organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N,N-Di­methyl-1H-pyrazolo­[3,4-d]pyrimidin-4-amine monohydrate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique, Centre de Recherche Des Sciences des Médicaments, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bLaboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V, University Rabat, Morocco, and cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: elhafi.mohamed1@gmail.com

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 8 February 2018; accepted 9 February 2018; online 23 February 2018)

The asymmetric unit of the title compound, C7H9N5·H2O, consists of two formula units differing slightly in the orientation of the di­methyl­amino groups. In the crystal, a combination of O—H⋯N and N—H⋯O hydrogen bonds involving the water molecules of crystallization, as well as slipped π-stacking inter­actions between pyrazolo­pyrimidine units form layers parallel to the bc plane.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pyrazolo­[3,4-d]pyrimidines display a broad spectrum of biological activity including anti­viral, anti­tubercular (Trivedi et al., 2012[Trivedi, A. R., Dholariya, B. H., Vakhariya, C. P., Dodiya, D. K., Ram, H. K., Kataria, V. B., Siddiqui, A. B. & Shah, V. H. (2012). Med. Chem. Res. 21, 1887-1891.]) and anti­bacterial agents (Bondock et al., 2008[Bondock, S., Rabie, R., Etman, H. A. & Fadda, A. A. (2008). Eur. J. Med. Chem. 43, 2122-2129.]). The present work is a continuation of the investigation of pyrazolo­[3,4-d]pyrimidine derivatives reported by our team (El Hafi et al., 2017[El Hafi, M., Naas, M., Loubidi, M., Jouha, J., Ramli, Y., Mague, J. T., Essassi, E. M. & Guillaumet, G. (2017). C. R. Chim. 20, 927-933.]).

The asymmetric unit consists of two independent mol­ecules and two water mol­ecules of crystallization (Fig. 1[link]). The main mol­ecules differ primarily in the orientation of the di­methyl­amino substituent. Thus, the C2—C1—N5—C6 torsion angle is −6.3 (2)° while the C9—C8—N10—C14 torsion angle is 5.4 (2)°. The bicyclic moieties are slightly twisted, as seen from the dihedral angles of 1.99 (9) and 1.56 (9)° between the five- and six-membered rings.

[Figure 1]
Figure 1
The asymmetric unit with labeling scheme and 50% probability displacement ellipsoids.

In the crystal, head-to-tail, slipped π-stacking inter­actions between the five- and six-membered rings of the N1-containing mol­ecule with those in the N5-containing mol­ecule form dimers with a centroid–centroid distance of 3.543 (1) Å for the N1/N2/C4/C2/C3 ring and the N8/C11/C9/C8/N9/C12 ring at x, y − 1, z, while for the N3/C4/C2/C1/N4/C5 and N6/N7/C11/C9/C10 rings the corresponding distance is 3.750 (1) Å. The dimers are connected into chains parallel to the b-axis direction by N2—H2⋯O1 and O1—H1A—N8 hydrogen bonds (Table 1[link]). In the center of Fig. 2[link] are two dimers connected by hydrogen bonding to the water mol­ecules of crystallization and representing a portion of one chain. The chains are elaborated into layers parallel to the bc plane by O2—H2A—N9 and O1—H1B—N4 hydrogen bonds (Table 1[link] and Figs. 2[link] and 3[link]). In the layers, the mean planes of the bicyclic moieties in adjacent chains are inclined to one another by 30.1 (1)°.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.94 (2) 1.82 (2) 2.7546 (18) 173 (2)
N7—H7⋯O2ii 0.99 (2) 1.74 (2) 2.7256 (19) 179 (3)
O1—H1A⋯N8i 0.93 (3) 1.94 (3) 2.8607 (19) 172 (2)
O1—H1B⋯N4iii 0.88 (3) 1.95 (3) 2.8158 (18) 170 (2)
O2—H2A⋯N9iv 0.97 (3) 1.86 (3) 2.8042 (18) 166 (2)
O2—H2B⋯N3ii 0.89 (3) 1.98 (3) 2.865 (2) 173 (2)
Symmetry codes: (i) x, y-1, z; (ii) x, y+1, z; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Plan view of a portion of one layer showing the O—H⋯N and N—H⋯O hydrogen bonds (red and blue dashed lines, respectively) and the π-stacking inter­actions (tan dashed lines) projected along the a-axis direction.
[Figure 3]
Figure 3
View of the layer structure projected along the b-axis direction. Inter­molecular inter­actions are depicted as in Fig. 2[link].

Synthesis and crystallization

To a solution of 1H-pyrazolo­[3,4-d]pyrimidine-4-thione (0.5 g, 3.3 mmol) in DMF (15 ml) was added a catalytic amount of tetra-n-butyl­ammonium bromide and potassium carbonate (0.54 g, 3.96 mmol). The mixture was heated to reflux for 12 h. The solution was filtered and the solvent removed under reduced pressure. The resulting residue was purified by column chromatography (EtOAc/hexane 8/2). The title compound was recrystallized from ethanol solution, at room temperature, giving colorless crystals (yield: 40%; m.p. 371–373 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C7H9N5·H2O
Mr 181.21
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 14.5177 (5), 8.3622 (3), 14.9892 (6)
β (°) 110.724 (2)
V3) 1701.95 (11)
Z 8
Radiation type Cu Kα
μ (mm−1) 0.85
Crystal size (mm) 0.13 × 0.12 × 0.09
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.75, 0.93
No. of measured, independent and observed [I > 2σ(I)] reflections 12386, 3309, 2718
Rint 0.038
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.122, 1.04
No. of reflections 3309
No. of parameters 312
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.33, −0.25
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

N,N-Dimethyl-1H-pyrazolo[3,4-d]pyrimidin-4-amine monohydrate top
Crystal data top
C7H9N5·H2OF(000) = 768
Mr = 181.21Dx = 1.414 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 14.5177 (5) ÅCell parameters from 8628 reflections
b = 8.3622 (3) Åθ = 6.0–72.4°
c = 14.9892 (6) ŵ = 0.85 mm1
β = 110.724 (2)°T = 150 K
V = 1701.95 (11) Å3Plate, colourless
Z = 80.13 × 0.12 × 0.09 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
3309 independent reflections
Radiation source: INCOATEC IµS micro-focus source2718 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.038
Detector resolution: 10.4167 pixels mm-1θmax = 72.4°, θmin = 3.3°
ω scansh = 1716
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1010
Tmin = 0.75, Tmax = 0.93l = 1817
12386 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: mixed
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0654P)2 + 0.6351P]
where P = (Fo2 + 2Fc2)/3
3309 reflections(Δ/σ)max < 0.001
312 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Independent refinement of the H-atoms of the C13 methyl group gave an unacceptible geometry so these were included as riding contributions in calculated positions.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.35991 (10)0.08305 (16)0.59163 (10)0.0250 (3)
N20.34162 (10)0.20751 (15)0.52829 (9)0.0221 (3)
H20.3287 (17)0.309 (3)0.5484 (16)0.045 (6)*
N30.33702 (10)0.25750 (15)0.36887 (9)0.0236 (3)
N40.37264 (10)0.02269 (15)0.29363 (9)0.0220 (3)
N50.40567 (10)0.22662 (15)0.36469 (9)0.0232 (3)
C10.38315 (11)0.07230 (17)0.36999 (11)0.0191 (3)
C20.37115 (11)0.00241 (17)0.45202 (11)0.0190 (3)
C30.37741 (12)0.04219 (18)0.54641 (11)0.0223 (3)
H30.3931 (14)0.145 (2)0.5792 (14)0.029 (5)*
C40.34815 (11)0.16102 (17)0.44479 (11)0.0194 (3)
C50.35117 (12)0.17807 (17)0.29836 (11)0.0231 (3)
H50.3459 (14)0.246 (2)0.2426 (14)0.028 (5)*
N60.11735 (12)1.09738 (17)0.29206 (10)0.0315 (3)
C60.40961 (14)0.33787 (18)0.44047 (13)0.0270 (4)
H6A0.4672 (17)0.321 (3)0.4968 (16)0.040 (6)*
H6B0.3490 (16)0.327 (2)0.4575 (15)0.034 (5)*
H6C0.4086 (16)0.446 (3)0.4144 (15)0.041 (6)*
C70.42515 (15)0.2901 (2)0.28240 (13)0.0313 (4)
H7A0.364 (2)0.329 (3)0.233 (2)0.067 (8)*
H7B0.4553 (16)0.205 (3)0.2542 (15)0.045 (6)*
H7C0.470 (2)0.378 (3)0.3036 (19)0.063 (7)*
N70.14486 (10)1.21815 (16)0.35787 (10)0.0257 (3)
H70.1599 (15)1.323 (3)0.3362 (15)0.037 (5)*
N80.16768 (10)1.26041 (15)0.52296 (10)0.0237 (3)
N90.13523 (9)1.02412 (15)0.59898 (9)0.0214 (3)
N100.09608 (10)0.77770 (15)0.52618 (10)0.0239 (3)
C80.11589 (11)0.93300 (17)0.51981 (11)0.0195 (3)
C90.11820 (11)1.00684 (17)0.43506 (11)0.0213 (3)
C100.10148 (13)0.9713 (2)0.33780 (12)0.0285 (4)
H100.0784 (16)0.867 (3)0.3032 (16)0.041 (6)*
C110.14572 (11)1.16857 (17)0.44357 (11)0.0208 (3)
C130.09545 (14)0.7092 (2)0.61547 (12)0.0305 (4)
H13A0.1632440.6878900.6577110.046*
H13B0.0580050.6090460.6022610.046*
H13C0.0646770.7847590.6464180.046*
C140.08358 (14)0.66887 (19)0.44671 (13)0.0288 (4)
H14A0.0172 (17)0.687 (3)0.3924 (16)0.043 (6)*
H14B0.0928 (19)0.560 (3)0.4751 (18)0.057 (7)*
H14C0.1366 (17)0.686 (3)0.4205 (16)0.046 (6)*
C120.15937 (12)1.17870 (18)0.59506 (11)0.0223 (3)
H120.1724 (14)1.233 (2)0.6551 (14)0.029 (5)*
O10.32101 (10)0.49247 (14)0.59478 (9)0.0319 (3)
H1A0.267 (2)0.425 (3)0.5696 (19)0.063 (8)*
H1B0.338 (2)0.489 (3)0.657 (2)0.062 (8)*
O20.18478 (11)0.50803 (14)0.29669 (9)0.0338 (3)
H2A0.1662 (19)0.516 (3)0.228 (2)0.059 (7)*
H2B0.236 (2)0.574 (3)0.3215 (18)0.057 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0310 (7)0.0254 (7)0.0194 (7)0.0000 (5)0.0098 (6)0.0008 (5)
N20.0284 (7)0.0194 (6)0.0187 (7)0.0009 (5)0.0088 (6)0.0015 (5)
N30.0334 (7)0.0168 (6)0.0204 (7)0.0023 (5)0.0093 (6)0.0006 (5)
N40.0296 (7)0.0188 (6)0.0186 (6)0.0012 (5)0.0097 (6)0.0003 (5)
N50.0310 (7)0.0161 (6)0.0233 (7)0.0029 (5)0.0108 (6)0.0002 (5)
C10.0207 (7)0.0168 (7)0.0195 (7)0.0003 (5)0.0067 (6)0.0003 (5)
C20.0208 (7)0.0173 (7)0.0184 (7)0.0007 (5)0.0062 (6)0.0004 (5)
C30.0273 (8)0.0213 (7)0.0194 (8)0.0005 (6)0.0095 (7)0.0018 (6)
C40.0219 (7)0.0181 (7)0.0175 (7)0.0010 (5)0.0062 (6)0.0010 (5)
C50.0309 (8)0.0175 (7)0.0205 (8)0.0000 (6)0.0087 (7)0.0015 (6)
N60.0455 (9)0.0294 (7)0.0202 (7)0.0070 (6)0.0122 (7)0.0020 (6)
C60.0364 (9)0.0154 (7)0.0269 (9)0.0009 (6)0.0083 (8)0.0027 (6)
C70.0436 (10)0.0242 (8)0.0286 (9)0.0067 (7)0.0159 (8)0.0041 (7)
N70.0354 (8)0.0226 (7)0.0191 (7)0.0040 (5)0.0095 (6)0.0016 (5)
N80.0300 (7)0.0181 (6)0.0229 (7)0.0015 (5)0.0094 (6)0.0006 (5)
N90.0249 (7)0.0196 (6)0.0202 (7)0.0000 (5)0.0087 (5)0.0004 (5)
N100.0318 (7)0.0168 (6)0.0225 (7)0.0037 (5)0.0090 (6)0.0000 (5)
C80.0187 (7)0.0172 (7)0.0223 (8)0.0004 (5)0.0068 (6)0.0011 (6)
C90.0250 (8)0.0195 (7)0.0199 (8)0.0016 (6)0.0088 (6)0.0006 (6)
C100.0390 (9)0.0266 (8)0.0205 (8)0.0062 (7)0.0114 (7)0.0033 (6)
C110.0230 (8)0.0201 (7)0.0194 (8)0.0003 (6)0.0075 (6)0.0014 (6)
C130.0404 (10)0.0238 (8)0.0270 (9)0.0053 (7)0.0114 (8)0.0058 (6)
C140.0386 (10)0.0184 (8)0.0290 (9)0.0030 (6)0.0114 (8)0.0042 (6)
C120.0271 (8)0.0198 (7)0.0203 (8)0.0001 (6)0.0085 (7)0.0024 (6)
O10.0510 (8)0.0243 (6)0.0212 (6)0.0113 (5)0.0138 (6)0.0012 (5)
O20.0526 (8)0.0265 (6)0.0217 (6)0.0145 (5)0.0124 (6)0.0012 (5)
Geometric parameters (Å, º) top
N1—C31.320 (2)N7—C111.3456 (19)
N1—N21.3699 (18)N7—H70.98 (2)
N2—C41.3456 (19)N8—C121.320 (2)
N2—H20.94 (2)N8—C111.3561 (19)
N3—C51.325 (2)N9—C121.3460 (19)
N3—C41.3572 (19)N9—C81.3534 (19)
N4—C51.3439 (19)N10—C81.3408 (19)
N4—C11.3567 (19)N10—C141.458 (2)
N5—C11.3404 (19)N10—C131.459 (2)
N5—C61.454 (2)C8—C91.424 (2)
N5—C71.459 (2)C9—C111.403 (2)
C1—C21.427 (2)C9—C101.422 (2)
C2—C41.402 (2)C10—H101.01 (2)
C2—C31.425 (2)C13—H13A0.9800
C3—H30.98 (2)C13—H13B0.9800
C5—H50.99 (2)C13—H13C0.9800
N6—C101.321 (2)C14—H14A1.03 (2)
N6—N71.3687 (19)C14—H14B0.99 (3)
C6—H6A0.97 (2)C14—H14C0.99 (2)
C6—H6B1.00 (2)C12—H120.97 (2)
C6—H6C0.98 (2)O1—H1A0.93 (3)
C7—H7A0.99 (3)O1—H1B0.88 (3)
C7—H7B1.00 (2)O2—H2A0.97 (3)
C7—H7C0.96 (3)O2—H2B0.89 (3)
C3—N1—N2105.79 (13)C11—N7—N6111.25 (13)
C4—N2—N1111.41 (12)C11—N7—H7131.4 (12)
C4—N2—H2130.3 (14)N6—N7—H7117.4 (12)
N1—N2—H2118.2 (14)C12—N8—C11111.35 (13)
C5—N3—C4111.41 (12)C12—N9—C8118.61 (13)
C5—N4—C1118.72 (13)C8—N10—C14120.94 (14)
C1—N5—C6120.85 (13)C8—N10—C13121.10 (13)
C1—N5—C7121.62 (13)C14—N10—C13117.72 (13)
C6—N5—C7117.52 (13)N10—C8—N9117.78 (14)
N5—C1—N4118.07 (13)N10—C8—C9123.85 (14)
N5—C1—C2123.52 (14)N9—C8—C9118.37 (13)
N4—C1—C2118.40 (13)C11—C9—C10103.55 (13)
C4—C2—C3103.54 (13)C11—C9—C8115.65 (13)
C4—C2—C1115.54 (13)C10—C9—C8140.79 (14)
C3—C2—C1140.89 (14)N6—C10—C9111.55 (14)
N1—C3—C2111.62 (13)N6—C10—H10120.8 (13)
N1—C3—H3119.6 (11)C9—C10—H10127.7 (13)
C2—C3—H3128.8 (11)N7—C11—N8125.67 (14)
N2—C4—N3125.56 (13)N7—C11—C9107.70 (13)
N2—C4—C2107.64 (13)N8—C11—C9126.62 (14)
N3—C4—C2126.78 (14)N10—C13—H13A109.5
N3—C5—N4129.15 (14)N10—C13—H13B109.5
N3—C5—H5113.6 (11)H13A—C13—H13B109.5
N4—C5—H5117.3 (11)N10—C13—H13C109.5
C10—N6—N7105.95 (13)H13A—C13—H13C109.5
N5—C6—H6A112.0 (13)H13B—C13—H13C109.5
N5—C6—H6B110.4 (12)N10—C14—H14A111.6 (13)
H6A—C6—H6B109.4 (17)N10—C14—H14B105.2 (14)
N5—C6—H6C106.6 (13)H14A—C14—H14B114.7 (19)
H6A—C6—H6C111.5 (18)N10—C14—H14C110.0 (13)
H6B—C6—H6C106.9 (17)H14A—C14—H14C107.8 (18)
N5—C7—H7A111.4 (16)H14B—C14—H14C107.3 (19)
N5—C7—H7B110.2 (13)N8—C12—N9129.32 (14)
H7A—C7—H7B109 (2)N8—C12—H12118.4 (11)
N5—C7—H7C108.1 (16)N9—C12—H12112.3 (11)
H7A—C7—H7C108 (2)H1A—O1—H1B107 (2)
H7B—C7—H7C110 (2)H2A—O2—H2B106 (2)
C3—N1—N2—C40.35 (17)C10—N6—N7—C110.31 (19)
C6—N5—C1—N4174.64 (14)C14—N10—C8—N9174.25 (14)
C7—N5—C1—N44.1 (2)C13—N10—C8—N90.0 (2)
C6—N5—C1—C26.3 (2)C14—N10—C8—C95.4 (2)
C7—N5—C1—C2174.90 (15)C13—N10—C8—C9179.64 (15)
C5—N4—C1—N5179.26 (14)C12—N9—C8—N10177.22 (14)
C5—N4—C1—C20.2 (2)C12—N9—C8—C92.5 (2)
N5—C1—C2—C4179.67 (14)N10—C8—C9—C11176.56 (14)
N4—C1—C2—C40.6 (2)N9—C8—C9—C113.1 (2)
N5—C1—C2—C32.2 (3)N10—C8—C9—C103.1 (3)
N4—C1—C2—C3176.83 (18)N9—C8—C9—C10177.20 (19)
N2—N1—C3—C20.11 (18)N7—N6—C10—C90.1 (2)
C4—C2—C3—N10.15 (17)C11—C9—C10—N60.2 (2)
C1—C2—C3—N1177.81 (18)C8—C9—C10—N6179.54 (19)
N1—N2—C4—N3177.86 (14)N6—N7—C11—N8178.51 (15)
N1—N2—C4—C20.45 (17)N6—N7—C11—C90.43 (18)
C5—N3—C4—N2177.72 (15)C12—N8—C11—N7178.17 (15)
C5—N3—C4—C20.3 (2)C12—N8—C11—C90.6 (2)
C3—C2—C4—N20.35 (16)C10—C9—C11—N70.35 (17)
C1—C2—C4—N2178.72 (13)C8—C9—C11—N7179.44 (13)
C3—C2—C4—N3177.93 (15)C10—C9—C11—N8178.57 (15)
C1—C2—C4—N30.4 (2)C8—C9—C11—N81.6 (2)
C4—N3—C5—N40.9 (2)C11—N8—C12—N91.5 (2)
C1—N4—C5—N30.7 (3)C8—N9—C12—N80.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.94 (2)1.82 (2)2.7546 (18)173 (2)
N7—H7···O2ii0.99 (2)1.74 (2)2.7256 (19)179 (3)
O1—H1A···N8i0.93 (3)1.94 (3)2.8607 (19)172 (2)
O1—H1B···N4iii0.88 (3)1.95 (3)2.8158 (18)170 (2)
O2—H2A···N9iv0.97 (3)1.86 (3)2.8042 (18)166 (2)
O2—H2B···N3ii0.89 (3)1.98 (3)2.865 (2)173 (2)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x, y+1/2, z+1/2; (iv) x, y+3/2, z1/2.
 

Funding information

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBondock, S., Rabie, R., Etman, H. A. & Fadda, A. A. (2008). Eur. J. Med. Chem. 43, 2122–2129.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl Hafi, M., Naas, M., Loubidi, M., Jouha, J., Ramli, Y., Mague, J. T., Essassi, E. M. & Guillaumet, G. (2017). C. R. Chim. 20, 927–933.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTrivedi, A. R., Dholariya, B. H., Vakhariya, C. P., Dodiya, D. K., Ram, H. K., Kataria, V. B., Siddiqui, A. B. & Shah, V. H. (2012). Med. Chem. Res. 21, 1887–1891.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]