10Ni3Fe0.83 (decaaluminium trinickel iron) were obtained by high-pressure sintering (HPS) of a stoichiometric mixture with nominal composition Al71Ni24Fe5. Al10Ni3Fe0.83 adopts the Co2Al5 structure type in the type P63/mmc with the unique Fe site on site 2c partially occupied (occupancy 0.83).
Keywords: crystal structure; high-pressure sintering; Co2Al5 structure type; ternary system Al–Ni–Fe; intermetallics.
CCDC reference: 1823108
Structure description
The second natural 70.2Ni24.5Fe5.3 (Bindi et al., 2015), which is very similar to the synthetic phase Al71Ni24Fe5 (Lemmerz et al., 1994). While simulating the growth mechanism of decagonite under high-pressure and high-temperature conditions (HPHT) by the high-pressure sintering (HPS) process, we obtained another phase in the ternary system Al–Ni–Fe (Raghavan, 2010) with composition Al10Ni3Fe0.83. The occurrence of a phase with composition Al10Ni3Fe has been reported by Khaidar et al. (1982) but it was never observed by other teams afterwards, although the existence of a decagonal phase with composition close to this phase was in argument (Zhang et al., 2008). On the other hand, its Fe-rich counterpart Al10Fe3Ni was frequently observed, and its has also been determined (Chumak et al., 2007).
named decagonite has the composition AlThe new phase Al10Ni3Fe0.83 adopts the Al5Co2 structure type (Bradley & Cheng, 1938; Newkirk et al., 1961) in type P63/mmc with the two Co sites replaced by Ni and Fe, respectively. This structure type can be derived from a distorted closed-packed arrangement of metal atoms (Wells, 1975). The lattice parameters of Al10Ni3Fe0.83 (Table 1) are similar to those of Al10Fe3Ni (Chumak et al., 2007). The of Al10Ni3Fe0.83 comprises of five sites, three fully occupied by Al atoms at Wyckoff sites 2a (Al3), 6h (Al5) and 12k (Al4), one fully occupied by Ni atoms (6h; Ni1) and one partially occupied (occupancy 0.83) by Fe atoms (2c; Fe1). Both the Al3 atom at the 2a position and the Ni1 atom at the 6h position are surrounded by twelve atoms in the form of a distorted icosahedron (Fig. 1). Al3 is bound to six Ni3 and six Al4 atoms (Fig. 2a); Ni1 is bound to two Al3, six Al4, two Al5 and two Ni1 atoms (Fig. 2b). The Fe2 atom is surrounded by nine Al atoms (six Al4 and three Al5), forming an irregular polyhedron as shown in Fig. 3.
Synthesis and crystallization
Pure aluminium powder (indicated purity 99.8%), nickel powder (indicated purity 99.95%) and iron powder (indicated purity 99.9%) were mixed according to the atomic ratio 71: 24: 5. The detailed description of the employed HPS process can be found elsewhere (Liu & Fan, 2018). In the current work, the prepared cylindrical block mixture was pressurized up to 5 GPa and heated to 1473 K for 30 min, cooled to 1073 K, held at that temperature for 1 h, and then was rapidly cooled down to room temperature. A fragment was selected and mounted on a glass fiber for single-crystal X-ray diffraction measurements.
Refinement
Crystal data, data collection and structure . Although iron and nickel atoms have very similar scattering factors and thus cannot be distinguished unambiguously in an X-ray diffraction study, the best model was obtained for the Ni atoms occupying the 6h site and the Fe atoms the 2c site. Free of the occupation factors revealed the Ni site to be fully occupied and the Fe site to have a partial occupancy of 0.834 (11). The refined composition of Al10Ni3Fe0.83 is in agreement with the results of energy dispersive (EDS) analysis (see Supporting information).
details are summarized in Table 1Structural data
CCDC reference: 1823108
https://doi.org/10.1107/S2414314618002377/wm4071sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314618002377/wm4071Isup2.hkl
Results of energy dispersive https://doi.org/10.1107/S2414314618002377/wm4071sup3.pdf
(EDS) analysis. DOI:Data collection: APEX3 and SAINT (Bruker, 2015); cell
APEX3 and SAINT (Bruker, 2015); data reduction: APEX3 and SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2017); software used to prepare material for publication: publCIF (Westrip, 2010).Al10Ni3Fe0.83 | Dx = 4.181 Mg m−3 |
Mr = 492.52 | Cu Kα radiation, λ = 1.54178 Å |
Hexagonal, P63/mmc | Cell parameters from 3731 reflections |
a = 7.6981 (2) Å | θ = 5.8–74.2° |
c = 7.6231 (2) Å | µ = 30.59 mm−1 |
V = 391.23 (2) Å3 | T = 293 K |
Z = 2 | Grain, metallic |
F(000) = 471 | 0.09 × 0.09 × 0.06 mm |
Bruker APEXII Photon 100 CMOS diffractometer | 177 reflections with I > 2σ(I) |
Phi and ω scans | Rint = 0.035 |
Absorption correction: multi-scan (SADABS; Bruker, 2015) | θmax = 74.2°, θmin = 6.6° |
Tmin = 0.104, Tmax = 0.170 | h = −9→9 |
5095 measured reflections | k = −9→9 |
178 independent reflections | l = −9→9 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.046P)2 + 2.8861P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.029 | (Δ/σ)max < 0.001 |
wR(F2) = 0.090 | Δρmax = 0.53 e Å−3 |
S = 1.09 | Δρmin = −0.41 e Å−3 |
178 reflections | Extinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
21 parameters | Extinction coefficient: 0.0025 (7) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ni1 | 0.25269 (18) | 0.12635 (9) | 0.250000 | 0.0105 (5) | |
Fe2 | 0.666667 | 0.333333 | 0.750000 | 0.0158 (10) | 0.834 (11) |
Al3 | 0.000000 | 0.000000 | 0.000000 | 0.0125 (9) | |
Al4 | 0.3919 (3) | 0.19597 (13) | 0.5598 (2) | 0.0155 (6) | |
Al5 | 0.53478 (17) | 0.46522 (17) | 0.250000 | 0.0160 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0074 (7) | 0.0102 (7) | 0.0129 (8) | 0.0037 (4) | 0.000 | 0.000 |
Fe2 | 0.0147 (12) | 0.0147 (12) | 0.0181 (15) | 0.0073 (6) | 0.000 | 0.000 |
Al3 | 0.0114 (11) | 0.0114 (11) | 0.0148 (18) | 0.0057 (6) | 0.000 | 0.000 |
Al4 | 0.0155 (9) | 0.0140 (7) | 0.0177 (9) | 0.0077 (4) | −0.0016 (6) | −0.0008 (3) |
Al5 | 0.0129 (9) | 0.0129 (9) | 0.0205 (13) | 0.0052 (9) | 0.000 | 0.000 |
Ni1—Al5 | 2.4199 (10) | Al3—Al4xix | 2.6525 (17) |
Ni1—Al5i | 2.4199 (10) | Al3—Al4vii | 2.6525 (17) |
Ni1—Al4 | 2.5374 (18) | Al3—Al4xx | 2.6525 (17) |
Ni1—Al4ii | 2.5374 (18) | Al3—Al4ii | 2.6525 (17) |
Ni1—Al3 | 2.5436 (8) | Al3—Al4iv | 2.6525 (17) |
Ni1—Al3iii | 2.5436 (8) | Al3—Al4xxi | 2.6525 (17) |
Ni1—Al4iv | 2.7141 (15) | Al4—Al3iii | 2.6525 (17) |
Ni1—Al4v | 2.7141 (15) | Al4—Ni1vi | 2.7141 (15) |
Ni1—Al4vi | 2.7141 (15) | Al4—Ni1v | 2.7141 (15) |
Ni1—Al4vii | 2.7141 (15) | Al4—Al4vi | 2.767 (2) |
Ni1—Ni1viii | 2.918 (2) | Al4—Al4v | 2.7674 (19) |
Ni1—Ni1ix | 2.918 (2) | Al4—Al5xv | 2.7842 (17) |
Fe2—Al4x | 2.3360 (17) | Al4—Al5vi | 2.7842 (17) |
Fe2—Al4i | 2.3360 (17) | Al4—Al4xii | 2.900 (4) |
Fe2—Al4 | 2.3360 (17) | Al4—Al5i | 2.9669 (16) |
Fe2—Al4xi | 2.3360 (17) | Al4—Al5 | 2.9669 (16) |
Fe2—Al4xii | 2.3360 (17) | Al5—Ni1xiii | 2.4199 (10) |
Fe2—Al4xiii | 2.3360 (17) | Al5—Fe2xv | 2.686 (2) |
Fe2—Al5vi | 2.686 (2) | Al5—Al4xv | 2.7842 (17) |
Fe2—Al5xiv | 2.686 (2) | Al5—Al4vii | 2.7842 (17) |
Fe2—Al5xv | 2.686 (2) | Al5—Al4xxii | 2.7842 (17) |
Al3—Ni1xvi | 2.5436 (8) | Al5—Al4v | 2.7842 (17) |
Al3—Ni1xvii | 2.5436 (8) | Al5—Al4xiii | 2.9669 (16) |
Al3—Ni1ix | 2.5436 (8) | Al5—Al4ii | 2.9669 (16) |
Al3—Ni1xviii | 2.5436 (8) | Al5—Al4xxiii | 2.9669 (16) |
Al3—Ni1viii | 2.5436 (8) | ||
Al5—Ni1—Al5i | 78.00 (12) | Al4vii—Al3—Al4ii | 62.89 (2) |
Al5—Ni1—Al4 | 73.48 (4) | Al4xx—Al3—Al4ii | 180.00 (9) |
Al5i—Ni1—Al4 | 73.48 (4) | Ni1xvi—Al3—Al4iv | 117.06 (3) |
Al5—Ni1—Al4ii | 73.48 (4) | Ni1—Al3—Al4iv | 62.94 (3) |
Al5i—Ni1—Al4ii | 73.48 (4) | Ni1xvii—Al3—Al4iv | 58.42 (4) |
Al4—Ni1—Al4ii | 137.08 (9) | Ni1ix—Al3—Al4iv | 121.58 (4) |
Al5—Ni1—Al3 | 120.98 (3) | Ni1xviii—Al3—Al4iv | 117.06 (3) |
Al5i—Ni1—Al3 | 120.98 (3) | Ni1viii—Al3—Al4iv | 62.94 (3) |
Al4—Ni1—Al3 | 159.99 (6) | Al4xix—Al3—Al4iv | 62.89 (2) |
Al4ii—Ni1—Al3 | 62.94 (4) | Al4vii—Al3—Al4iv | 117.11 (2) |
Al5—Ni1—Al3iii | 120.98 (3) | Al4xx—Al3—Al4iv | 117.11 (2) |
Al5i—Ni1—Al3iii | 120.98 (3) | Al4ii—Al3—Al4iv | 62.89 (2) |
Al4—Ni1—Al3iii | 62.94 (4) | Ni1xvi—Al3—Al4xxi | 62.94 (3) |
Al4ii—Ni1—Al3iii | 159.99 (6) | Ni1—Al3—Al4xxi | 117.06 (3) |
Al3—Ni1—Al3iii | 97.05 (4) | Ni1xvii—Al3—Al4xxi | 121.58 (4) |
Al5—Ni1—Al4iv | 129.27 (6) | Ni1ix—Al3—Al4xxi | 58.42 (4) |
Al5i—Ni1—Al4iv | 65.39 (5) | Ni1xviii—Al3—Al4xxi | 62.94 (3) |
Al4—Ni1—Al4iv | 123.24 (4) | Ni1viii—Al3—Al4xxi | 117.06 (3) |
Al4ii—Ni1—Al4iv | 63.50 (3) | Al4xix—Al3—Al4xxi | 117.11 (2) |
Al3—Ni1—Al4iv | 60.49 (4) | Al4vii—Al3—Al4xxi | 62.89 (2) |
Al3iii—Ni1—Al4iv | 107.94 (4) | Al4xx—Al3—Al4xxi | 62.89 (2) |
Al5—Ni1—Al4v | 65.39 (5) | Al4ii—Al3—Al4xxi | 117.11 (2) |
Al5i—Ni1—Al4v | 129.27 (6) | Al4iv—Al3—Al4xxi | 180.00 (4) |
Al4—Ni1—Al4v | 63.50 (3) | Fe2—Al4—Ni1 | 149.83 (8) |
Al4ii—Ni1—Al4v | 123.24 (4) | Fe2—Al4—Al3iii | 151.52 (8) |
Al3—Ni1—Al4v | 107.94 (4) | Ni1—Al4—Al3iii | 58.65 (5) |
Al3iii—Ni1—Al4v | 60.49 (4) | Fe2—Al4—Ni1vi | 100.36 (6) |
Al4iv—Ni1—Al4v | 163.98 (7) | Ni1—Al4—Ni1vi | 104.98 (6) |
Al5—Ni1—Al4vi | 129.27 (6) | Al3iii—Al4—Ni1vi | 56.57 (4) |
Al5i—Ni1—Al4vi | 65.39 (5) | Fe2—Al4—Ni1v | 100.36 (6) |
Al4—Ni1—Al4vi | 63.50 (3) | Ni1—Al4—Ni1v | 104.98 (6) |
Al4ii—Ni1—Al4vi | 123.24 (4) | Al3iii—Al4—Ni1v | 56.57 (4) |
Al3—Ni1—Al4vi | 107.94 (4) | Ni1vi—Al4—Ni1v | 65.03 (6) |
Al3iii—Ni1—Al4vi | 60.49 (4) | Fe2—Al4—Al4vi | 125.07 (4) |
Al4iv—Ni1—Al4vi | 64.59 (7) | Ni1—Al4—Al4vi | 61.36 (6) |
Al4v—Ni1—Al4vi | 112.97 (7) | Al3iii—Al4—Al4vi | 58.556 (11) |
Al5—Ni1—Al4vii | 65.39 (5) | Ni1vi—Al4—Al4vi | 55.14 (4) |
Al5i—Ni1—Al4vii | 129.27 (6) | Ni1v—Al4—Al4vi | 107.91 (5) |
Al4—Ni1—Al4vii | 123.24 (4) | Fe2—Al4—Al4v | 125.07 (4) |
Al4ii—Ni1—Al4vii | 63.50 (3) | Ni1—Al4—Al4v | 61.36 (6) |
Al3—Ni1—Al4vii | 60.49 (4) | Al3iii—Al4—Al4v | 58.556 (11) |
Al3iii—Ni1—Al4vii | 107.94 (4) | Ni1vi—Al4—Al4v | 107.91 (5) |
Al4iv—Ni1—Al4vii | 112.97 (7) | Ni1v—Al4—Al4v | 55.14 (4) |
Al4v—Ni1—Al4vii | 64.59 (7) | Al4vi—Al4—Al4v | 109.71 (7) |
Al4vi—Ni1—Al4vii | 163.98 (7) | Fe2—Al4—Al5xv | 62.56 (5) |
Al5—Ni1—Ni1viii | 171.00 (6) | Ni1—Al4—Al5xv | 123.29 (4) |
Al5i—Ni1—Ni1viii | 111.00 (6) | Al3iii—Al4—Al5xv | 105.21 (5) |
Al4—Ni1—Ni1viii | 108.47 (4) | Ni1vi—Al4—Al5xv | 106.58 (6) |
Al4ii—Ni1—Ni1viii | 108.47 (4) | Ni1v—Al4—Al5xv | 52.20 (4) |
Al3—Ni1—Ni1viii | 55.001 (16) | Al4vi—Al4—Al5xv | 159.64 (7) |
Al3iii—Ni1—Ni1viii | 55.001 (16) | Al4v—Al4—Al5xv | 64.61 (6) |
Al4iv—Ni1—Ni1viii | 57.48 (3) | Fe2—Al4—Al5vi | 62.56 (5) |
Al4v—Ni1—Ni1viii | 107.23 (4) | Ni1—Al4—Al5vi | 123.29 (4) |
Al4vi—Ni1—Ni1viii | 57.48 (3) | Al3iii—Al4—Al5vi | 105.21 (5) |
Al4vii—Ni1—Ni1viii | 107.23 (4) | Ni1vi—Al4—Al5vi | 52.20 (4) |
Al5—Ni1—Ni1ix | 111.00 (6) | Ni1v—Al4—Al5vi | 106.58 (6) |
Al5i—Ni1—Ni1ix | 171.00 (6) | Al4vi—Al4—Al5vi | 64.61 (6) |
Al4—Ni1—Ni1ix | 108.47 (4) | Al4v—Al4—Al5vi | 159.64 (7) |
Al4ii—Ni1—Ni1ix | 108.47 (4) | Al5xv—Al4—Al5vi | 113.32 (8) |
Al3—Ni1—Ni1ix | 55.001 (16) | Fe2—Al4—Al4xii | 51.63 (4) |
Al3iii—Ni1—Ni1ix | 55.001 (16) | Ni1—Al4—Al4xii | 158.54 (5) |
Al4iv—Ni1—Ni1ix | 107.23 (4) | Al3iii—Al4—Al4xii | 99.89 (4) |
Al4v—Ni1—Ni1ix | 57.48 (3) | Ni1vi—Al4—Al4xii | 57.71 (3) |
Al4vi—Ni1—Ni1ix | 107.23 (4) | Ni1v—Al4—Al4xii | 57.71 (3) |
Al4vii—Ni1—Ni1ix | 57.48 (3) | Al4vi—Al4—Al4xii | 109.23 (7) |
Ni1viii—Ni1—Ni1ix | 60.0 | Al4v—Al4—Al4xii | 109.23 (7) |
Al4x—Fe2—Al4i | 76.74 (9) | Al5xv—Al4—Al4xii | 58.61 (4) |
Al4x—Fe2—Al4 | 133.84 (3) | Al5vi—Al4—Al4xii | 58.61 (4) |
Al4i—Fe2—Al4 | 85.53 (6) | Fe2—Al4—Al5i | 104.03 (5) |
Al4x—Fe2—Al4xi | 85.53 (6) | Ni1—Al4—Al5i | 51.44 (4) |
Al4i—Fe2—Al4xi | 133.84 (3) | Al3iii—Al4—Al5i | 100.34 (5) |
Al4—Fe2—Al4xi | 133.84 (3) | Ni1vi—Al4—Al5i | 111.02 (5) |
Al4x—Fe2—Al4xii | 85.53 (6) | Ni1v—Al4—Al5i | 155.58 (7) |
Al4i—Fe2—Al4xii | 133.84 (3) | Al4vi—Al4—Al5i | 57.97 (7) |
Al4—Fe2—Al4xii | 76.74 (9) | Al4v—Al4—Al5i | 108.01 (9) |
Al4xi—Fe2—Al4xii | 85.53 (6) | Al5xv—Al4—Al5i | 141.91 (7) |
Al4x—Fe2—Al4xiii | 133.84 (3) | Al5vi—Al4—Al5i | 85.95 (3) |
Al4i—Fe2—Al4xiii | 85.53 (6) | Al4xii—Al4—Al5i | 142.74 (3) |
Al4—Fe2—Al4xiii | 85.53 (6) | Fe2—Al4—Al5 | 104.03 (5) |
Al4xi—Fe2—Al4xiii | 76.74 (9) | Ni1—Al4—Al5 | 51.44 (4) |
Al4xii—Fe2—Al4xiii | 133.84 (3) | Al3iii—Al4—Al5 | 100.34 (5) |
Al4x—Fe2—Al5vi | 66.920 (15) | Ni1vi—Al4—Al5 | 155.58 (7) |
Al4i—Fe2—Al5vi | 66.920 (15) | Ni1v—Al4—Al5 | 111.02 (5) |
Al4—Fe2—Al5vi | 66.920 (15) | Al4vi—Al4—Al5 | 108.01 (9) |
Al4xi—Fe2—Al5vi | 141.63 (4) | Al4v—Al4—Al5 | 57.97 (7) |
Al4xii—Fe2—Al5vi | 66.920 (15) | Al5xv—Al4—Al5 | 85.95 (3) |
Al4xiii—Fe2—Al5vi | 141.63 (4) | Al5vi—Al4—Al5 | 141.91 (7) |
Al4x—Fe2—Al5xiv | 66.920 (15) | Al4xii—Al4—Al5 | 142.74 (3) |
Al4i—Fe2—Al5xiv | 66.920 (15) | Al5i—Al4—Al5 | 61.77 (8) |
Al4—Fe2—Al5xiv | 141.63 (4) | Ni1xiii—Al5—Ni1 | 162.00 (12) |
Al4xi—Fe2—Al5xiv | 66.920 (15) | Ni1xiii—Al5—Fe2xv | 99.00 (6) |
Al4xii—Fe2—Al5xiv | 141.63 (4) | Ni1—Al5—Fe2xv | 99.00 (6) |
Al4xiii—Fe2—Al5xiv | 66.920 (15) | Ni1xiii—Al5—Al4xv | 62.41 (4) |
Al5vi—Fe2—Al5xiv | 120.0 | Ni1—Al5—Al4xv | 131.46 (7) |
Al4x—Fe2—Al5xv | 141.63 (4) | Fe2xv—Al5—Al4xv | 50.52 (5) |
Al4i—Fe2—Al5xv | 141.63 (4) | Ni1xiii—Al5—Al4vii | 131.46 (7) |
Al4—Fe2—Al5xv | 66.920 (15) | Ni1—Al5—Al4vii | 62.41 (4) |
Al4xi—Fe2—Al5xv | 66.920 (15) | Fe2xv—Al5—Al4vii | 50.52 (5) |
Al4xii—Fe2—Al5xv | 66.920 (15) | Al4xv—Al5—Al4vii | 101.04 (10) |
Al4xiii—Fe2—Al5xv | 66.920 (15) | Ni1xiii—Al5—Al4xxii | 62.41 (4) |
Al5vi—Fe2—Al5xv | 120.0 | Ni1—Al5—Al4xxii | 131.46 (7) |
Al5xiv—Fe2—Al5xv | 120.0 | Fe2xv—Al5—Al4xxii | 50.52 (5) |
Ni1xvi—Al3—Ni1 | 180.0 | Al4xv—Al5—Al4xxii | 62.77 (7) |
Ni1xvi—Al3—Ni1xvii | 70.00 (3) | Al4vii—Al5—Al4xxii | 69.46 (8) |
Ni1—Al3—Ni1xvii | 110.00 (3) | Ni1xiii—Al5—Al4v | 131.46 (7) |
Ni1xvi—Al3—Ni1ix | 110.00 (3) | Ni1—Al5—Al4v | 62.41 (4) |
Ni1—Al3—Ni1ix | 70.00 (3) | Fe2xv—Al5—Al4v | 50.52 (5) |
Ni1xvii—Al3—Ni1ix | 180.00 (3) | Al4xv—Al5—Al4v | 69.46 (8) |
Ni1xvi—Al3—Ni1xviii | 70.00 (3) | Al4vii—Al5—Al4v | 62.77 (7) |
Ni1—Al3—Ni1xviii | 110.00 (3) | Al4xxii—Al5—Al4v | 101.04 (10) |
Ni1xvii—Al3—Ni1xviii | 70.00 (3) | Ni1xiii—Al5—Al4xiii | 55.08 (3) |
Ni1ix—Al3—Ni1xviii | 110.00 (3) | Ni1—Al5—Al4xiii | 118.92 (5) |
Ni1xvi—Al3—Ni1viii | 110.00 (3) | Fe2xv—Al5—Al4xiii | 106.50 (5) |
Ni1—Al3—Ni1viii | 70.00 (3) | Al4xv—Al5—Al4xiii | 57.42 (5) |
Ni1xvii—Al3—Ni1viii | 110.00 (3) | Al4vii—Al5—Al4xiii | 154.12 (8) |
Ni1ix—Al3—Ni1viii | 70.00 (3) | Al4xxii—Al5—Al4xiii | 106.89 (6) |
Ni1xviii—Al3—Ni1viii | 180.00 (5) | Al4v—Al5—Al4xiii | 94.05 (3) |
Ni1xvi—Al3—Al4xix | 62.94 (3) | Ni1xiii—Al5—Al4ii | 118.92 (5) |
Ni1—Al3—Al4xix | 117.06 (3) | Ni1—Al5—Al4ii | 55.08 (3) |
Ni1xvii—Al3—Al4xix | 62.94 (3) | Fe2xv—Al5—Al4ii | 106.50 (5) |
Ni1ix—Al3—Al4xix | 117.06 (3) | Al4xv—Al5—Al4ii | 154.12 (8) |
Ni1xviii—Al3—Al4xix | 121.58 (4) | Al4vii—Al5—Al4ii | 57.42 (5) |
Ni1viii—Al3—Al4xix | 58.42 (4) | Al4xxii—Al5—Al4ii | 94.05 (3) |
Ni1xvi—Al3—Al4vii | 117.06 (3) | Al4v—Al5—Al4ii | 106.89 (6) |
Ni1—Al3—Al4vii | 62.94 (3) | Al4xiii—Al5—Al4ii | 146.99 (10) |
Ni1xvii—Al3—Al4vii | 117.06 (3) | Ni1xiii—Al5—Al4xxiii | 55.08 (3) |
Ni1ix—Al3—Al4vii | 62.94 (3) | Ni1—Al5—Al4xxiii | 118.92 (5) |
Ni1xviii—Al3—Al4vii | 58.42 (4) | Fe2xv—Al5—Al4xxiii | 106.50 (5) |
Ni1viii—Al3—Al4vii | 121.58 (4) | Al4xv—Al5—Al4xxiii | 106.89 (6) |
Al4xix—Al3—Al4vii | 180.00 (7) | Al4vii—Al5—Al4xxiii | 94.05 (3) |
Ni1xvi—Al3—Al4xx | 58.42 (4) | Al4xxii—Al5—Al4xxiii | 57.42 (5) |
Ni1—Al3—Al4xx | 121.58 (4) | Al4v—Al5—Al4xxiii | 154.12 (8) |
Ni1xvii—Al3—Al4xx | 117.06 (3) | Al4xiii—Al5—Al4xxiii | 105.49 (6) |
Ni1ix—Al3—Al4xx | 62.94 (3) | Al4ii—Al5—Al4xxiii | 64.63 (6) |
Ni1xviii—Al3—Al4xx | 117.06 (3) | Ni1xiii—Al5—Al4 | 118.92 (5) |
Ni1viii—Al3—Al4xx | 62.94 (3) | Ni1—Al5—Al4 | 55.08 (3) |
Al4xix—Al3—Al4xx | 62.89 (2) | Fe2xv—Al5—Al4 | 106.50 (5) |
Al4vii—Al3—Al4xx | 117.11 (2) | Al4xv—Al5—Al4 | 94.05 (3) |
Ni1xvi—Al3—Al4ii | 121.58 (4) | Al4vii—Al5—Al4 | 106.89 (6) |
Ni1—Al3—Al4ii | 58.42 (4) | Al4xxii—Al5—Al4 | 154.12 (8) |
Ni1xvii—Al3—Al4ii | 62.94 (3) | Al4v—Al5—Al4 | 57.42 (5) |
Ni1ix—Al3—Al4ii | 117.06 (3) | Al4xiii—Al5—Al4 | 64.63 (6) |
Ni1xviii—Al3—Al4ii | 62.94 (3) | Al4ii—Al5—Al4 | 105.49 (6) |
Ni1viii—Al3—Al4ii | 117.06 (3) | Al4xxiii—Al5—Al4 | 146.99 (10) |
Al4xix—Al3—Al4ii | 117.11 (2) |
Symmetry codes: (i) −y+1, x−y, z; (ii) x, y, −z+1/2; (iii) −x, −y, z+1/2; (iv) y, −x+y, z−1/2; (v) x−y, x, −z+1; (vi) y, −x+y, −z+1; (vii) x−y, x, z−1/2; (viii) −x+y, −x, z; (ix) −y, x−y, z; (x) −y+1, x−y, −z+3/2; (xi) −x+y+1, −x+1, −z+3/2; (xii) x, y, −z+3/2; (xiii) −x+y+1, −x+1, z; (xiv) x−y+1, x, −z+1; (xv) −x+1, −y+1, −z+1; (xvi) −x, −y, −z; (xvii) y, −x+y, −z; (xviii) x−y, x, −z; (xix) −x+y, −x, −z+1/2; (xx) −x, −y, z−1/2; (xxi) −y, x−y, −z+1/2; (xxii) −x+1, −y+1, z−1/2; (xxiii) −x+y+1, −x+1, −z+1/2. |
Acknowledgements
We greatly acknowledge financial support from the Hebei Province Youth Top-notch Talent Program (2013–2018).
References
Bindi, L., Yao, N., Lin, C., Hollister, L. S., Andronicos, C. L., Distler, V. V., Eddy, M., Kostin, A., Kryachko, V., MacPherson, G. J., Steinhardt, W. M., Yudovskaya, M. & Steinhardt, P. J. (2015). Am. Mineral. 100, 2340–2343. CrossRef Google Scholar
Bradley, A. J. & Cheng, C. S. (1938). Z. Kristallogr. 99, 480–487. CAS Google Scholar
Brandenburg, K. & Putz, H. (2017). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA, 2008. Google Scholar
Chumak, I., Richter, K. W. & Ipser, H. (2007). Intermetallics, 15, 1416–1424. Web of Science CrossRef CAS Google Scholar
Khaidar, M., Allibert, C. H. & Driole, J. (1982). Z. Metallkd. 73, 433–438. CAS Google Scholar
Lemmerz, U., Grushko, B., Freiburg, C. & Jansen, M. (1994). Philos. Mag. Lett. 69, 141–146. CrossRef CAS Google Scholar
Liu, C. & Fan, C. (2018). IUCrData, 3, x180093. Google Scholar
Newkirk, J. B., Black, P. J. & Damjanovic, A. (1961). Acta Cryst. 14, 532–533. CrossRef CAS IUCr Journals Web of Science Google Scholar
Raghavan, V. (2010). J. Phase Equilib. Diffus. 31, 455–458. CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Wells, A. F. (1975). Structural Inorganic Chemistry, 4th ed., p. 1047. Oxford: Clarendon Press. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, L., Du, Y., Xu, H., Tang, C., Chen, H. & Zhang, W. (2008). J. Alloys Compd. 454, 129–135. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.