organic compounds
(Pyridin-2-yl)methyl 6-bromo-2-oxo-1-[(pyridin-2-yl)methyl]-1,2-dihydroquinoline-4-carboxylate
aLaboratoire de Chimie Organique Appliquée, Faculté des Sciences et Techniques, Université Sidi Mohammed Ben Abdellah, Fès, Morocco, bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, and cLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Mohammed V University in Rabat, BP 1014, Avenue Ibn Batouta, Rabat, Morocco
*Correspondence e-mail: yassir.filali.baba@gmail.com
In the central dihydroquinoline unit of the title compound, C22H16BrN3O3, the dihydropyridinone and benzene rings are inclined to one another by 2.0 (1)°, while the outer pyridine rings are almost perpendicular to the plane of the dihydroquinoline ring system. The conformation of the molecule is partially determined by an intramolecular C—H⋯O hydrogen bond. In the crystal, molecules stack along the b-axis direction through a combination of C—H⋯N and C—H⋯O hydrogen bonds and π–π stacking interactions involving the dihydroquinoline units, with a centroid-to-centroid distance of 3.7648 (15) Å.
Keywords: crystal structure; dihydroquinoline; hydrogen bonds; π–π stacking.
CCDC reference: 1824577
Structure description
The quinolone ring system is present in an important class of compounds that are not only of theoretical interest but that also display anti-fungal (Musiol et al., 2006), anti-cancer (Elderfield et al., 1960) and antimicrobial (Musiol et al., 2010) properties. They also act as HIV-1 integrase inhibitors (Bénard et al., 2004). Quinolone derivatives are also widely used as corrosion inhibitors for metals in acid environments (Eddy et al., 2010). In recent years, research has focused on examining the pharmacological and biological effects of existing molecules and their modifications in order to reduce unwanted side effects. As a continuation of our work on the development of N-substituted quinolone derivatives and evaluating their potential pharmacological activities (Filali Baba et al., 2016a,b), we have used the condensation reaction of 2-(bromomethyl)pyridine hydrobromide with 6-bromo-1,2-dihydro-2-oxoquinoline-4-carboxylic acid under conditions using tetra-n-butylammonium bromide (TBAB) as the catalyst and potassium carbonate as a base, to synthesize the title compound (Fig. 1) in good yield.
The dihydroquinoline unit deviates slightly from planarity, as indicated by the dihedral angle of 2.0 (1)° between the mean planes of its constituent rings. The N2 and N3 pyridyl rings make dihedral angles of 89.05 (7) and 84.07 (7)°, respectively, with the C1/C6–C9/N1 ring system. The conformation of the molecule is partially determined by an intramolecular C5—H5⋯O2 hydrogen bond (Table 1, Fig. 1).
In the crystal, molecules stack along the b-axis direction through a combination of C2—H2⋯N2i, C10—H10A⋯O1i and C17—H17B⋯N3ii hydrogen bonds (Table 1) as well as π–π stacking interactions between the C1–C6 ring in one molecule and the C1/C6–C9/N1 ring in an adjacent molecule (Fig. 2). The dihedral angle between the two stacked rings is 1.95 (13)° and the distance between their centroids is 3.7648 (15) Å. The packing is shown in Fig. 3.
Synthesis and crystallization
A solution of 0.5 g (1.86 mmol) of 6-bromo-1,2-dihydro-2-oxoquinoline-4-carboxylic acid in 15 ml dimethylformamide (DMF) was mixed with 1.04 g (4.1 mmol) of 2-(bromomethyl)pyridine hydrobromide, 0.77 g (5.58 mmol) of K2CO3 and 0.12 g (0.37 mmol) of TBAB. The reaction mixture was stirred at room temperature for 6 h. After removal of salts by filtration, the DMF was evaporated under reduced pressure and the residue obtained was dissolved in dichloromethane. The organic phase was dried over Na2SO4 and then concentrated in vacuo. The resulting mixture was chromatographed on a silica-gel column (eluent: ethyl acetate–hexane 1:3 v/v). The product was obtained in 81% yield and was crystallized by slow evaporation from an ethanol solution.
Refinement
Crystal data, data collection and structure . Two reflections obscured by the nozzle of the low-temperature unit were omitted from the final refinement.
details are summarized in Table 2
|
Structural data
CCDC reference: 1824577
https://doi.org/10.1107/S2414314618002882/sj4158sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314618002882/sj4158Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314618002882/sj4158Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2414314618002882/sj4158Isup4.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C22H16BrN3O3 | F(000) = 1824 |
Mr = 450.29 | Dx = 1.628 Mg m−3 |
Monoclinic, C2/c | Cu Kα radiation, λ = 1.54178 Å |
a = 34.0146 (11) Å | Cell parameters from 8863 reflections |
b = 4.9522 (2) Å | θ = 2.8–72.3° |
c = 23.4539 (7) Å | µ = 3.31 mm−1 |
β = 111.578 (1)° | T = 150 K |
V = 3673.9 (2) Å3 | Plate, colourless |
Z = 8 | 0.17 × 0.09 × 0.03 mm |
Bruker D8 VENTURE PHOTON 100 CMOS diffractometer | 3543 independent reflections |
Radiation source: INCOATEC IµS micro-focus source | 2949 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.042 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 72.3°, θmin = 4.0° |
ω scans | h = −38→40 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | k = −6→5 |
Tmin = 0.74, Tmax = 0.92 | l = −27→28 |
13490 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.092 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0406P)2 + 7.2922P] where P = (Fo2 + 2Fc2)/3 |
3543 reflections | (Δ/σ)max < 0.001 |
262 parameters | Δρmax = 0.76 e Å−3 |
0 restraints | Δρmin = −0.54 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) and included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms. Two reflections obscured by the nozzle of the low temperature unit were omitted from the final refinement. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.26878 (2) | 1.00524 (6) | 0.40990 (2) | 0.03283 (11) | |
O1 | 0.43219 (7) | 0.1416 (4) | 0.69327 (9) | 0.0367 (5) | |
O2 | 0.37368 (6) | 0.2748 (4) | 0.42379 (8) | 0.0331 (5) | |
O3 | 0.42042 (6) | −0.0110 (4) | 0.48648 (9) | 0.0324 (4) | |
N1 | 0.38551 (7) | 0.4716 (4) | 0.64422 (9) | 0.0241 (5) | |
N2 | 0.32942 (7) | 0.2559 (5) | 0.69259 (10) | 0.0280 (5) | |
N3 | 0.47417 (7) | 0.2452 (5) | 0.44118 (10) | 0.0291 (5) | |
C1 | 0.35867 (8) | 0.5925 (5) | 0.58991 (11) | 0.0213 (5) | |
C2 | 0.33081 (9) | 0.7961 (5) | 0.59189 (12) | 0.0268 (6) | |
H2 | 0.3301 | 0.8510 | 0.6303 | 0.032* | |
C3 | 0.30433 (9) | 0.9185 (5) | 0.53902 (13) | 0.0284 (6) | |
H3 | 0.2855 | 1.0571 | 0.5408 | 0.034* | |
C4 | 0.30551 (8) | 0.8366 (5) | 0.48302 (12) | 0.0250 (5) | |
C5 | 0.33197 (8) | 0.6358 (5) | 0.47920 (11) | 0.0222 (5) | |
H5 | 0.3318 | 0.5824 | 0.4402 | 0.027* | |
C6 | 0.35956 (8) | 0.5069 (5) | 0.53269 (10) | 0.0199 (5) | |
C7 | 0.38849 (8) | 0.2926 (5) | 0.53266 (11) | 0.0213 (5) | |
C8 | 0.41232 (8) | 0.1745 (5) | 0.58610 (11) | 0.0243 (5) | |
H8 | 0.4308 | 0.0321 | 0.5852 | 0.029* | |
C9 | 0.41096 (8) | 0.2554 (6) | 0.64492 (11) | 0.0258 (5) | |
C10 | 0.38727 (9) | 0.5704 (6) | 0.70401 (11) | 0.0291 (6) | |
H10A | 0.3847 | 0.7696 | 0.7022 | 0.035* | |
H10B | 0.4153 | 0.5256 | 0.7351 | 0.035* | |
C11 | 0.35350 (8) | 0.4564 (5) | 0.72474 (11) | 0.0226 (5) | |
C12 | 0.34918 (9) | 0.5630 (6) | 0.77699 (12) | 0.0309 (6) | |
H12 | 0.3668 | 0.7071 | 0.7988 | 0.037* | |
C13 | 0.31882 (10) | 0.4553 (7) | 0.79662 (12) | 0.0365 (7) | |
H13 | 0.3153 | 0.5244 | 0.8322 | 0.044* | |
C14 | 0.29378 (9) | 0.2466 (6) | 0.76399 (12) | 0.0310 (6) | |
H14 | 0.2728 | 0.1686 | 0.7766 | 0.037* | |
C15 | 0.30006 (9) | 0.1542 (6) | 0.71265 (12) | 0.0296 (6) | |
H15 | 0.2827 | 0.0108 | 0.6901 | 0.036* | |
C16 | 0.39263 (8) | 0.1908 (5) | 0.47460 (11) | 0.0220 (5) | |
C17 | 0.42593 (10) | −0.1286 (6) | 0.43340 (14) | 0.0344 (7) | |
H17A | 0.3977 | −0.1616 | 0.4014 | 0.041* | |
H17B | 0.4402 | −0.3053 | 0.4451 | 0.041* | |
C18 | 0.45124 (8) | 0.0457 (5) | 0.40704 (12) | 0.0250 (5) | |
C19 | 0.45091 (9) | −0.0180 (6) | 0.34893 (12) | 0.0297 (6) | |
H19 | 0.4336 | −0.1600 | 0.3257 | 0.036* | |
C20 | 0.47612 (9) | 0.1283 (6) | 0.32571 (12) | 0.0319 (6) | |
H20 | 0.4770 | 0.0862 | 0.2867 | 0.038* | |
C21 | 0.50000 (9) | 0.3371 (6) | 0.36028 (13) | 0.0333 (6) | |
H21 | 0.5173 | 0.4437 | 0.3453 | 0.040* | |
C22 | 0.49820 (9) | 0.3882 (6) | 0.41741 (13) | 0.0330 (6) | |
H22 | 0.5148 | 0.5318 | 0.4411 | 0.040* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.02744 (17) | 0.03222 (17) | 0.03503 (17) | 0.00629 (12) | 0.00701 (11) | 0.00512 (12) |
O1 | 0.0401 (12) | 0.0423 (12) | 0.0248 (9) | 0.0020 (9) | 0.0085 (8) | 0.0106 (9) |
O2 | 0.0358 (11) | 0.0439 (12) | 0.0213 (9) | 0.0123 (9) | 0.0124 (8) | −0.0003 (8) |
O3 | 0.0429 (12) | 0.0309 (10) | 0.0323 (10) | 0.0138 (9) | 0.0243 (9) | 0.0037 (8) |
N1 | 0.0286 (12) | 0.0290 (12) | 0.0174 (9) | −0.0060 (9) | 0.0115 (8) | −0.0021 (8) |
N2 | 0.0356 (13) | 0.0273 (12) | 0.0270 (11) | −0.0071 (10) | 0.0185 (10) | −0.0070 (9) |
N3 | 0.0336 (13) | 0.0281 (12) | 0.0273 (11) | 0.0028 (10) | 0.0131 (9) | −0.0033 (9) |
C1 | 0.0234 (13) | 0.0223 (12) | 0.0206 (11) | −0.0059 (9) | 0.0109 (10) | −0.0018 (9) |
C2 | 0.0354 (15) | 0.0246 (13) | 0.0275 (13) | −0.0026 (11) | 0.0198 (11) | −0.0060 (10) |
C3 | 0.0265 (14) | 0.0247 (13) | 0.0394 (15) | 0.0010 (10) | 0.0185 (12) | −0.0042 (11) |
C4 | 0.0237 (13) | 0.0232 (13) | 0.0298 (13) | −0.0009 (10) | 0.0119 (10) | 0.0010 (10) |
C5 | 0.0247 (13) | 0.0233 (13) | 0.0207 (11) | −0.0031 (10) | 0.0108 (10) | −0.0012 (10) |
C6 | 0.0208 (12) | 0.0216 (12) | 0.0199 (11) | −0.0024 (10) | 0.0104 (9) | −0.0002 (10) |
C7 | 0.0227 (13) | 0.0239 (12) | 0.0202 (11) | −0.0015 (10) | 0.0114 (10) | 0.0006 (9) |
C8 | 0.0248 (14) | 0.0259 (13) | 0.0247 (12) | 0.0006 (10) | 0.0121 (10) | 0.0037 (10) |
C9 | 0.0251 (14) | 0.0315 (14) | 0.0218 (12) | −0.0042 (11) | 0.0097 (10) | 0.0040 (11) |
C10 | 0.0386 (16) | 0.0330 (15) | 0.0176 (11) | −0.0119 (11) | 0.0127 (11) | −0.0057 (10) |
C11 | 0.0273 (13) | 0.0231 (13) | 0.0177 (11) | 0.0012 (10) | 0.0086 (9) | 0.0017 (9) |
C12 | 0.0342 (15) | 0.0385 (16) | 0.0192 (12) | −0.0025 (12) | 0.0087 (11) | −0.0064 (11) |
C13 | 0.0383 (17) | 0.053 (2) | 0.0224 (12) | 0.0001 (14) | 0.0156 (11) | −0.0052 (12) |
C14 | 0.0296 (15) | 0.0411 (16) | 0.0260 (13) | 0.0024 (12) | 0.0144 (11) | 0.0042 (12) |
C15 | 0.0329 (15) | 0.0271 (14) | 0.0314 (14) | −0.0039 (11) | 0.0149 (12) | −0.0025 (11) |
C16 | 0.0215 (13) | 0.0223 (12) | 0.0258 (12) | −0.0007 (9) | 0.0130 (10) | 0.0003 (10) |
C17 | 0.0471 (18) | 0.0241 (14) | 0.0431 (16) | 0.0024 (12) | 0.0299 (14) | −0.0052 (12) |
C18 | 0.0299 (14) | 0.0209 (13) | 0.0278 (12) | 0.0050 (10) | 0.0147 (11) | −0.0009 (10) |
C19 | 0.0305 (15) | 0.0317 (14) | 0.0260 (12) | −0.0024 (11) | 0.0092 (10) | −0.0073 (11) |
C20 | 0.0310 (15) | 0.0408 (16) | 0.0245 (13) | 0.0030 (12) | 0.0111 (11) | −0.0003 (12) |
C21 | 0.0285 (15) | 0.0384 (16) | 0.0355 (15) | −0.0010 (12) | 0.0146 (12) | 0.0009 (12) |
C22 | 0.0278 (15) | 0.0323 (15) | 0.0369 (15) | −0.0012 (12) | 0.0094 (12) | −0.0065 (12) |
Br1—C4 | 1.904 (3) | C8—C9 | 1.454 (3) |
O1—C9 | 1.234 (3) | C8—H8 | 0.9500 |
O2—C16 | 1.202 (3) | C10—C11 | 1.512 (4) |
O3—C16 | 1.333 (3) | C10—H10A | 0.9900 |
O3—C17 | 1.447 (3) | C10—H10B | 0.9900 |
N1—C9 | 1.373 (3) | C11—C12 | 1.391 (3) |
N1—C1 | 1.400 (3) | C12—C13 | 1.383 (4) |
N1—C10 | 1.465 (3) | C12—H12 | 0.9500 |
N2—C11 | 1.331 (3) | C13—C14 | 1.379 (4) |
N2—C15 | 1.348 (4) | C13—H13 | 0.9500 |
N3—C18 | 1.329 (3) | C14—C15 | 1.376 (4) |
N3—C22 | 1.347 (4) | C14—H14 | 0.9500 |
C1—C2 | 1.396 (4) | C15—H15 | 0.9500 |
C1—C6 | 1.418 (3) | C17—C18 | 1.503 (4) |
C2—C3 | 1.377 (4) | C17—H17A | 0.9900 |
C2—H2 | 0.9500 | C17—H17B | 0.9900 |
C3—C4 | 1.389 (4) | C18—C19 | 1.395 (4) |
C3—H3 | 0.9500 | C19—C20 | 1.379 (4) |
C4—C5 | 1.366 (4) | C19—H19 | 0.9500 |
C5—C6 | 1.413 (3) | C20—C21 | 1.379 (4) |
C5—H5 | 0.9500 | C20—H20 | 0.9500 |
C6—C7 | 1.448 (3) | C21—C22 | 1.387 (4) |
C7—C8 | 1.350 (3) | C21—H21 | 0.9500 |
C7—C16 | 1.506 (3) | C22—H22 | 0.9500 |
C16—O3—C17 | 115.3 (2) | N2—C11—C12 | 122.7 (2) |
C9—N1—C1 | 122.8 (2) | N2—C11—C10 | 118.6 (2) |
C9—N1—C10 | 116.4 (2) | C12—C11—C10 | 118.7 (2) |
C1—N1—C10 | 120.8 (2) | C13—C12—C11 | 118.7 (3) |
C11—N2—C15 | 117.5 (2) | C13—C12—H12 | 120.6 |
C18—N3—C22 | 116.9 (2) | C11—C12—H12 | 120.6 |
C2—C1—N1 | 120.1 (2) | C14—C13—C12 | 119.3 (3) |
C2—C1—C6 | 119.9 (2) | C14—C13—H13 | 120.4 |
N1—C1—C6 | 120.0 (2) | C12—C13—H13 | 120.4 |
C3—C2—C1 | 121.0 (2) | C15—C14—C13 | 118.2 (3) |
C3—C2—H2 | 119.5 | C15—C14—H14 | 120.9 |
C1—C2—H2 | 119.5 | C13—C14—H14 | 120.9 |
C2—C3—C4 | 119.1 (2) | N2—C15—C14 | 123.7 (3) |
C2—C3—H3 | 120.5 | N2—C15—H15 | 118.2 |
C4—C3—H3 | 120.5 | C14—C15—H15 | 118.2 |
C5—C4—C3 | 121.6 (2) | O2—C16—O3 | 123.2 (2) |
C5—C4—Br1 | 119.36 (19) | O2—C16—C7 | 125.9 (2) |
C3—C4—Br1 | 119.1 (2) | O3—C16—C7 | 110.9 (2) |
C4—C5—C6 | 120.6 (2) | O3—C17—C18 | 113.4 (2) |
C4—C5—H5 | 119.7 | O3—C17—H17A | 108.9 |
C6—C5—H5 | 119.7 | C18—C17—H17A | 108.9 |
C5—C6—C1 | 117.8 (2) | O3—C17—H17B | 108.9 |
C5—C6—C7 | 124.1 (2) | C18—C17—H17B | 108.9 |
C1—C6—C7 | 118.1 (2) | H17A—C17—H17B | 107.7 |
C8—C7—C6 | 119.6 (2) | N3—C18—C19 | 123.3 (3) |
C8—C7—C16 | 118.1 (2) | N3—C18—C17 | 118.5 (2) |
C6—C7—C16 | 122.4 (2) | C19—C18—C17 | 118.2 (2) |
C7—C8—C9 | 123.0 (2) | C20—C19—C18 | 119.0 (3) |
C7—C8—H8 | 118.5 | C20—C19—H19 | 120.5 |
C9—C8—H8 | 118.5 | C18—C19—H19 | 120.5 |
O1—C9—N1 | 121.4 (2) | C19—C20—C21 | 118.6 (3) |
O1—C9—C8 | 122.3 (3) | C19—C20—H20 | 120.7 |
N1—C9—C8 | 116.3 (2) | C21—C20—H20 | 120.7 |
N1—C10—C11 | 114.5 (2) | C20—C21—C22 | 118.6 (3) |
N1—C10—H10A | 108.6 | C20—C21—H21 | 120.7 |
C11—C10—H10A | 108.6 | C22—C21—H21 | 120.7 |
N1—C10—H10B | 108.6 | N3—C22—C21 | 123.6 (3) |
C11—C10—H10B | 108.6 | N3—C22—H22 | 118.2 |
H10A—C10—H10B | 107.6 | C21—C22—H22 | 118.2 |
C9—N1—C1—C2 | 174.3 (2) | C9—N1—C10—C11 | −95.0 (3) |
C10—N1—C1—C2 | −4.9 (4) | C1—N1—C10—C11 | 84.3 (3) |
C9—N1—C1—C6 | −5.3 (4) | C15—N2—C11—C12 | −0.5 (4) |
C10—N1—C1—C6 | 175.5 (2) | C15—N2—C11—C10 | 178.8 (2) |
N1—C1—C2—C3 | 179.6 (2) | N1—C10—C11—N2 | 8.8 (4) |
C6—C1—C2—C3 | −0.8 (4) | N1—C10—C11—C12 | −172.0 (2) |
C1—C2—C3—C4 | 0.1 (4) | N2—C11—C12—C13 | 0.4 (4) |
C2—C3—C4—C5 | 0.7 (4) | C10—C11—C12—C13 | −178.8 (3) |
C2—C3—C4—Br1 | 179.8 (2) | C11—C12—C13—C14 | −0.1 (4) |
C3—C4—C5—C6 | −0.9 (4) | C12—C13—C14—C15 | −0.2 (4) |
Br1—C4—C5—C6 | −179.97 (19) | C11—N2—C15—C14 | 0.1 (4) |
C4—C5—C6—C1 | 0.2 (4) | C13—C14—C15—N2 | 0.2 (4) |
C4—C5—C6—C7 | 179.9 (2) | C17—O3—C16—O2 | −1.1 (4) |
C2—C1—C6—C5 | 0.6 (4) | C17—O3—C16—C7 | 178.4 (2) |
N1—C1—C6—C5 | −179.8 (2) | C8—C7—C16—O2 | −180.0 (3) |
C2—C1—C6—C7 | −179.1 (2) | C6—C7—C16—O2 | 1.1 (4) |
N1—C1—C6—C7 | 0.5 (3) | C8—C7—C16—O3 | 0.5 (3) |
C5—C6—C7—C8 | −177.2 (2) | C6—C7—C16—O3 | −178.4 (2) |
C1—C6—C7—C8 | 2.5 (4) | C16—O3—C17—C18 | 74.8 (3) |
C5—C6—C7—C16 | 1.7 (4) | C22—N3—C18—C19 | −0.5 (4) |
C1—C6—C7—C16 | −178.6 (2) | C22—N3—C18—C17 | 176.6 (3) |
C6—C7—C8—C9 | −1.0 (4) | O3—C17—C18—N3 | 16.3 (4) |
C16—C7—C8—C9 | −179.9 (2) | O3—C17—C18—C19 | −166.5 (2) |
C1—N1—C9—O1 | −175.1 (2) | N3—C18—C19—C20 | 1.3 (4) |
C10—N1—C9—O1 | 4.1 (4) | C17—C18—C19—C20 | −175.7 (3) |
C1—N1—C9—C8 | 6.6 (4) | C18—C19—C20—C21 | −1.6 (4) |
C10—N1—C9—C8 | −174.2 (2) | C19—C20—C21—C22 | 1.1 (4) |
C7—C8—C9—O1 | 178.3 (3) | C18—N3—C22—C21 | −0.1 (4) |
C7—C8—C9—N1 | −3.5 (4) | C20—C21—C22—N3 | −0.3 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···N2i | 0.95 | 2.49 | 3.294 (3) | 143 |
C5—H5···O2 | 0.95 | 2.21 | 2.873 (3) | 126 |
C10—H10A···O1i | 0.99 | 2.51 | 3.269 (3) | 133 |
C17—H17B···N3ii | 0.99 | 2.52 | 3.482 (4) | 163 |
Symmetry codes: (i) x, y+1, z; (ii) x, y−1, z. |
Footnotes
‡Additional correspondence author, e-mail: younes.ouzidan@usmba.ac.ma.
Funding information
The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.
References
Bénard, C., Zouhiri, F., Normand-Bayle, M., Danet, M., Desmaële, D., Leh, H., Mouscadet, J.-F., Mbemba, G., Thomas, C.-M., Bonnenfant, S., Le Bret, M. & d'Angelo, J. (2004). Bioorg. Med. Chem. Lett. 14, 2473–2476. Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA. Google Scholar
Eddy, N. O., Stoyanov, S. R. & Ebenso, E. E. (2010). Int. J. Electrochem. Sci. 5, 1127–1150. CAS Google Scholar
Elderfield, R. C. & LeVon, E. F. (1960). J. Org. Chem. 25, 1576–1583. CrossRef CAS Web of Science Google Scholar
Filali Baba, Y., Elmsellem, H., Kandri Rodi, Y., Steli, H., Ad, C., Ouzidan, Y., Ouazzani Chahdi, F., Sebbar, N. K., Essassi, E. M. & Hammouti, B. (2016a). Der Pharma Chem. 8, 159–169. Google Scholar
Filali Baba, Y., Mague, J. T., Kandri Rodi, Y., Ouzidan, Y., Essassi, E. M. & Zouihri, H. (2016b). IUCrData, 1, x160997. Google Scholar
Musiol, R., Jampilek, J., Buchta, V., Silva, L., Niedbala, H., Podeszwa, B., Palka, A., Majerz-Maniecka, K., Oleksyn, B. & Polanski, J. (2006). Bioorg. Med. Chem. 14, 3592–3598. Web of Science CrossRef PubMed CAS Google Scholar
Musiol, R., Serda, M., Hensel-Bielowka, S. & Polanski, J. (2010). Curr. Med. Chem. 17, 1960–1973. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.