organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-(2-Amino-4,5-di­methyl­phen­yl)ethanone

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistrry, Missouri State University, 901 South National Avenue, Springfield, MO 65804, USA
*Correspondence e-mail: ericbosch@missouristate.edu

Edited by J. Simpson, University of Otago, New Zealand (Received 21 February 2018; accepted 22 February 2018; online 28 February 2018)

The mol­ecule of the title compound, C10H13NO, also referred to as 2-amino-4,5-di­methyl­aceto­phenone, lies on a crystallographic mirror plane with four mol­ecules in the orthorhombic unit cell and features an intra­molecular N—H⋯O hydrogen bond. In the crystal, the molecules are linked by N—H⋯O hydrogen bonds, forming ribbons along the a axis that pack to form sheets lying in the (010) plane.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The synthesis of 2-aminoacetophenone was accomplished in a one-pot reduction and hydration of 2-nitrophenacetylene with a variety of reagents generally used for the reduction of nitrobenzenes (Bosch & Jeffries, 2001[Bosch, E. & Jeffries, L. (2001). Tetrahedron Lett. 42, 8141-8142.]). The asymmetric unit of the title compound comprises a single mol­ecule that lies on a mirror plane with hydrogen atoms of the three methyl groups disordered over two positions. An intra­molecular N1—H1N⋯O1 hydrogen bond (Fig. 1[link] and Table 1[link]) supports the planar structure. A search of the Cambridge Structural Database (CSD, Version 5.39, November 2017, Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using Conquest (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]) for neutral uncomplexed mol­ecules, including the 2-amino­aceto­phenone framework, yielded 99 hits. CSD entries not including atomic coordinates for H atoms were excluded. In 96 of these structures, an intra­molecular N—H⋯O hydrogen bond was observed.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1 0.89 (2) 1.96 (2) 2.6603 (19) 135 (2)
N1—H2N⋯O1i 0.86 (2) 2.09 (2) 2.9478 (18) 170 (2)
Symmetry code: (i) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The asymmetric unit of the title compound, showing the atom-numbering scheme. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level and H atoms are shown as circles of arbitrary size. An intramolecular hydrogen bond is shown as a dashed line.

In the crystal, ribbons form along the a-axis direction through N1—H2N⋯O1 hydrogen bonds. Adjacent ribbons pack to form sheets lying in the (010) plane (Fig. 2[link]). These sheets stack parallel to (101). There are possible extremely weak offset ππ stacking inter­actions (Fig. 3[link]), with a centroid-to-centroid distance between the stacked benzene rings of 5.1075 (8) Å and with a slippage of 3.768 Å. In addition, the closest contact between stacked mol­ecules is between the aceto­phenone methyl group and the centroid of the benzene ring, with a C8⋯Cg1 distance of 3.4531 (3) Å, suggesting that C8—H8⋯Cg1 contacts may also consolidate the stacking inter­action, Cg1 is the centroid of the C1–C6 benzene ring.

[Figure 2]
Figure 2
A view of a sheet comprising side-by-side packing of one-dimensional hydrogen-bonded ribbons of the title compound. Hydrogen bonds are shown as a dashed lines.
[Figure 3]
Figure 3
View along the a axis of the offset π-stacked planes shown in Fig. 2[link].

Synthesis and crystallization

The title compound was synthesized by a one-pot hydration and reduction of 1-ethynyl-4,5-dimethyl-2-nitro­benzene with Fe/HCl, SnCl2 or nickel boride and the isolation and characterization have been reported previously (Bosch & Jeffries, 2001[Bosch, E. & Jeffries, L. (2001). Tetrahedron Lett. 42, 8141-8142.]). Crystals suitable for X-ray data collection were obtained by slow evaporation of a di­chloro­methane solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C10H13NO
Mr 163.21
Crystal system, space group Orthorhombic, Pnma
Temperature (K) 173
a, b, c (Å) 10.4838 (7), 6.8965 (5), 12.8538 (9)
V3) 929.35 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.33 × 0.32 × 0.21
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.954, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11353, 1115, 883
Rint 0.028
(sin θ/λ)max−1) 0.641
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.116, 1.09
No. of reflections 1115
No. of parameters 80
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.25, −0.19
Computer programs: SMART and SAINT (Bruker 2014[Bruker (2014). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]).

Structural data


Computing details top

Data collection: SMART (Bruker 2014); cell refinement: SMART (Bruker 2014); data reduction: SAINT (Bruker 2014); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: X-SEED (Barbour, 2001).

1-(2-Amino-4,5-dimethylphenyl)ethanone top
Crystal data top
C10H13NODx = 1.167 Mg m3
Mr = 163.21Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 2665 reflections
a = 10.4838 (7) Åθ = 2.5–26.4°
b = 6.8965 (5) ŵ = 0.08 mm1
c = 12.8538 (9) ÅT = 173 K
V = 929.35 (11) Å3Cut block, yellow
Z = 40.33 × 0.32 × 0.21 mm
F(000) = 352
Data collection top
Bruker APEXII CCD
diffractometer
1115 independent reflections
Radiation source: fine-focus sealed tube883 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 8.3660 pixels mm-1θmax = 27.1°, θmin = 2.5°
phi and ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 88
Tmin = 0.954, Tmax = 1.000l = 1616
11353 measured reflections
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0555P)2 + 0.1911P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
1115 reflectionsΔρmax = 0.25 e Å3
80 parametersΔρmin = 0.19 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.39680 (11)0.2500000.32229 (9)0.0446 (4)
N10.64524 (14)0.2500000.28016 (11)0.0448 (4)
H1N0.5657 (16)0.2500000.2566 (16)0.054*
H2N0.7141 (16)0.2500000.2431 (15)0.054*
C10.55346 (14)0.2500000.45470 (11)0.0281 (4)
C20.65892 (14)0.2500000.38534 (12)0.0308 (4)
C70.42132 (14)0.2500000.41648 (12)0.0314 (4)
C60.57905 (15)0.2500000.56227 (12)0.0320 (4)
H60.5101030.2500000.6078010.038*
C50.69982 (16)0.2500000.60405 (12)0.0352 (4)
C80.31262 (15)0.2500000.49238 (13)0.0374 (4)
H8A0.3269420.3476680.5442950.056*0.5
H8B0.3068720.1252470.5251750.056*0.5
H8C0.2344990.2770840.4562280.056*0.5
C30.78212 (15)0.2500000.42849 (13)0.0363 (4)
H30.8518340.2500000.3837480.044*
C40.80412 (15)0.2500000.53421 (14)0.0369 (4)
C100.7192 (2)0.2500000.72029 (14)0.0511 (5)
H10A0.7432030.3776300.7427500.077*0.5
H10B0.7853600.1597100.7380810.077*0.5
H10C0.6412630.2126610.7540400.077*0.5
C90.93866 (18)0.2500000.57495 (18)0.0587 (6)
H9A0.9568950.3731560.6064190.088*0.5
H9B0.9968820.2276950.5185550.088*0.5
H9C0.9480510.1491490.6258510.088*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0299 (6)0.0696 (9)0.0342 (7)0.0000.0056 (5)0.000
N10.0298 (8)0.0746 (11)0.0300 (8)0.0000.0048 (6)0.000
C10.0234 (7)0.0315 (8)0.0294 (8)0.0000.0014 (6)0.000
C20.0273 (8)0.0345 (8)0.0307 (8)0.0000.0029 (6)0.000
C70.0261 (8)0.0331 (8)0.0349 (8)0.0000.0018 (6)0.000
C60.0310 (8)0.0350 (8)0.0300 (8)0.0000.0024 (6)0.000
C50.0368 (9)0.0364 (9)0.0323 (8)0.0000.0066 (7)0.000
C80.0252 (8)0.0433 (10)0.0437 (10)0.0000.0032 (7)0.000
C30.0237 (8)0.0439 (9)0.0414 (9)0.0000.0041 (7)0.000
C40.0267 (8)0.0390 (9)0.0449 (9)0.0000.0064 (7)0.000
C100.0549 (12)0.0631 (12)0.0355 (10)0.0000.0120 (8)0.000
C90.0315 (10)0.0784 (15)0.0661 (14)0.0000.0156 (9)0.000
Geometric parameters (Å, º) top
O1—C71.2377 (19)C8—H8Bi0.960 (10)
N1—C21.360 (2)C8—H8Ci0.960 (7)
N1—H1N0.887 (15)C3—C41.378 (2)
N1—H2N0.864 (15)C3—H30.9300
C1—C61.408 (2)C4—C91.505 (2)
C1—C21.420 (2)C10—H10A0.9600
C1—C71.470 (2)C10—H10B0.9600
C2—C31.406 (2)C10—H10C0.9600
C7—C81.500 (2)C10—H10Ai0.960 (8)
C6—C51.375 (2)C10—H10Bi0.960 (17)
C6—H60.9300C10—H10Ci0.960 (9)
C5—C41.415 (2)C9—H9A0.9600
C5—C101.508 (2)C9—H9B0.9600
C8—H8A0.9600C9—H9C0.9600
C8—H8B0.9600C9—H9Ai0.960 (19)
C8—H8C0.9600C9—H9Bi0.960 (10)
C8—H8Ai0.960 (17)C9—H9Ci0.96 (3)
C2—N1—H1N116.0 (14)C5—C4—C9120.25 (17)
C2—N1—H2N117.4 (14)C5—C10—H10A109.5
H1N—N1—H2N127 (2)C5—C10—H10B109.5
C6—C1—C2117.90 (13)H10A—C10—H10B109.5
C6—C1—C7120.50 (13)C5—C10—H10C109.5
C2—C1—C7121.59 (14)H10A—C10—H10C109.5
N1—C2—C3119.30 (14)H10B—C10—H10C109.5
N1—C2—C1122.82 (14)C5—C10—H10Ai109.47 (16)
C3—C2—C1117.88 (14)H10A—C10—H10Ai132.9
O1—C7—C1121.51 (14)H10B—C10—H10Ai31.1
O1—C7—C8118.58 (14)H10C—C10—H10Ai80.9
C1—C7—C8119.91 (14)C5—C10—H10Bi109.5 (4)
C5—C6—C1123.96 (14)H10A—C10—H10Bi31.1
C5—C6—H6118.0H10B—C10—H10Bi80.9
C1—C6—H6118.0H10C—C10—H10Bi132.9
C6—C5—C4117.63 (15)H10Ai—C10—H10Bi109.5
C6—C5—C10120.72 (15)C5—C10—H10Ci109.5 (2)
C4—C5—C10121.65 (15)H10A—C10—H10Ci80.9
C7—C8—H8A109.5H10B—C10—H10Ci132.9
C7—C8—H8B109.5H10C—C10—H10Ci31.1
H8A—C8—H8B109.5H10Ai—C10—H10Ci109.5
C7—C8—H8C109.5H10Bi—C10—H10Ci109.5
H8A—C8—H8C109.5C4—C9—H9A109.5
H8B—C8—H8C109.5C4—C9—H9B109.5
C7—C8—H8Ai109.5 (4)H9A—C9—H9B109.5
H8A—C8—H8Ai89.1C4—C9—H9C109.5
H8B—C8—H8Ai22.4H9A—C9—H9C109.5
H8C—C8—H8Ai127.3H9B—C9—H9C109.5
C7—C8—H8Bi109.5 (2)C4—C9—H9Ai109.5 (4)
H8A—C8—H8Bi22.4H9A—C9—H9Ai124.4
H8B—C8—H8Bi127.3H9B—C9—H9Ai92.9
H8C—C8—H8Bi89.1H9C—C9—H9Ai18.4
H8Ai—C8—H8Bi109.5C4—C9—H9Bi109.5 (2)
C7—C8—H8Ci109.47 (17)H9A—C9—H9Bi92.9
H8A—C8—H8Ci127.3H9B—C9—H9Bi18.4
H8B—C8—H8Ci89.1H9C—C9—H9Bi124.4
H8C—C8—H8Ci22.4H9Ai—C9—H9Bi109.5
H8Ai—C8—H8Ci109.5C4—C9—H9Ci109.5 (6)
H8Bi—C8—H8Ci109.5H9A—C9—H9Ci18.4
C4—C3—C2122.87 (14)H9B—C9—H9Ci124.4
C4—C3—H3118.6H9C—C9—H9Ci92.9
C2—C3—H3118.6H9Ai—C9—H9Ci109.5
C3—C4—C5119.75 (14)H9Bi—C9—H9Ci109.5
C3—C4—C9120.00 (16)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.89 (2)1.96 (2)2.6603 (19)135 (2)
N1—H2N···O1ii0.86 (2)2.09 (2)2.9478 (18)170 (2)
Symmetry code: (ii) x+1/2, y, z+1/2.
 

Acknowledgements

We thank the Missouri State University Provost Incentive Fund that funded the purchase of the X-ray diffractometer.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBosch, E. & Jeffries, L. (2001). Tetrahedron Lett. 42, 8141–8142.  CrossRef CAS Google Scholar
First citationBruker (2014). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds