metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(Metformin-κ2N,N′)(salicylato-κ2O,O′)copper(II) trihydrate

CROSSMARK_Color_square_no_text.svg

aInstituto de Física, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, 72570 Puebla, Pue., Mexico, and bFacultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, 72570 Puebla, Pue., Mexico
*Correspondence e-mail: sandrag@ifuap.buap.mx

Edited by M. Weil, Vienna University of Technology, Austria (Received 10 January 2018; accepted 30 January 2018; online 16 February 2018)

The hydrous title complex [systematic name: (1,1-di­methyl­biguanide-κ2N2,N4)(2-oxidobenzoato-κ2O,O′)copper(II) trihydrate], [Cu(C7H4O3)(C4H11N5)]·3H2O, was synthesized electrolytically from an ethano­lic solution of metformin hydro­chloride, acetyl­salicylic acid, Pepto-Bismol and a copper sacrificial anode. Diffraction data were collected at 0.56 Å resolution, allowing the accurate determination of H-atom positions in the neutral metformin ligand. Both imine groups in metformin have very similar N=C bond lengths, 1.2978 (17) and 1.3033 (17) Å, and the salicylate dianion behaves as a chelating ligand. The coordination sphere of the copper(II) cation deviates marginally from a square-planar arrangement. In the crystal, short Cu⋯Cu separations of 3.5476 (3) Å are observed, along with classical hydrogen-bonding inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In the past few years, metformin hydro­chloride (1,1-di­methyl­biguanide hydro­chloride; Niranjana Devi et al., 2017[Niranjana Devi, R., Jelsch, C., Israel, S., Aubert, E., Anzline, C. & Hosamani, A. A. (2017). Acta Cryst. B73, 10-22.]) has been the most commonly used drug for the first-line treatment of type 2 diabetes. Metformin (Metf) is known to affect the cellular housekeeping of copper. Dysfunctional copper metabolism is implicated in the development of several diseases, particularly those involving protein misfolding, and in diabetes (Repiščák et al., 2014[Repiščák, P., Erhardt, S., Rena, G. & Paterson, M. J. (2014). Biochemistry, 53, 787-795.]). Indeed, Metf is considered to be a moderately strong base and combines with many transition metal ions, especially CuII, NiII and PtII, because of the presence of the two imine groups in the cis positions, which enables it to act as a chelating agent. Some metal complexes with Metf have shown to increase hypoglycemic activity significantly compared to the pure Metf·HCl drug (Adam et al., 2015[Adam, A. M. A., Sharshar, T., Mohamed, M. A., Ibrahim, O. B. & Refat, M. S. (2015). Spectrochim. Acta Part A, 149, 323-332.]). On the other hand, acetyl­salicylic acid, which is one of the most used general pain-relieving drugs, has been associated with copper in the form of copper acetyl­salicylate to treat rheumatoid arthritis and thromboembolic diseases (Liu et al., 1998[Liu, W., Xiong, H., Yang, Y., Li, L., Shen, Z. & Chen, Z. (1998). Met.-Based Drugs, 5, 123-126.]). Here, we present the synthesis and crystal structure of a new CuII complex that contains both active pharmaceutical ingredients chelating to the central metal cation, namely neutral metformin and the salicylate dianion.

The mol­ecular complex is located on general positions, with three lattice water mol­ecules completing the asymmetric unit (Fig. 1[link]). The CuII ion is coordinated by the two ligands in an almost square configuration, with a slight deviation from planarity as evidenced by the dihedral angle between the two metallacyles of 4.31 (6)°. The salicylate ligand, which has a tendency to behave as a bridging ligand, here acts as a chelating ligand, as found in some other CuII complexes with square-planar coordination environments (e.g. Lemoine et al., 2002[Lemoine, P., Viossat, B., Morgant, G., Greenaway, F. T., Tomas, A., Dung, N.-H. & Sorenson, J. R. J. (2002). J. Inorg. Biochem. 89, 18-28.]). The neutral Metf ligand presents two imine C=N bonds with very similar bond lengths, C8=N2 and C9=N4, 1.2978 (17) and 1.3033 (17) Å. This feature could be a consequence of some delocalization including the central NH group in the metallacycle. This delocalization is consistent with the planar character of Metf, and was previously observed in the cationic complex [Cu(Metf)2]2+, which has been crystallized as the ClO4 (Olar et al., 2010[Olar, R., Badea, M., Marinescu, D., Chifiriuc, M.-C., Bleotu, C., Grecu, M. N., Iorgulescu, E.-E. & Lazar, V. (2010). Eur. J. Med. Chem. 45, 3027-3034.]), HCO3 (Viossat et al., 1995[Viossat, B., Tomas, A. & Dung, N.-H. (1995). Acta Cryst. C51, 213-215.]), and Cl (Lemoine et al., 1996[Lemoine, P., Chiadmi, M., Bissery, V., Tomas, A. & Viossat, B. (1996). Acta Cryst. C52, 1430-1436.]) salts. On the other hand, if the Metf ligand is deprotonated on the central N atom to form a neutral complex [Cu(Metf)2], the ligand remains almost planar but the central C N C angle is reduced to nearly 120° as a consequence of the increased π conjugation (Zhu et al., 2002[Zhu, M., Lu, L., Yang, P. & Jin, X. (2002). Acta Cryst. E58, m217-m219.]). In the title complex, the angle at the central N atom is 127.80 (11)°, and its H atom was clearly discernible in the structure refinement.

[Figure 1]
Figure 1
The structure of the mol­ecular entities present in the title compound, with displacement ellipsoids for non-H atoms drawn at the 60% probability level. Labelled atoms are those for which coordinates were refined freely.

In the crystal structure, complexes are stacked to form centrosymmetric dimers, giving a short inter­action between the central CuII cations, Cu1⋯Cu1i = 3.5476 (3) Å [symmetry code: (i) 1 − x, 1 − y, 1 − z]. These dimers are arranged in a herringbone-like pattern (Fig. 2[link]), with the stacking direction parallel to [010], and the water mol­ecules filling the voids between the stacks. The majority of N—H bonds in Metf are donor groups for hydrogen bonding with water mol­ecules (O4,O5) and the salicylate carbonyl O atom (O3) as acceptors. The crystal is further stabilized by O—H⋯O hydrogen bonds involving the two water mol­ecules and the three O atoms from the salicylate ligand as acceptors (Table 1[link]). As a consequence, stacks are connected to form R22(16) ring motifs in the crystal, including two complexes related by inversion (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11⋯O3i 0.80 (3) 2.22 (3) 2.9864 (18) 159 (3)
N1—H12⋯O4ii 0.80 (3) 2.14 (3) 2.9023 (18) 160 (3)
N2—H2⋯O3i 0.76 (2) 2.60 (3) 3.2948 (18) 152 (2)
N3—H3⋯O4ii 0.79 (2) 2.24 (2) 2.9772 (17) 156 (2)
N4—H4⋯O5 0.75 (2) 2.56 (2) 3.208 (2) 145 (2)
O4—H41⋯O5 0.85 (2) 1.87 (2) 2.717 (2) 172 (3)
O4—H42⋯O3iii 0.84 (2) 2.09 (2) 2.907 (2) 163 (3)
O5—H51⋯O6 0.91 (2) 1.83 (2) 2.726 (3) 171 (3)
O5—H52⋯O1 0.84 (2) 1.91 (2) 2.7336 (17) 169 (3)
O6—H61⋯O2iv 0.88 (2) 1.99 (2) 2.847 (2) 165 (3)
O6—H62⋯O2v 0.83 (2) 2.14 (2) 2.923 (2) 157 (4)
O6—H62⋯O3v 0.83 (2) 2.42 (2) 3.112 (2) 142 (3)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y, -z+1; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) -x+1, -y+1, -z+1; (v) x-1, y, z.
[Figure 2]
Figure 2
The crystal structure of the title compound, viewed down [100], with a colour scheme emphasizing the stacks formed along [010], and the distribution of water mol­ecules. The inset is the same part of the crystal structure viewed along the stacking direction [010].
[Figure 3]
Figure 3
Ring motif R22(16) formed between stacks in the crystal and water mol­ecules connected to the ring. Hydrogen bonds are depicted with dashed lines and a bracketed index corresponding to entries in Table 1[link]. The red bond (1) is that forming the ring motif. [Symmetry codes: (i) 2 − x, 1 − y, 1 − z; (ii) 1 − x, −y, 1 − z; (iii) 1 + x, 1 + y, z; (iv) 1 − x, 1 − y, 1 − z; (v) 1 + x, y, z.]

Synthesis and crystallization

Ligands were obtained from pharmaceutical drugs purchased over-the-counter, taking advantage of the fact that they were very pure and inexpensive. A mixture containing a half tablet of metformin hydro­chloride (0.425 g of Metf·HCl, 2.56 mmol, Alpharma laboratories), one tablet of aspirin (0.5 g of acetyl­salicylic acid, 2.76 mmol, Bayer Co.) and one tablet of Pepto-Bismol (0.262 mg of bis­muth subsalicylate, 0.72 mmol, Procter & Gamble Co.) were ground in 80 ml of ethanol (pharmaceutical grade, 70% v/v). After filtering the mixture to separate the excipients off, the solution was transferred to a single-compartment electrochemical cell provided with a graphite pencil lead as cathode and a copper wire as sacrificial anode. The electrodes were connected to a battery eliminator universal AC–DC adapter, and electrolysis was carried out at 3.0 V and room temperature, for 12 h. Over the course of the reaction, the colour of the solution turned purple, and the copper wire electrode was replaced if passivated. Moreover, an unpleasant odour was noted, indicating the presence of free Metf. Once the electrolysis had stopped, the solution was evaporated, and a pink solid, presumably [Cu(Metf)2]Cl2 (Lemoine et al., 1996[Lemoine, P., Chiadmi, M., Bissery, V., Tomas, A. & Viossat, B. (1996). Acta Cryst. C52, 1430-1436.]), and other impurities were filtered off. After fractional crystallization, the solvent was removed, affording small purple crystals of the title compound. Recrystallization from a hot methanol solution afforded single crystals suitable for physical measurements.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Single crystals proved to be highly diffracting samples, and diffraction data were collected at high resolution [(sin θ)/λ = 0.9 Å−1; d = 0.56 Å], with the hope of determining accurate positions for all H atoms in the structure. This was indeed the case; however, C-bound H atoms were placed in idealized positions (C—H = 0.93 and 0.96 Å for aromatic and methyl groups, respectively). In the Metf ligand, N-bonded H atoms were refined freely [N—H bond lengths in the range 0.75 (2)–0.80 (3) Å]. Finally, H atoms for water mol­ecules were refined with free coordinates, although the mol­ecular shape was restrained to a sensible target, with O—H = 0.85 (2) and H⋯H = 1.34 (2) Å (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]). Isotropic displacement parameters for H atoms were calculated from the equivalent displacement parameters of their carrier atoms.

Table 2
Experimental details

Crystal data
Chemical formula [Cu(C7H4O3)(C4H11N5)]·3H2O
Mr 382.87
Crystal system, space group Monoclinic, P21/n
Temperature (K) 295
a, b, c (Å) 9.0515 (4), 10.3922 (3), 17.1327 (7)
β (°) 98.351 (3)
V3) 1594.50 (11)
Z 4
Radiation type Ag Kα, λ = 0.56083 Å
μ (mm−1) 0.75
Crystal size (mm) 0.60 × 0.40 × 0.15
 
Data collection
Diffractometer Stoe Stadivari
Absorption correction Integration (X-RED32; Stoe & Cie, 2015[Stoe & Cie (2015). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.744, 0.899
No. of measured, independent and observed [I > 2σ(I)] reflections 87163, 9511, 5144
Rint 0.072
(sin θ/λ)max−1) 0.899
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.102, 0.93
No. of reflections 9511
No. of parameters 243
No. of restraints 9
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.54, −0.27
Computer programs: X-AREA (Stoe & Cie, 2015[Stoe & Cie (2015). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: X-AREA (Stoe & Cie, 2015); cell refinement: X-AREA (Stoe & Cie, 2015); data reduction: X-AREA (Stoe & Cie, 2015); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2017 (Sheldrick, 2015b).

(1,1-Dimethylbiguanide-κ2N2,N4)(2-oxidobenzoato-κ2O,O')copper(II) trihydrate top
Crystal data top
[Cu(C7H4O3)(C4H11N5)]·3H2ODx = 1.595 Mg m3
Mr = 382.87Melting point: 482 K
Monoclinic, P21/nAg Kα radiation, λ = 0.56083 Å
a = 9.0515 (4) ÅCell parameters from 29242 reflections
b = 10.3922 (3) Åθ = 2.4–33.9°
c = 17.1327 (7) ŵ = 0.75 mm1
β = 98.351 (3)°T = 295 K
V = 1594.50 (11) Å3Prism, purple
Z = 40.60 × 0.40 × 0.15 mm
F(000) = 796
Data collection top
Stoe Stadivari
diffractometer
9511 independent reflections
Radiation source: Sealed X-ray tube, Axo Astix-f Microfocus source5144 reflections with I > 2σ(I)
Graded multilayer mirror monochromatorRint = 0.072
Detector resolution: 5.81 pixels mm-1θmax = 30.3°, θmin = 2.4°
ω scansh = 1616
Absorption correction: integration
(X-RED32; Stoe & Cie, 2015)
k = 1812
Tmin = 0.744, Tmax = 0.899l = 3030
87163 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: mixed
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 0.93 w = 1/[σ2(Fo2) + (0.0514P)2]
where P = (Fo2 + 2Fc2)/3
9511 reflections(Δ/σ)max = 0.003
243 parametersΔρmax = 0.54 e Å3
9 restraintsΔρmin = 0.27 e Å3
0 constraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.64053 (2)0.38569 (2)0.53349 (2)0.03056 (5)
O10.53829 (12)0.45265 (10)0.61413 (7)0.0429 (2)
O20.80378 (12)0.50442 (10)0.56014 (7)0.0420 (2)
O30.96126 (14)0.62921 (13)0.63268 (8)0.0545 (3)
N10.80015 (17)0.17062 (14)0.35829 (9)0.0460 (3)
H110.864 (3)0.219 (2)0.3488 (16)0.069*
H120.766 (3)0.114 (2)0.3292 (16)0.069*
N20.75107 (15)0.30699 (13)0.45872 (9)0.0419 (3)
H20.826 (3)0.334 (2)0.4524 (15)0.063*
N30.57934 (13)0.14914 (11)0.40745 (7)0.0332 (2)
H30.564 (2)0.1002 (19)0.3721 (14)0.050*
N40.48227 (14)0.26258 (11)0.50551 (8)0.0356 (2)
H40.418 (2)0.263 (2)0.5286 (13)0.053*
N50.35066 (14)0.09055 (12)0.44111 (8)0.0385 (2)
C10.58179 (15)0.54802 (11)0.66440 (8)0.0322 (2)
C20.48295 (18)0.58554 (14)0.71644 (10)0.0413 (3)
H2A0.3922620.5428260.7147860.050*
C30.5172 (2)0.68377 (15)0.76965 (10)0.0448 (3)
H3A0.4497360.7067030.8033260.054*
C40.6523 (2)0.74922 (14)0.77347 (9)0.0446 (3)
H4A0.6746900.8168110.8087900.054*
C50.75166 (17)0.71283 (13)0.72462 (8)0.0369 (3)
H5A0.8427900.7553360.7280340.044*
C60.71971 (15)0.61260 (11)0.66919 (7)0.0298 (2)
C70.83387 (15)0.58195 (12)0.61897 (8)0.0324 (2)
C80.71272 (15)0.21386 (12)0.40946 (8)0.0325 (2)
C90.46896 (14)0.17067 (11)0.45320 (8)0.0297 (2)
C100.3321 (2)0.00931 (15)0.38073 (11)0.0489 (4)
H10A0.3105420.0298250.3295860.073*
H10B0.2511880.0648730.3891450.073*
H10C0.4224350.0586420.3836930.073*
C110.22570 (19)0.10863 (16)0.48457 (12)0.0495 (4)
H11A0.2602710.1024520.5401250.074*
H11B0.1519460.0434130.4694920.074*
H11C0.1823610.1919610.4727770.074*
O40.37716 (16)0.03873 (13)0.71842 (9)0.0581 (3)
H410.358 (3)0.1162 (18)0.7044 (17)0.087*
H420.426 (3)0.049 (3)0.7637 (12)0.087*
O50.34109 (18)0.28522 (14)0.66621 (11)0.0651 (4)
H510.263 (3)0.324 (3)0.6362 (17)0.098*
H520.408 (3)0.336 (2)0.6562 (19)0.098*
O60.0949 (2)0.37829 (17)0.57260 (12)0.0753 (5)
H610.140 (3)0.420 (3)0.5379 (17)0.113*
H620.023 (3)0.422 (3)0.582 (2)0.113*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02925 (8)0.02880 (7)0.03419 (8)0.00506 (6)0.00652 (5)0.00626 (6)
O10.0374 (5)0.0411 (5)0.0543 (6)0.0133 (4)0.0203 (5)0.0200 (4)
O20.0370 (5)0.0451 (5)0.0470 (6)0.0167 (4)0.0165 (4)0.0175 (4)
O30.0391 (6)0.0722 (8)0.0541 (7)0.0238 (6)0.0130 (5)0.0192 (6)
N10.0451 (7)0.0471 (7)0.0498 (8)0.0120 (6)0.0204 (6)0.0199 (6)
N20.0318 (6)0.0444 (6)0.0516 (7)0.0112 (5)0.0129 (5)0.0193 (5)
N30.0348 (5)0.0312 (4)0.0337 (5)0.0072 (4)0.0056 (4)0.0077 (4)
N40.0316 (5)0.0376 (5)0.0391 (6)0.0086 (4)0.0097 (4)0.0085 (4)
N50.0348 (6)0.0374 (5)0.0431 (6)0.0118 (4)0.0044 (5)0.0053 (5)
C10.0339 (6)0.0297 (5)0.0340 (6)0.0013 (4)0.0083 (5)0.0046 (4)
C20.0387 (7)0.0428 (7)0.0454 (8)0.0013 (6)0.0161 (6)0.0065 (6)
C30.0508 (9)0.0460 (7)0.0393 (7)0.0133 (6)0.0127 (6)0.0072 (6)
C40.0587 (9)0.0368 (6)0.0364 (7)0.0073 (6)0.0003 (7)0.0093 (5)
C50.0431 (7)0.0318 (5)0.0340 (6)0.0023 (5)0.0009 (5)0.0033 (5)
C60.0330 (6)0.0269 (4)0.0291 (5)0.0001 (4)0.0032 (4)0.0006 (4)
C70.0317 (6)0.0321 (5)0.0335 (6)0.0056 (4)0.0050 (5)0.0018 (4)
C80.0315 (6)0.0322 (5)0.0344 (6)0.0037 (4)0.0065 (5)0.0044 (5)
C90.0303 (6)0.0271 (5)0.0308 (5)0.0042 (4)0.0018 (4)0.0014 (4)
C100.0514 (9)0.0401 (7)0.0536 (9)0.0152 (6)0.0020 (7)0.0113 (6)
C110.0375 (7)0.0488 (8)0.0646 (11)0.0109 (6)0.0150 (7)0.0035 (7)
O40.0550 (8)0.0509 (6)0.0664 (9)0.0024 (6)0.0017 (6)0.0232 (6)
O50.0600 (9)0.0587 (8)0.0808 (11)0.0132 (7)0.0242 (8)0.0103 (7)
O60.0668 (10)0.0820 (10)0.0851 (12)0.0254 (8)0.0381 (9)0.0290 (9)
Geometric parameters (Å, º) top
Cu1—O11.9029 (10)C2—C31.374 (2)
Cu1—N21.9192 (13)C2—H2A0.9300
Cu1—O21.9283 (10)C3—C41.393 (3)
Cu1—N41.9285 (11)C3—H3A0.9300
O1—C11.3343 (16)C4—C51.368 (2)
O2—C71.2881 (17)C4—H4A0.9300
O3—C71.2439 (18)C5—C61.4110 (18)
N1—C81.3410 (19)C5—H5A0.9300
N1—H110.80 (3)C6—C71.4723 (19)
N1—H120.80 (3)C10—H10A0.9600
N2—C81.2978 (17)C10—H10B0.9600
N2—H20.76 (2)C10—H10C0.9600
N3—C91.3748 (18)C11—H11A0.9600
N3—C81.3781 (17)C11—H11B0.9600
N3—H30.79 (2)C11—H11C0.9600
N4—C91.3033 (17)O4—H410.850 (16)
N4—H40.75 (2)O4—H420.841 (17)
N5—C91.3485 (16)O5—H510.906 (17)
N5—C111.454 (2)O5—H520.838 (17)
N5—C101.458 (2)O6—H610.884 (17)
C1—C21.4068 (19)O6—H620.826 (17)
C1—C61.4092 (18)
O1—Cu1—N2174.97 (6)C5—C4—H4A120.4
O1—Cu1—O291.77 (4)C3—C4—H4A120.4
N2—Cu1—O288.56 (5)C4—C5—C6121.82 (14)
O1—Cu1—N490.06 (5)C4—C5—H5A119.1
N2—Cu1—N489.53 (5)C6—C5—H5A119.1
O2—Cu1—N4177.92 (5)C1—C6—C5118.95 (13)
C1—O1—Cu1127.68 (9)C1—C6—C7123.64 (11)
C7—O2—Cu1130.78 (9)C5—C6—C7117.42 (12)
C8—N1—H11115.9 (18)O3—C7—O2118.66 (13)
C8—N1—H12116 (2)O3—C7—C6120.95 (12)
H11—N1—H12124 (3)O2—C7—C6120.39 (12)
C8—N2—Cu1129.47 (11)N2—C8—N1123.20 (13)
C8—N2—H2110.3 (19)N2—C8—N3122.06 (13)
Cu1—N2—H2120.0 (19)N1—C8—N3114.72 (12)
C9—N3—C8127.80 (11)N4—C9—N5123.38 (13)
C9—N3—H3118.6 (16)N4—C9—N3120.60 (11)
C8—N3—H3113.2 (16)N5—C9—N3116.01 (11)
C9—N4—Cu1130.41 (10)N5—C10—H10A109.5
C9—N4—H4111.3 (17)N5—C10—H10B109.5
Cu1—N4—H4118.3 (16)H10A—C10—H10B109.5
C9—N5—C11120.07 (13)N5—C10—H10C109.5
C9—N5—C10123.75 (14)H10A—C10—H10C109.5
C11—N5—C10115.95 (13)H10B—C10—H10C109.5
O1—C1—C2117.37 (12)N5—C11—H11A109.5
O1—C1—C6124.55 (12)N5—C11—H11B109.5
C2—C1—C6118.08 (12)H11A—C11—H11B109.5
C3—C2—C1121.57 (15)N5—C11—H11C109.5
C3—C2—H2A119.2H11A—C11—H11C109.5
C1—C2—H2A119.2H11B—C11—H11C109.5
C2—C3—C4120.41 (15)H41—O4—H42102 (2)
C2—C3—H3A119.8H51—O5—H5297 (2)
C4—C3—H3A119.8H61—O6—H62108 (3)
C5—C4—C3119.15 (13)
Cu1—O1—C1—C2176.62 (11)C5—C6—C7—O310.3 (2)
Cu1—O1—C1—C63.9 (2)C1—C6—C7—O29.4 (2)
O1—C1—C2—C3179.22 (15)C5—C6—C7—O2170.32 (13)
C6—C1—C2—C31.2 (2)Cu1—N2—C8—N1177.81 (13)
C1—C2—C3—C40.1 (3)Cu1—N2—C8—N34.1 (2)
C2—C3—C4—C51.2 (2)C9—N3—C8—N20.9 (2)
C3—C4—C5—C61.4 (2)C9—N3—C8—N1179.20 (14)
O1—C1—C6—C5179.45 (13)Cu1—N4—C9—N5179.17 (11)
C2—C1—C6—C51.04 (19)Cu1—N4—C9—N30.3 (2)
O1—C1—C6—C70.2 (2)C11—N5—C9—N43.4 (2)
C2—C1—C6—C7179.26 (13)C10—N5—C9—N4177.57 (14)
C4—C5—C6—C10.3 (2)C11—N5—C9—N3177.72 (14)
C4—C5—C6—C7179.44 (13)C10—N5—C9—N33.5 (2)
Cu1—O2—C7—O3164.92 (12)C8—N3—C9—N41.0 (2)
Cu1—O2—C7—C614.5 (2)C8—N3—C9—N5177.97 (13)
C1—C6—C7—O3170.02 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O3i0.80 (3)2.22 (3)2.9864 (18)159 (3)
N1—H12···O4ii0.80 (3)2.14 (3)2.9023 (18)160 (3)
N2—H2···O3i0.76 (2)2.60 (3)3.2948 (18)152 (2)
N3—H3···O4ii0.79 (2)2.24 (2)2.9772 (17)156 (2)
N4—H4···O50.75 (2)2.56 (2)3.208 (2)145 (2)
O4—H41···O50.85 (2)1.87 (2)2.717 (2)172 (3)
O4—H42···O3iii0.84 (2)2.09 (2)2.907 (2)163 (3)
O5—H51···O60.91 (2)1.83 (2)2.726 (3)171 (3)
O5—H52···O10.84 (2)1.91 (2)2.7336 (17)169 (3)
O6—H61···O2iv0.88 (2)1.99 (2)2.847 (2)165 (3)
O6—H62···O2v0.83 (2)2.14 (2)2.923 (2)157 (4)
O6—H62···O3v0.83 (2)2.42 (2)3.112 (2)142 (3)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z+1; (iii) x+3/2, y1/2, z+3/2; (iv) x+1, y+1, z+1; (v) x1, y, z.
 

Funding information

Funding for this research was provided by: Consejo Nacional de Ciencia y Tecnología (grant No. 268178).

References

First citationAdam, A. M. A., Sharshar, T., Mohamed, M. A., Ibrahim, O. B. & Refat, M. S. (2015). Spectrochim. Acta Part A, 149, 323–332.  CrossRef CAS Google Scholar
First citationLemoine, P., Chiadmi, M., Bissery, V., Tomas, A. & Viossat, B. (1996). Acta Cryst. C52, 1430–1436.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationLemoine, P., Viossat, B., Morgant, G., Greenaway, F. T., Tomas, A., Dung, N.-H. & Sorenson, J. R. J. (2002). J. Inorg. Biochem. 89, 18–28.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiu, W., Xiong, H., Yang, Y., Li, L., Shen, Z. & Chen, Z. (1998). Met.-Based Drugs, 5, 123–126.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNiranjana Devi, R., Jelsch, C., Israel, S., Aubert, E., Anzline, C. & Hosamani, A. A. (2017). Acta Cryst. B73, 10–22.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOlar, R., Badea, M., Marinescu, D., Chifiriuc, M.-C., Bleotu, C., Grecu, M. N., Iorgulescu, E.-E. & Lazar, V. (2010). Eur. J. Med. Chem. 45, 3027–3034.  CSD CrossRef CAS Google Scholar
First citationRepiščák, P., Erhardt, S., Rena, G. & Paterson, M. J. (2014). Biochemistry, 53, 787–795.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2015). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationViossat, B., Tomas, A. & Dung, N.-H. (1995). Acta Cryst. C51, 213–215.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationZhu, M., Lu, L., Yang, P. & Jin, X. (2002). Acta Cryst. E58, m217–m219.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]