organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(Pyridin-2-yl)methyl 6-bromo-2-oxo-1-[(pyridin-2-yl)meth­yl]-1,2-di­hydro­quinoline-4-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Appliquée, Faculté des Sciences et Techniques, Université Sidi Mohammed Ben Abdellah, Fès, Morocco, bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, and cLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Mohammed V University in Rabat, BP 1014, Avenue Ibn Batouta, Rabat, Morocco
*Correspondence e-mail: yassir.filali.baba@gmail.com

Edited by J. Simpson, University of Otago, New Zealand (Received 2 February 2018; accepted 19 February 2018; online 23 February 2018)

In the central di­hydro­quinoline unit of the title compound, C22H16BrN3O3, the di­hydro­pyridinone and benzene rings are inclined to one another by 2.0 (1)°, while the outer pyridine rings are almost perpendicular to the plane of the di­hydro­quinoline ring system. The conformation of the mol­ecule is partially determined by an intra­molecular C—H⋯O hydrogen bond. In the crystal, mol­ecules stack along the b-axis direction through a combination of C—H⋯N and C—H⋯O hydrogen bonds and ππ stacking inter­actions involving the di­hydro­quinoline units, with a centroid-to-centroid distance of 3.7648 (15) Å.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The quinolone ring system is present in an important class of compounds that are not only of theoretical inter­est but that also display anti-fungal (Musiol et al., 2006[Musiol, R., Jampilek, J., Buchta, V., Silva, L., Niedbala, H., Podeszwa, B., Palka, A., Majerz-Maniecka, K., Oleksyn, B. & Polanski, J. (2006). Bioorg. Med. Chem. 14, 3592-3598.]), anti-cancer (Elderfield et al., 1960[Elderfield, R. C. & LeVon, E. F. (1960). J. Org. Chem. 25, 1576-1583.]) and anti­microbial (Musiol et al., 2010[Musiol, R., Serda, M., Hensel-Bielowka, S. & Polanski, J. (2010). Curr. Med. Chem. 17, 1960-1973.]) properties. They also act as HIV-1 integrase inhibitors (Bénard et al., 2004[Bénard, C., Zouhiri, F., Normand-Bayle, M., Danet, M., Desmaële, D., Leh, H., Mouscadet, J.-F., Mbemba, G., Thomas, C.-M., Bonnenfant, S., Le Bret, M. & d'Angelo, J. (2004). Bioorg. Med. Chem. Lett. 14, 2473-2476.]). Quinolone derivatives are also widely used as corrosion inhibitors for metals in acid environments (Eddy et al., 2010[Eddy, N. O., Stoyanov, S. R. & Ebenso, E. E. (2010). Int. J. Electrochem. Sci. 5, 1127-1150.]). In recent years, research has focused on examining the pharmacological and biological effects of existing mol­ecules and their modifications in order to reduce unwanted side effects. As a continuation of our work on the development of N-substituted quinolone derivatives and evaluating their potential pharmacological activities (Filali Baba et al., 2016a[Filali Baba, Y., Elmsellem, H., Kandri Rodi, Y., Steli, H., Ad, C., Ouzidan, Y., Ouazzani Chahdi, F., Sebbar, N. K., Essassi, E. M. & Hammouti, B. (2016a). Der Pharma Chem. 8, 159-169.],b[Filali Baba, Y., Mague, J. T., Kandri Rodi, Y., Ouzidan, Y., Essassi, E. M. & Zouihri, H. (2016b). IUCrData, 1, x160997.]), we have used the condensation reaction of 2-(bromo­meth­yl)pyridine hydro­bromide with 6-bromo-1,2-di­hydro-2-oxo­quinoline-4-carb­oxy­lic acid under phase-transfer catalysis conditions using tetra-n-butyl­ammonium bromide (TBAB) as the catalyst and potassium carbonate as a base, to synthesize the title compound (Fig. 1[link]) in good yield.

[Figure 1]
Figure 1
The title mol­ecule with the labeling scheme and 50% probability ellipsoids. The intra­molecular C—H⋯O hydrogen bond is shown as a dashed line.

The di­hydro­quinoline unit deviates slightly from planarity, as indicated by the dihedral angle of 2.0 (1)° between the mean planes of its constituent rings. The N2 and N3 pyridyl rings make dihedral angles of 89.05 (7) and 84.07 (7)°, respectively, with the C1/C6–C9/N1 ring system. The conformation of the mol­ecule is partially determined by an intra­molecular C5—H5⋯O2 hydrogen bond (Table 1[link], Fig. 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯N2i 0.95 2.49 3.294 (3) 143
C5—H5⋯O2 0.95 2.21 2.873 (3) 126
C10—H10A⋯O1i 0.99 2.51 3.269 (3) 133
C17—H17B⋯N3ii 0.99 2.52 3.482 (4) 163
Symmetry codes: (i) x, y+1, z; (ii) x, y-1, z.

In the crystal, mol­ecules stack along the b-axis direction through a combination of C2—H2⋯N2i, C10—H10A⋯O1i and C17—H17B⋯N3ii hydrogen bonds (Table 1[link]) as well as ππ stacking inter­actions between the C1–C6 ring in one mol­ecule and the C1/C6–C9/N1 ring in an adjacent mol­ecule (Fig. 2[link]). The dihedral angle between the two stacked rings is 1.95 (13)° and the distance between their centroids is 3.7648 (15) Å. The packing is shown in Fig. 3[link].

[Figure 2]
Figure 2
A portion of one stack of mol­ecules showing the C—H⋯O and C—H⋯N hydrogen bonds as black dashed lines and the ππ stacking inter­actions as orange dashed lines.
[Figure 3]
Figure 3
Packing projected along the b-axis direction with C—H⋯O and C—H⋯N hydrogen bonds shown as black dashed lines.

Synthesis and crystallization

A solution of 0.5 g (1.86 mmol) of 6-bromo-1,2-di­hydro-2-oxo­quinoline-4-carb­oxy­lic acid in 15 ml di­methyl­formamide (DMF) was mixed with 1.04 g (4.1 mmol) of 2-(bromo­meth­yl)pyridine hydro­bromide, 0.77 g (5.58 mmol) of K2CO3 and 0.12 g (0.37 mmol) of TBAB. The reaction mixture was stirred at room temperature for 6 h. After removal of salts by filtration, the DMF was evaporated under reduced pressure and the residue obtained was dissolved in di­chloro­methane. The organic phase was dried over Na2SO4 and then concentrated in vacuo. The resulting mixture was chromatographed on a silica-gel column (eluent: ethyl acetate–hexane 1:3 v/v). The product was obtained in 81% yield and was crystallized by slow evaporation from an ethanol solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Two reflections obscured by the nozzle of the low-temperature unit were omitted from the final refinement.

Table 2
Experimental details

Crystal data
Chemical formula C22H16BrN3O3
Mr 450.29
Crystal system, space group Monoclinic, C2/c
Temperature (K) 150
a, b, c (Å) 34.0146 (11), 4.9522 (2), 23.4539 (7)
β (°) 111.578 (1)
V3) 3673.9 (2)
Z 8
Radiation type Cu Kα
μ (mm−1) 3.31
Crystal size (mm) 0.17 × 0.09 × 0.03
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.74, 0.92
No. of measured, independent and observed [I > 2σ(I)] reflections 13490, 3543, 2949
Rint 0.042
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.092, 1.03
No. of reflections 3543
No. of parameters 262
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.76, −0.54
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(Pyridin-2-yl)methyl 6-bromo-2-oxo-1-[(pyridin-2-yl)methyl]-1,2-dihydroquinoline-4-carboxylate top
Crystal data top
C22H16BrN3O3F(000) = 1824
Mr = 450.29Dx = 1.628 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54178 Å
a = 34.0146 (11) ÅCell parameters from 8863 reflections
b = 4.9522 (2) Åθ = 2.8–72.3°
c = 23.4539 (7) ŵ = 3.31 mm1
β = 111.578 (1)°T = 150 K
V = 3673.9 (2) Å3Plate, colourless
Z = 80.17 × 0.09 × 0.03 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
3543 independent reflections
Radiation source: INCOATEC IµS micro-focus source2949 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.042
Detector resolution: 10.4167 pixels mm-1θmax = 72.3°, θmin = 4.0°
ω scansh = 3840
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 65
Tmin = 0.74, Tmax = 0.92l = 2728
13490 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0406P)2 + 7.2922P]
where P = (Fo2 + 2Fc2)/3
3543 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 0.76 e Å3
0 restraintsΔρmin = 0.54 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) and included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms. Two reflections obscured by the nozzle of the low temperature unit were omitted from the final refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.26878 (2)1.00524 (6)0.40990 (2)0.03283 (11)
O10.43219 (7)0.1416 (4)0.69327 (9)0.0367 (5)
O20.37368 (6)0.2748 (4)0.42379 (8)0.0331 (5)
O30.42042 (6)0.0110 (4)0.48648 (9)0.0324 (4)
N10.38551 (7)0.4716 (4)0.64422 (9)0.0241 (5)
N20.32942 (7)0.2559 (5)0.69259 (10)0.0280 (5)
N30.47417 (7)0.2452 (5)0.44118 (10)0.0291 (5)
C10.35867 (8)0.5925 (5)0.58991 (11)0.0213 (5)
C20.33081 (9)0.7961 (5)0.59189 (12)0.0268 (6)
H20.33010.85100.63030.032*
C30.30433 (9)0.9185 (5)0.53902 (13)0.0284 (6)
H30.28551.05710.54080.034*
C40.30551 (8)0.8366 (5)0.48302 (12)0.0250 (5)
C50.33197 (8)0.6358 (5)0.47920 (11)0.0222 (5)
H50.33180.58240.44020.027*
C60.35956 (8)0.5069 (5)0.53269 (10)0.0199 (5)
C70.38849 (8)0.2926 (5)0.53266 (11)0.0213 (5)
C80.41232 (8)0.1745 (5)0.58610 (11)0.0243 (5)
H80.43080.03210.58520.029*
C90.41096 (8)0.2554 (6)0.64492 (11)0.0258 (5)
C100.38727 (9)0.5704 (6)0.70401 (11)0.0291 (6)
H10A0.38470.76960.70220.035*
H10B0.41530.52560.73510.035*
C110.35350 (8)0.4564 (5)0.72474 (11)0.0226 (5)
C120.34918 (9)0.5630 (6)0.77699 (12)0.0309 (6)
H120.36680.70710.79880.037*
C130.31882 (10)0.4553 (7)0.79662 (12)0.0365 (7)
H130.31530.52440.83220.044*
C140.29378 (9)0.2466 (6)0.76399 (12)0.0310 (6)
H140.27280.16860.77660.037*
C150.30006 (9)0.1542 (6)0.71265 (12)0.0296 (6)
H150.28270.01080.69010.036*
C160.39263 (8)0.1908 (5)0.47460 (11)0.0220 (5)
C170.42593 (10)0.1286 (6)0.43340 (14)0.0344 (7)
H17A0.39770.16160.40140.041*
H17B0.44020.30530.44510.041*
C180.45124 (8)0.0457 (5)0.40704 (12)0.0250 (5)
C190.45091 (9)0.0180 (6)0.34893 (12)0.0297 (6)
H190.43360.16000.32570.036*
C200.47612 (9)0.1283 (6)0.32571 (12)0.0319 (6)
H200.47700.08620.28670.038*
C210.50000 (9)0.3371 (6)0.36028 (13)0.0333 (6)
H210.51730.44370.34530.040*
C220.49820 (9)0.3882 (6)0.41741 (13)0.0330 (6)
H220.51480.53180.44110.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02744 (17)0.03222 (17)0.03503 (17)0.00629 (12)0.00701 (11)0.00512 (12)
O10.0401 (12)0.0423 (12)0.0248 (9)0.0020 (9)0.0085 (8)0.0106 (9)
O20.0358 (11)0.0439 (12)0.0213 (9)0.0123 (9)0.0124 (8)0.0003 (8)
O30.0429 (12)0.0309 (10)0.0323 (10)0.0138 (9)0.0243 (9)0.0037 (8)
N10.0286 (12)0.0290 (12)0.0174 (9)0.0060 (9)0.0115 (8)0.0021 (8)
N20.0356 (13)0.0273 (12)0.0270 (11)0.0071 (10)0.0185 (10)0.0070 (9)
N30.0336 (13)0.0281 (12)0.0273 (11)0.0028 (10)0.0131 (9)0.0033 (9)
C10.0234 (13)0.0223 (12)0.0206 (11)0.0059 (9)0.0109 (10)0.0018 (9)
C20.0354 (15)0.0246 (13)0.0275 (13)0.0026 (11)0.0198 (11)0.0060 (10)
C30.0265 (14)0.0247 (13)0.0394 (15)0.0010 (10)0.0185 (12)0.0042 (11)
C40.0237 (13)0.0232 (13)0.0298 (13)0.0009 (10)0.0119 (10)0.0010 (10)
C50.0247 (13)0.0233 (13)0.0207 (11)0.0031 (10)0.0108 (10)0.0012 (10)
C60.0208 (12)0.0216 (12)0.0199 (11)0.0024 (10)0.0104 (9)0.0002 (10)
C70.0227 (13)0.0239 (12)0.0202 (11)0.0015 (10)0.0114 (10)0.0006 (9)
C80.0248 (14)0.0259 (13)0.0247 (12)0.0006 (10)0.0121 (10)0.0037 (10)
C90.0251 (14)0.0315 (14)0.0218 (12)0.0042 (11)0.0097 (10)0.0040 (11)
C100.0386 (16)0.0330 (15)0.0176 (11)0.0119 (11)0.0127 (11)0.0057 (10)
C110.0273 (13)0.0231 (13)0.0177 (11)0.0012 (10)0.0086 (9)0.0017 (9)
C120.0342 (15)0.0385 (16)0.0192 (12)0.0025 (12)0.0087 (11)0.0064 (11)
C130.0383 (17)0.053 (2)0.0224 (12)0.0001 (14)0.0156 (11)0.0052 (12)
C140.0296 (15)0.0411 (16)0.0260 (13)0.0024 (12)0.0144 (11)0.0042 (12)
C150.0329 (15)0.0271 (14)0.0314 (14)0.0039 (11)0.0149 (12)0.0025 (11)
C160.0215 (13)0.0223 (12)0.0258 (12)0.0007 (9)0.0130 (10)0.0003 (10)
C170.0471 (18)0.0241 (14)0.0431 (16)0.0024 (12)0.0299 (14)0.0052 (12)
C180.0299 (14)0.0209 (13)0.0278 (12)0.0050 (10)0.0147 (11)0.0009 (10)
C190.0305 (15)0.0317 (14)0.0260 (12)0.0024 (11)0.0092 (10)0.0073 (11)
C200.0310 (15)0.0408 (16)0.0245 (13)0.0030 (12)0.0111 (11)0.0003 (12)
C210.0285 (15)0.0384 (16)0.0355 (15)0.0010 (12)0.0146 (12)0.0009 (12)
C220.0278 (15)0.0323 (15)0.0369 (15)0.0012 (12)0.0094 (12)0.0065 (12)
Geometric parameters (Å, º) top
Br1—C41.904 (3)C8—C91.454 (3)
O1—C91.234 (3)C8—H80.9500
O2—C161.202 (3)C10—C111.512 (4)
O3—C161.333 (3)C10—H10A0.9900
O3—C171.447 (3)C10—H10B0.9900
N1—C91.373 (3)C11—C121.391 (3)
N1—C11.400 (3)C12—C131.383 (4)
N1—C101.465 (3)C12—H120.9500
N2—C111.331 (3)C13—C141.379 (4)
N2—C151.348 (4)C13—H130.9500
N3—C181.329 (3)C14—C151.376 (4)
N3—C221.347 (4)C14—H140.9500
C1—C21.396 (4)C15—H150.9500
C1—C61.418 (3)C17—C181.503 (4)
C2—C31.377 (4)C17—H17A0.9900
C2—H20.9500C17—H17B0.9900
C3—C41.389 (4)C18—C191.395 (4)
C3—H30.9500C19—C201.379 (4)
C4—C51.366 (4)C19—H190.9500
C5—C61.413 (3)C20—C211.379 (4)
C5—H50.9500C20—H200.9500
C6—C71.448 (3)C21—C221.387 (4)
C7—C81.350 (3)C21—H210.9500
C7—C161.506 (3)C22—H220.9500
C16—O3—C17115.3 (2)N2—C11—C12122.7 (2)
C9—N1—C1122.8 (2)N2—C11—C10118.6 (2)
C9—N1—C10116.4 (2)C12—C11—C10118.7 (2)
C1—N1—C10120.8 (2)C13—C12—C11118.7 (3)
C11—N2—C15117.5 (2)C13—C12—H12120.6
C18—N3—C22116.9 (2)C11—C12—H12120.6
C2—C1—N1120.1 (2)C14—C13—C12119.3 (3)
C2—C1—C6119.9 (2)C14—C13—H13120.4
N1—C1—C6120.0 (2)C12—C13—H13120.4
C3—C2—C1121.0 (2)C15—C14—C13118.2 (3)
C3—C2—H2119.5C15—C14—H14120.9
C1—C2—H2119.5C13—C14—H14120.9
C2—C3—C4119.1 (2)N2—C15—C14123.7 (3)
C2—C3—H3120.5N2—C15—H15118.2
C4—C3—H3120.5C14—C15—H15118.2
C5—C4—C3121.6 (2)O2—C16—O3123.2 (2)
C5—C4—Br1119.36 (19)O2—C16—C7125.9 (2)
C3—C4—Br1119.1 (2)O3—C16—C7110.9 (2)
C4—C5—C6120.6 (2)O3—C17—C18113.4 (2)
C4—C5—H5119.7O3—C17—H17A108.9
C6—C5—H5119.7C18—C17—H17A108.9
C5—C6—C1117.8 (2)O3—C17—H17B108.9
C5—C6—C7124.1 (2)C18—C17—H17B108.9
C1—C6—C7118.1 (2)H17A—C17—H17B107.7
C8—C7—C6119.6 (2)N3—C18—C19123.3 (3)
C8—C7—C16118.1 (2)N3—C18—C17118.5 (2)
C6—C7—C16122.4 (2)C19—C18—C17118.2 (2)
C7—C8—C9123.0 (2)C20—C19—C18119.0 (3)
C7—C8—H8118.5C20—C19—H19120.5
C9—C8—H8118.5C18—C19—H19120.5
O1—C9—N1121.4 (2)C19—C20—C21118.6 (3)
O1—C9—C8122.3 (3)C19—C20—H20120.7
N1—C9—C8116.3 (2)C21—C20—H20120.7
N1—C10—C11114.5 (2)C20—C21—C22118.6 (3)
N1—C10—H10A108.6C20—C21—H21120.7
C11—C10—H10A108.6C22—C21—H21120.7
N1—C10—H10B108.6N3—C22—C21123.6 (3)
C11—C10—H10B108.6N3—C22—H22118.2
H10A—C10—H10B107.6C21—C22—H22118.2
C9—N1—C1—C2174.3 (2)C9—N1—C10—C1195.0 (3)
C10—N1—C1—C24.9 (4)C1—N1—C10—C1184.3 (3)
C9—N1—C1—C65.3 (4)C15—N2—C11—C120.5 (4)
C10—N1—C1—C6175.5 (2)C15—N2—C11—C10178.8 (2)
N1—C1—C2—C3179.6 (2)N1—C10—C11—N28.8 (4)
C6—C1—C2—C30.8 (4)N1—C10—C11—C12172.0 (2)
C1—C2—C3—C40.1 (4)N2—C11—C12—C130.4 (4)
C2—C3—C4—C50.7 (4)C10—C11—C12—C13178.8 (3)
C2—C3—C4—Br1179.8 (2)C11—C12—C13—C140.1 (4)
C3—C4—C5—C60.9 (4)C12—C13—C14—C150.2 (4)
Br1—C4—C5—C6179.97 (19)C11—N2—C15—C140.1 (4)
C4—C5—C6—C10.2 (4)C13—C14—C15—N20.2 (4)
C4—C5—C6—C7179.9 (2)C17—O3—C16—O21.1 (4)
C2—C1—C6—C50.6 (4)C17—O3—C16—C7178.4 (2)
N1—C1—C6—C5179.8 (2)C8—C7—C16—O2180.0 (3)
C2—C1—C6—C7179.1 (2)C6—C7—C16—O21.1 (4)
N1—C1—C6—C70.5 (3)C8—C7—C16—O30.5 (3)
C5—C6—C7—C8177.2 (2)C6—C7—C16—O3178.4 (2)
C1—C6—C7—C82.5 (4)C16—O3—C17—C1874.8 (3)
C5—C6—C7—C161.7 (4)C22—N3—C18—C190.5 (4)
C1—C6—C7—C16178.6 (2)C22—N3—C18—C17176.6 (3)
C6—C7—C8—C91.0 (4)O3—C17—C18—N316.3 (4)
C16—C7—C8—C9179.9 (2)O3—C17—C18—C19166.5 (2)
C1—N1—C9—O1175.1 (2)N3—C18—C19—C201.3 (4)
C10—N1—C9—O14.1 (4)C17—C18—C19—C20175.7 (3)
C1—N1—C9—C86.6 (4)C18—C19—C20—C211.6 (4)
C10—N1—C9—C8174.2 (2)C19—C20—C21—C221.1 (4)
C7—C8—C9—O1178.3 (3)C18—N3—C22—C210.1 (4)
C7—C8—C9—N13.5 (4)C20—C21—C22—N30.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N2i0.952.493.294 (3)143
C5—H5···O20.952.212.873 (3)126
C10—H10A···O1i0.992.513.269 (3)133
C17—H17B···N3ii0.992.523.482 (4)163
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
 

Footnotes

Additional correspondence author, e-mail: younes.ouzidan@usmba.ac.ma.

Funding information

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBénard, C., Zouhiri, F., Normand-Bayle, M., Danet, M., Desmaële, D., Leh, H., Mouscadet, J.-F., Mbemba, G., Thomas, C.-M., Bonnenfant, S., Le Bret, M. & d'Angelo, J. (2004). Bioorg. Med. Chem. Lett. 14, 2473–2476.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEddy, N. O., Stoyanov, S. R. & Ebenso, E. E. (2010). Int. J. Electrochem. Sci. 5, 1127–1150.  CAS Google Scholar
First citationElderfield, R. C. & LeVon, E. F. (1960). J. Org. Chem. 25, 1576–1583.  CrossRef CAS Web of Science Google Scholar
First citationFilali Baba, Y., Elmsellem, H., Kandri Rodi, Y., Steli, H., Ad, C., Ouzidan, Y., Ouazzani Chahdi, F., Sebbar, N. K., Essassi, E. M. & Hammouti, B. (2016a). Der Pharma Chem. 8, 159–169.  Google Scholar
First citationFilali Baba, Y., Mague, J. T., Kandri Rodi, Y., Ouzidan, Y., Essassi, E. M. & Zouihri, H. (2016b). IUCrData, 1, x160997.  Google Scholar
First citationMusiol, R., Jampilek, J., Buchta, V., Silva, L., Niedbala, H., Podeszwa, B., Palka, A., Majerz-Maniecka, K., Oleksyn, B. & Polanski, J. (2006). Bioorg. Med. Chem. 14, 3592–3598.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMusiol, R., Serda, M., Hensel-Bielowka, S. & Polanski, J. (2010). Curr. Med. Chem. 17, 1960–1973.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]