inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Redetermination of the crystal structure of ThI4

CROSSMARK_Color_square_no_text.svg

aAnorganische Chemie, Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
*Correspondence e-mail: f.kraus@uni-marburg.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 12 January 2018; accepted 2 February 2018; online 16 February 2018)

Single crystals of ThI4, thorium(IV) tetra­iodide, were grown from thorium dioxide and aluminium triiodide. In comparison with the structure model reported previously for this compound [Zalkin et al. (1964[Zalkin, A., Forrester, J. D. & Templeton, D. H. (1964). Inorg. Chem. 3, 639-644.]). Inorg. Chem. 3, 639–644], we have determined the lattice parameters and fractional coordinates to a much higher precision, also leading to a better reliability factor (R = 0.029 versus 0.09). The coordination number of the ThIV atom is eight. Its coordination polyhedron has the shape of an irregular square anti­prism. The I atoms each bridge two ThIV atoms, resulting in the formation of infinite layers parallel to (-101) that can be described with the Niggli formula 2[ThI6/2I2/2].

3D view (loading...)
[Scheme 3D1]

Structure description

ThI4 was first synthesized in 1882 (Nilson, 1882[Nilson, L. F. (1882). Ber. Dtsch Chem. Ges. 15, 2537-2547.]) by heating thorium metal in I2 vapour. Its crystal structure has been known since 1964 (Zalkin et al., 1964[Zalkin, A., Forrester, J. D. & Templeton, D. H. (1964). Inorg. Chem. 3, 639-644.]) and IR and Raman spectra were measured in 1976 (Brown et al., 1976[Brown, D., Whittaker, B. & De Paoli, G. (1976). U. K. At. Energy Res. Establ., Rep. Issue AERE-R, 8367 CAN85:185994.]). The other tetra­halides of thorium, viz. ThF4 (von Wartenberg et al., 1923[Wartenberg, H. von, Broy, J. & Reinicke, R. (1923). Z. Elektrochem. Angew. Phys. Chem. 29, 214-217.]), ThCl4 (Matignon & Delepine, 1907[Matignon, C. & Delepine, M. (1907). Ann. Chim. Phys. 10, 130-144.]), ThBr4 (Nilson, 1882[Nilson, L. F. (1882). Ber. Dtsch Chem. Ges. 15, 2537-2547.]), and the bi- and trivalent compounds ThI2 (Anderson & D'Eye, 1949[Anderson, J. S. & D'Eye, R. W. M. (1949). Angew. Chem. 61, 416.]) and ThI3 (Hayek & Rehner, 1949[Hayek, E. & Rehner, T. (1949). Oesterr. Chem. Ztg. 50, 161.]) are also known. In our efforts to synthesize pure actinide halides, we have developed a chemical vapour-transport method (Deubner et al., 2017[Deubner, H. L., Rudel, S. S. & Kraus, F. (2017). Z. Anorg. Allg. Chem. 643, 2005-2010.]), which allowed us to obtain single crystals suitable for X-ray diffraction experiments.

The lattice parameters obtained by our single-crystal structure determination (Table 1[link]) agree with those obtained previously (a = 13.22, b = 8.07, c = 7.77 Å, β = 98.68°, Z = 4, T = n.a.; Zalkin et al., 1964[Zalkin, A., Forrester, J. D. & Templeton, D. H. (1964). Inorg. Chem. 3, 639-644.]). The ThIV atom is located on a general position and has eight iodine atoms in its irregular square-anti­prismatic coordination sphere (Fig. 1[link]). The Th—I distances range between 3.1324 (7) and 3.2896 (7) Å and are in good agreement with the previously reported data (3.128–3.291 Å; Zalkin et al., 1964[Zalkin, A., Forrester, J. D. & Templeton, D. H. (1964). Inorg. Chem. 3, 639-644.]). As might be expected, the Th—I distances are comparable with those reported for the crystal structure of ThTe2I2 which features a similar anti-prismatic coordination sphere for the ThIV atom [3.1445 (9)–3.2157 (7) Å; Rocker & Tremel, 2001[Rocker, F. & Tremel, W. (2001). Z. Anorg. Allg. Chem. 627, 1305-1308.]]. The same applies for the Th⋯Th distances [4.4770 (6) Å] and the shortest I⋯I distances between the layers ranging from 4.1526 (8) to 4.2423 (8) Å [Th⋯Th distance: 4.478 (5), I⋯I distances: 4.079–4.252 (6) Å; Zalkin et al., 1964[Zalkin, A., Forrester, J. D. & Templeton, D. H. (1964). Inorg. Chem. 3, 639-644.]). The I—I—I angles (Table 1[link]) of the irregular polyhedron faces are also in good agreement with the previous structure determination (Zalkin et al., 1964[Zalkin, A., Forrester, J. D. & Templeton, D. H. (1964). Inorg. Chem. 3, 639-644.]).

Table 1
The I—I—I angles (°) within the irregular ThI8 coordination polyhedron

Face Present refinement Previous refinement (Zalkin et al., 1964[Zalkin, A., Forrester, J. D. & Templeton, D. H. (1964). Inorg. Chem. 3, 639-644.])
I2—I1iv—I3i 76.510 (15) 76.5
I1iv—I3i—I4iii 101.411 (17) 101.5
I3i—I4iii—I2 79.585 (15) 79.5
I4iii—I2—I1iv 97.949 (16) 98.0
I4—I1ii—I2iii 87.142 (16) 87.0
I2iii—I3iii—I4 91.545 (16) 91.5
I1ii—I2iii—I3iii 91.485 (16) 91.4
I1ii—I4—I3iii 89.821 (15) 90.0
Symmetry codes: (i) x, y − 1, z; (ii) x, y − 1, z − 1; (iii) −x + [{1\over 2}], y − [{1\over 2}], −z + [{1\over 2}]; (iv) −x, −y + 1, −z + 1.
[Figure 1]
Figure 1
The irregular square-anti­prismatic coordination sphere of the ThIV atom in the crystal structure of ThI4. Displacement ellipsoids are shown at the 95% probability level. [Symmetry codes: (i) x, y − 1, z; (ii) x, y − 1, z − 1; (iii) [{1\over 2}] − x, y − [{1\over 2}], [{1\over 2}] − z; (iv) −x, −y + 1, −z + 1.]

With respect to the shortest Th⋯Th distance of 4.4770 (6) Å, the ThIV atoms are bridged by three iodide atoms (a triangular face of the square anti­prism formed by the I2, I3 and I4 atoms), formally leading to the formation of one-dimensional infinite chains. These chains are in turn inter­connected by shared edges of the anti­prism (the I1 atoms), which corresponds to a Th⋯Th distance of 5.1998 (8) Å. This connection leads to infinite layers of 2[ThI6/2I2/2], running parallel to ([\overline{1}]01) (Fig. 2[link]). The arrangement of the ThIV atoms within a layer corresponds to a 63 network. Fig. 3[link] shows the crystal structure of the compound.

[Figure 2]
Figure 2
A section of the 2[ThI6/2I2/2] layer within the crystal structure of ThI4, showing the connection of the coordination polyhedra via faces and edges. Coordination polyhedra are shown transparent in green, atomic radii are arbitrary.
[Figure 3]
Figure 3
The crystal structure of ThI4 in a projection along [010]. Displacement ellipsoids are shown at the 95% probability level.

Synthesis and crystallization

Thorium(IV) tetra­iodide was synthesized from dry thorium dioxide (3.00 g, 11.36 mmol, Merck) and sublimed aluminium iodide (9.28 g, 22.76 mmol) in an evacuated and flame-sealed borosilicate tube at 623 K with an additional in situ chemical vapour transport (Deubner et al., 2017[Deubner, H. L., Rudel, S. S. & Kraus, F. (2017). Z. Anorg. Allg. Chem. 643, 2005-2010.]). The temperature at the source region was 723 K and at the sink region 623 K; the length of the tube was 13 cm. Canary yellow crystals could be obtained by an additional vacuum sublimation at 723 K in an evacuated, flame-sealed borosilicate tube.

Refinement

As a starting model for the structure refinement, the atomic coordinates of the previously reported ThI4 structure were used (Zalkin et al., 1964[Zalkin, A., Forrester, J. D. & Templeton, D. H. (1964). Inorg. Chem. 3, 639-644.]). Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula ThI4
Mr 739.64
Crystal system, space group Monoclinic, P21/n
Temperature (K) 243
a, b, c (Å) 13.1903 (16), 8.0686 (12), 7.755 (1)
β (°) 98.619 (10)
V3) 816.02 (19)
Z 4
Radiation type Mo Kα
μ (mm−1) 33.29
Crystal size (mm) 0.39 × 0.26 × 0.14
 
Data collection
Diffractometer Stoe IPDS 2T
Absorption correction Numerical (X-RED and X-SHAPE; Stoe & Cie, 2009[Stoe & Cie (2009). X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.240, 0.622
No. of measured, independent and observed [I > 2σ(I)] reflections 5880, 2174, 1988
Rint 0.063
(sin θ/λ)max−1) 0.688
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.071, 1.18
No. of reflections 2174
No. of parameters 47
Δρmax, Δρmin (e Å−3) 2.82, −2.06
Computer programs: X-AREA (Stoe & Cie, 2011[Stoe & Cie (2011). X-AREA. Stoe & Cie GmbH, Darmstadt, Germany.]) X-RED (Stoe & Cie, 2009[Stoe & Cie (2009). X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2015[Brandenburg, K. (2015). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]). Coordinates taken from a previous model.

Structural data


Computing details top

Data collection: X-AREA (Stoe & Cie, 2011); cell refinement: X-AREA (Stoe & Cie, 2011); data reduction: X-RED (Stoe & Cie, 2009); program(s) used to solve structure: coordinates taken from a previous model; program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2015); software used to prepare material for publication: publCIF (Westrip, 2010).

Thorium tetraiodide top
Crystal data top
ThI4cell choice according to the previous literature
Mr = 739.64Dx = 6.020 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.1903 (16) ÅCell parameters from 6166 reflections
b = 8.0686 (12) Åθ = 4.9–58.3°
c = 7.755 (1) ŵ = 33.29 mm1
β = 98.619 (10)°T = 243 K
V = 816.02 (19) Å3Hexagonal-block, canary yellow
Z = 40.39 × 0.26 × 0.14 mm
F(000) = 1208
Data collection top
Stoe IPDS 2T
diffractometer
2174 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus1988 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
rotation method scansθmax = 29.3°, θmin = 2.9°
Absorption correction: numerical
(X-RED and X-SHAPE; Stoe & Cie, 2009)
h = 1818
Tmin = 0.240, Tmax = 0.622k = 119
5880 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: isomorphous structure methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.0391P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.071(Δ/σ)max < 0.001
S = 1.18Δρmax = 2.82 e Å3
2174 reflectionsΔρmin = 2.06 e Å3
47 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00252 (18)
0 constraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Th10.18352 (2)0.01507 (3)0.17681 (3)0.01185 (10)
I10.05855 (4)0.90966 (7)0.80945 (6)0.01692 (12)
I20.18029 (4)0.25357 (6)0.49875 (6)0.01548 (12)
I30.09726 (4)0.69187 (6)0.32569 (6)0.01769 (13)
I40.15132 (4)0.36459 (6)0.00132 (6)0.01833 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Th10.01200 (14)0.00591 (15)0.01672 (14)0.00018 (8)0.00090 (8)0.00035 (8)
I10.0137 (2)0.0170 (3)0.0190 (2)0.00123 (17)0.00083 (15)0.00413 (17)
I20.0177 (2)0.0117 (2)0.0173 (2)0.00222 (16)0.00343 (15)0.00095 (16)
I30.0134 (2)0.0108 (3)0.0290 (3)0.00061 (16)0.00340 (17)0.00347 (18)
I40.0218 (2)0.0100 (2)0.0202 (2)0.00236 (17)0.00671 (17)0.00211 (16)
Geometric parameters (Å, º) top
Th1—I43.1324 (7)Th1—I3iii3.2269 (6)
Th1—I3i3.1340 (6)Th1—I1iv3.2675 (6)
Th1—I23.1576 (6)Th1—I4iii3.2896 (7)
Th1—I1ii3.1857 (7)Th1—Th1v4.4770 (6)
Th1—I2iii3.2041 (6)Th1—Th1vi5.1998 (8)
I4—Th1—I3i151.181 (15)I3iii—Th1—I4iii71.069 (16)
I4—Th1—I277.164 (17)I1iv—Th1—I4iii125.668 (16)
I3i—Th1—I299.624 (17)I4—Th1—Th1v47.262 (12)
I4—Th1—I1ii80.418 (16)I3i—Th1—Th1v143.752 (15)
I3i—Th1—I1ii86.534 (16)I2—Th1—Th1v45.695 (11)
I2—Th1—I1ii143.446 (15)I1ii—Th1—Th1v126.717 (13)
I4—Th1—I2iii117.155 (16)I2iii—Th1—Th1v118.545 (15)
I3i—Th1—I2iii82.309 (17)I3iii—Th1—Th1v44.426 (10)
I2—Th1—I2iii144.308 (10)I1iv—Th1—Th1v99.896 (13)
I1ii—Th1—I2iii72.070 (15)I4iii—Th1—Th1v87.161 (14)
I4—Th1—I3iii70.287 (15)I4—Th1—Th1vi76.002 (12)
I3i—Th1—I3iii138.169 (14)I3i—Th1—Th1vi78.151 (12)
I2—Th1—I3iii81.582 (15)I2—Th1—Th1vi108.886 (14)
I1ii—Th1—I3iii117.173 (16)I1ii—Th1—Th1vi36.853 (10)
I2iii—Th1—I3iii74.250 (16)I2iii—Th1—Th1vi106.387 (14)
I4—Th1—I1iv77.136 (15)I3iii—Th1—Th1vi141.428 (14)
I3i—Th1—I1iv74.466 (15)I1iv—Th1—Th1vi35.786 (10)
I2—Th1—I1iv74.449 (15)I4iii—Th1—Th1vi147.277 (14)
I1ii—Th1—I1iv72.639 (17)Th1v—Th1—Th1vi118.313 (9)
I2iii—Th1—I1iv138.513 (15)Th1vii—I1—Th1iv107.361 (17)
I3iii—Th1—I1iv143.026 (16)Th1—I2—Th1v89.455 (15)
I4—Th1—I4iii133.886 (15)Th1viii—I3—Th1v89.458 (15)
I3i—Th1—I4iii69.451 (15)Th1—I4—Th1v88.361 (15)
I2—Th1—I4iii73.192 (16)Th1—I4—I1ix161.270 (12)
I1ii—Th1—I4iii140.814 (17)Th1v—I4—I1ix76.457 (11)
I2iii—Th1—I4iii74.312 (15)
Symmetry codes: (i) x, y1, z; (ii) x, y1, z1; (iii) x+1/2, y1/2, z+1/2; (iv) x, y+1, z+1; (v) x+1/2, y+1/2, z+1/2; (vi) x, y, z; (vii) x, y+1, z+1; (viii) x, y+1, z; (ix) x, y+1, z1.
The I—I—I angles (°) within the irregular ThI8 coordination polyhedron top
FacePresent refinementPrevious refinement (Zalkin et al., 1964)
I2—I1iv—I3i76.510 (15)76.5
I1iv—I3i—I4iii101.411 (17)101.5
I3i—I4iii—I279.585 (15)79.5
I4iii—I2—I1iv97.949 (16)98.0
I4—I1ii—I2iii87.142 (16)87.0
I2iii—I3iii—I491.545 (16)91.5
I1ii—I2iii—I3iii91.485 (16)91.4
I1ii—I4—I3iii89.821 (15)90.0
Symmetry codes: (i) x, y - 1, z; (ii) x, y - 1, z - 1; (iii) -x + 1/2, y - 1/2, -z + 1/2; (iv) -x, -y + 1, -z + 1.
 

Acknowledgements

FK thanks Dr Harms for X-ray measurement time.

Funding information

FK thanks the DFG for very generous funding.

References

First citationAnderson, J. S. & D'Eye, R. W. M. (1949). Angew. Chem. 61, 416.  Google Scholar
First citationBrandenburg, K. (2015). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, D., Whittaker, B. & De Paoli, G. (1976). U. K. At. Energy Res. Establ., Rep. Issue AERE-R, 8367 CAN85:185994.  Google Scholar
First citationDeubner, H. L., Rudel, S. S. & Kraus, F. (2017). Z. Anorg. Allg. Chem. 643, 2005–2010.  CrossRef CAS Google Scholar
First citationHayek, E. & Rehner, T. (1949). Oesterr. Chem. Ztg. 50, 161.  Google Scholar
First citationMatignon, C. & Delepine, M. (1907). Ann. Chim. Phys. 10, 130–144.  CAS Google Scholar
First citationNilson, L. F. (1882). Ber. Dtsch Chem. Ges. 15, 2537–2547.  CrossRef Google Scholar
First citationRocker, F. & Tremel, W. (2001). Z. Anorg. Allg. Chem. 627, 1305–1308.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2009). X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationStoe & Cie (2011). X-AREA. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationWartenberg, H. von, Broy, J. & Reinicke, R. (1923). Z. Elektrochem. Angew. Phys. Chem. 29, 214–217.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZalkin, A., Forrester, J. D. & Templeton, D. H. (1964). Inorg. Chem. 3, 639–644.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]