organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

6′-(3-Bromo­phen­yl)-7′-nitro-1′,6′,7′,7a'-tetra­hydro-3′H-spiro­[indeno­[1,2-b]quinoxaline-11,5′-pyrrolo[1,2-c]thia­zole]

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Devanga Arts College, Aruppukottai 626 101, Tamilnadu, India, bSchool of Chemistry, Madurai Kamaraj University, Madurai, Tamilnadu, India, cDepartment of Physics, University College of Engineering, Anna University, Nagercoil 629 004, Tamilnadu, India, and dDepartment of Physics, Thiagarajar College, Madurai 625 009, Tamilnadu, India
*Correspondence e-mail: athi81s@yahoo.co.in

Edited by J. Simpson, University of Otago, New Zealand (Received 21 January 2018; accepted 9 February 2018; online 16 February 2018)

The title compound, C26H19BrN4O2S, crystallizes in a monoclinic C-centred lattice with eight mol­ecules in the unit cell. The five-membered thia­zole and pyrrolidine rings adopt envelope conformations and the bromo­phenyl and indeno­quinoxaline planes are oriented at a dihedral angle of 61.6 (1)° to each other. The mol­ecular structure features an intra­molecular C—H⋯N inter­action leading to an S(6) ring motif. C(9) and C(10) chains along the c- and b-axis directions form through C—H⋯Br and C—H⋯S contacts, respectively. In addition, C—H⋯O and C—H⋯N hydrogen bonds form inversion dimers with R22(10) and R22(14) motifs, respectively. One O atom is disordered over two positions (occupancy ratio 0.63:0.37).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Heterocyclic compounds, such as thia­zoles, pyrrolidines and quinoxalines are important in many pharmaceutical applications (Bozdağ-Dündar et al., 2008[Bozdağ-Dündar, O., Verspohl, E. J., Daş-Evcimen, N., Kaup, R. M., Bauer, K., Sarıkaya, M., Evranos, B. & Ertan, R. (2008). Bioorg. Med. Chem. 16, 6747-6751.]; Swarnkar et al., 2007[Swarnkar, P. K., Kriplani, P., Gupta, G. N. & Ojha, K. G. (2007). E-J. Chem. 4, 14-20.]; Verma & Saraf, 2008[Verma, A. & Saraf, S. K. (2008). Eur. J. Med. Chem. 43, 897-905.]; He et al., 2003[He, W., Myers, M. R., Hanney, B., Spada, A. P., Bilder, G., Galzcinski, H., Amin, D., Needle, S., Page, K., Jayyosi, Z. & Perrone, M. H. (2003). Bioorg. Med. Chem. Lett. 13, 3097-3100.]; Campeau et al., 2008[Campeau, L. C., Bertrand-Laperle, M., Leclerc, J. P., Villemure, E., Gorelsky, S. & Fagnou, K. (2008). J. Am. Chem. Soc. 130, 3276-3277.]; Muralikrishnan et al., 2013[Muralikrishnan, S., Raveendrareddy, P., Ravindranath, L. K., Harikrishna, S. & Jagadeeswara, R. P. (2013). Der Pharm. Chem. 5, 87-93.]). The addition of bromine to these classes of compounds can offer valuable synthetic inter­mediates and provide additional medicinal benefits. Its introduction can also result in a more rigid conformation for the newly synthesized mol­ecule (Wermuth, 2003[Wermuth, C. G. (2003). In The Practice of Medicinal Chemistry. San Diego: Elsevier Academic Press.]). A small number of drugs containing spiro-fused rings have been investigated over several decades (Knox et al., 2011[Knox, C., Law, V., Jewison, T., Liu, P., Ly, S., Frolkis, A., Pon, A., Banco, K., Mak, C., Neveu, V., Djoumbou, Y., Eisner, R., Guo, A. C. & Wishart, D. S. (2011). Nucleic Acids Res. 39, D1035-D1041.]). Naturally occurring spiro­pyrrolidine derivatives show highly pronounced biological properties and have potential pharmaceutical applications (Arun et al., 2014[Arun, Y., Saranraj, K., Balachandran, C. & Perumal, P. T. (2014). Eur. J. Med. Chem. 74, 50-64.]). The development of new synthetic routes to spiro scaffolds will result in more pharmaceutically active mol­ecules (Zheng et al., 2014[Zheng, Y., Tice, C. M. & Singh, S. B. (2014). Bioorg. Med. Chem. Lett. 24, 3673-3682.]). Recently, we have reported the synthesis of the first compound in a series of mol­ecules, containing bromo­phenyl, spiro­pyrrolidine and thia­zole groups (Muthuselvi et al., 2017[Muthuselvi, C., Muthu, M., Athimoolam, S., Ravikumar, B., Pandiarajan, S. & Krishnakumar, R. V. (2017). IUCrData, 2, x171305.]) and we report here the structure of the closely related title compound.

The structure of title compound is shown in Fig. 1[link]. The envelope conformations of the five-membered rings are confirmed by the puckering analyses with the values of q2 = 0.356 (3) Å; φ2 = 75.4 (4)° for the S1/N3/C24–C26 thia­zole ring and q2 = 0.420 (3) Å; φ2 = 105.3 (4)° for the N3/C8/C16/C17/C24 pyrroline ring. The mean planes of the bromo­phenyl ring and the indeno­quinoxaline ring system are inclined to one another at an angle of 61.6 (1)°. The mol­ecular conformation is in part determined by a weak intra­molecular C17—H17⋯N2 hydrogen bond that encloses an S(6) ring.

[Figure 1]
Figure 1
The structure of the title compound with the atom numbering. Displacement ellipsoids are shown at the 50% probability level.

No classical hydrogen bonds are found but the crystal structure features a number of C—H⋯Br, C—H⋯S, C—H⋯O and C—H⋯N hydrogen bonds, Table 1[link]. C(10) and C(9) chains form through C20—H20⋯S1 and C26—H26A⋯Br1 contacts along the c- and b-axis directions, respectively, Figs. 2[link] and 3[link]. In addition, C16—H16⋯O2 and C26—H26B⋯N1 hydrogen bonds form inversion dimers with R22(10) and R22(14) motifs, respectively. The latter are shown in Fig. 4[link]. These contacts combine to stack mol­ecules along the b-axis direction, Fig. 5[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯N2 0.98 2.78 3.345 (4) 117
C20—H20⋯S1i 0.93 2.94 3.775 (4) 151
C26—H26A⋯Br1ii 0.97 3.14 3.725 (3) 120
C26—H26B⋯N1iii 0.97 2.63 3.547 (4) 158
C16—H16⋯O2iv 0.98 2.69 3.660 (4) 172
C25—H25A⋯O2iv 0.97 2.91 3.867 (5) 170
Symmetry codes: (i) [x, -y+1, z-{\script{1\over 2}}]; (ii) x, y+1, z; (iii) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iv) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
A C(10) chain motif formed through C—H⋯S inter­actions extending along the c-axis direction. Hydrogen bonds are shown as dashed lines.
[Figure 3]
Figure 3
A C(9) chain motif formed through C—H⋯Br inter­actions extending along the b-axis direction. Hydrogen bonds are shown as dashed lines.
[Figure 4]
Figure 4
A centrosymmetrically related R22(14) ring motif formed through C—H⋯N hydrogen bonds, shown as dashed lines.
[Figure 5]
Figure 5
Overall packing of the title compound viewed along the b axis. Hydrogen bonds are shown as dashed lines.

Synthesis and crystallization

Equimolar qu­anti­ties of benzene-1,2-di­amine, 1H-indene-1,2,3-trione and thia­zolidine-4-carb­oxy­lic acid were added to 20 ml of methanol and the refluxed on a water bath for 5 min. An equivalent amount of substituted trans-bromo β-nitro­styrene was added to the reaction mixture and refluxing continued for 5 h until TLC analysis indicated that the reaction was complete. The precipitated solid was filtered and washed with methanol to obtain the title compound in good yield (92–96%). Good quality block-shaped crystals were obtained by recrystallization from an ethano­lic solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Atom O1 is disordered over two positions and, in the final refinement cycles, the site occupancies were fixed at 0.63 and 0.37.

Table 2
Experimental details

Crystal data
Chemical formula C26H19BrN4O2S
Mr 531.42
Crystal system, space group Monoclinic, C2/c
Temperature (K) 293
a, b, c (Å) 25.289 (5), 10.076 (2), 19.050 (4)
β (°) 98.89 (3)
V3) 4795.9 (17)
Z 8
Radiation type Mo Kα
μ (mm−1) 1.83
Crystal size (mm) 0.24 × 0.22 × 0.19
 
Data collection
Diffractometer Bruker SMART APEX CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.517, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 40628, 4218, 3656
Rint 0.038
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.121, 1.05
No. of reflections 4218
No. of parameters 310
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.89, −0.63
Computer programs: SMART and SAINT (Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

6'-(3-bromophenyl)-7'-nitro-1',6',7',7a'-tetrahydro-3'H-spiro [indeno[1,2-b]quinoxaline-11,5'-pyrrolo[1,2-c]thiazole] top
Crystal data top
C26H19BrN4O2SF(000) = 2160
Mr = 531.42Dx = 1.472 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 25.289 (5) ÅCell parameters from 3142 reflections
b = 10.076 (2) Åθ = 2.2–24.8°
c = 19.050 (4) ŵ = 1.83 mm1
β = 98.89 (3)°T = 293 K
V = 4795.9 (17) Å3Block, colourless
Z = 80.24 × 0.22 × 0.19 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3656 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.038
ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 3030
Tmin = 0.517, Tmax = 0.746k = 1111
40628 measured reflectionsl = 2222
4218 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0575P)2 + 11.8643P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4218 reflectionsΔρmax = 0.89 e Å3
310 parametersΔρmin = 0.63 e Å3
Special details top

Experimental. The following wavelength and cell were deduced by SADABS from the direction cosines etc. They are given here for emergency use only: CELL 0.71090 25.300 10.059 19.058 90.049 98.844 90.017

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.60837 (2)0.10535 (3)0.38169 (2)0.06601 (17)
C10.73278 (11)0.7376 (3)0.31464 (15)0.0360 (6)
C20.77113 (13)0.7504 (4)0.26843 (18)0.0489 (8)
H20.80420.70900.27950.059*
C30.75987 (15)0.8231 (4)0.20776 (18)0.0545 (9)
H30.78560.83240.17810.065*
C40.70981 (16)0.8839 (4)0.18966 (19)0.0567 (9)
H40.70250.93250.14780.068*
C50.67163 (14)0.8730 (3)0.23261 (18)0.0477 (8)
H50.63840.91320.21980.057*
C60.68267 (11)0.8002 (3)0.29657 (15)0.0349 (6)
C70.65759 (10)0.7257 (3)0.39796 (14)0.0280 (5)
C80.62255 (10)0.7015 (3)0.45497 (13)0.0280 (5)
C90.66049 (11)0.6223 (3)0.50918 (14)0.0306 (6)
C100.65111 (12)0.5699 (3)0.57344 (15)0.0396 (7)
H100.61910.58680.59010.048*
C110.69021 (13)0.4922 (4)0.61218 (17)0.0494 (8)
H110.68420.45600.65510.059*
C120.73811 (14)0.4673 (4)0.58825 (19)0.0543 (9)
H120.76400.41570.61550.065*
C130.74790 (13)0.5182 (3)0.52437 (18)0.0469 (8)
H130.78000.50060.50800.056*
C140.70894 (11)0.5965 (3)0.48491 (15)0.0332 (6)
C150.70813 (10)0.6617 (3)0.41601 (14)0.0306 (6)
C160.57141 (10)0.6179 (2)0.42668 (14)0.0281 (5)
H160.56030.57360.46780.034*
C170.53081 (11)0.7270 (3)0.40397 (16)0.0357 (6)
H170.53760.76590.35910.043*
C180.58926 (11)0.3828 (3)0.39714 (16)0.0354 (6)
H180.59410.36460.44560.043*
C190.59367 (12)0.2821 (3)0.34890 (18)0.0417 (7)
C200.58702 (14)0.3057 (4)0.27749 (19)0.0542 (9)
H200.58980.23690.24570.065*
C210.57613 (17)0.4330 (4)0.25332 (18)0.0608 (10)
H210.57190.45030.20480.073*
C220.57142 (13)0.5360 (3)0.30048 (16)0.0459 (7)
H220.56410.62160.28340.055*
C230.57758 (10)0.5114 (3)0.37270 (14)0.0309 (6)
C240.54224 (11)0.8299 (3)0.46335 (16)0.0360 (6)
H240.52910.91730.44600.043*
C250.52148 (13)0.7969 (3)0.53309 (18)0.0494 (8)
H25A0.52050.70160.54020.059*
H25B0.48580.83240.53270.059*
C260.62012 (13)0.8918 (3)0.54297 (16)0.0429 (7)
H26A0.62720.98490.53550.052*
H26B0.65320.85000.56470.052*
N10.74585 (9)0.6656 (2)0.37613 (13)0.0369 (5)
N20.64390 (9)0.7938 (2)0.34013 (12)0.0332 (5)
N30.60047 (9)0.8291 (2)0.47670 (12)0.0309 (5)
N40.47412 (11)0.6778 (3)0.39594 (19)0.0595 (8)
O20.46398 (11)0.5783 (4)0.4257 (2)0.0885 (10)
S10.56825 (4)0.87389 (12)0.60150 (5)0.0656 (3)
O10.4436 (3)0.7341 (7)0.3438 (3)0.0871 (19)0.63
O1'0.4388 (5)0.7516 (14)0.3830 (6)0.0871 (19)0.37
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0729 (3)0.0307 (2)0.0999 (4)0.01279 (16)0.0308 (2)0.00099 (17)
C10.0364 (14)0.0336 (15)0.0399 (15)0.0029 (12)0.0125 (12)0.0037 (12)
C20.0461 (18)0.054 (2)0.0518 (19)0.0017 (15)0.0229 (14)0.0027 (16)
C30.061 (2)0.058 (2)0.0514 (19)0.0125 (18)0.0288 (16)0.0005 (17)
C40.076 (2)0.052 (2)0.0448 (19)0.0111 (18)0.0203 (17)0.0126 (15)
C50.0533 (19)0.0428 (18)0.0481 (18)0.0018 (15)0.0111 (15)0.0136 (14)
C60.0394 (15)0.0288 (14)0.0379 (15)0.0062 (12)0.0098 (12)0.0009 (12)
C70.0294 (13)0.0216 (12)0.0329 (13)0.0010 (10)0.0051 (10)0.0005 (10)
C80.0270 (12)0.0258 (13)0.0316 (13)0.0017 (10)0.0058 (10)0.0004 (10)
C90.0310 (13)0.0275 (14)0.0326 (14)0.0010 (11)0.0025 (11)0.0006 (11)
C100.0379 (15)0.0422 (17)0.0386 (15)0.0029 (13)0.0054 (12)0.0058 (13)
C110.0531 (19)0.053 (2)0.0414 (17)0.0022 (16)0.0037 (14)0.0171 (15)
C120.0491 (19)0.052 (2)0.058 (2)0.0110 (16)0.0018 (16)0.0212 (17)
C130.0373 (16)0.0461 (18)0.0571 (19)0.0124 (14)0.0071 (14)0.0129 (15)
C140.0318 (14)0.0295 (14)0.0379 (15)0.0026 (11)0.0045 (11)0.0020 (11)
C150.0297 (13)0.0265 (13)0.0360 (14)0.0019 (11)0.0065 (11)0.0023 (11)
C160.0298 (13)0.0237 (13)0.0307 (13)0.0000 (10)0.0044 (10)0.0023 (10)
C170.0291 (14)0.0316 (15)0.0451 (16)0.0025 (11)0.0015 (11)0.0001 (12)
C180.0361 (14)0.0311 (15)0.0404 (15)0.0021 (11)0.0097 (12)0.0016 (12)
C190.0369 (15)0.0327 (16)0.0579 (19)0.0016 (12)0.0152 (13)0.0056 (14)
C200.060 (2)0.050 (2)0.054 (2)0.0043 (16)0.0139 (16)0.0216 (16)
C210.081 (3)0.066 (2)0.0343 (17)0.009 (2)0.0065 (17)0.0098 (17)
C220.0584 (19)0.0426 (18)0.0356 (15)0.0057 (15)0.0043 (14)0.0024 (13)
C230.0259 (13)0.0307 (14)0.0366 (14)0.0025 (11)0.0062 (11)0.0029 (11)
C240.0321 (14)0.0270 (14)0.0487 (17)0.0054 (11)0.0062 (12)0.0006 (12)
C250.0454 (17)0.0428 (18)0.066 (2)0.0001 (14)0.0292 (16)0.0091 (16)
C260.0458 (17)0.0398 (17)0.0431 (17)0.0004 (13)0.0066 (13)0.0086 (13)
N10.0342 (12)0.0369 (13)0.0413 (13)0.0048 (10)0.0112 (10)0.0008 (11)
N20.0329 (12)0.0281 (12)0.0393 (13)0.0013 (9)0.0079 (10)0.0040 (10)
N30.0301 (11)0.0257 (11)0.0375 (12)0.0010 (9)0.0067 (9)0.0030 (9)
N40.0336 (15)0.0543 (19)0.085 (2)0.0073 (14)0.0081 (15)0.0152 (17)
O20.0485 (16)0.099 (3)0.117 (3)0.0275 (16)0.0089 (16)0.019 (2)
S10.0733 (6)0.0839 (7)0.0438 (5)0.0019 (5)0.0223 (4)0.0113 (5)
O10.052 (2)0.087 (3)0.107 (5)0.014 (2)0.036 (4)0.020 (4)
O1'0.052 (2)0.087 (3)0.107 (5)0.014 (2)0.036 (4)0.020 (4)
Geometric parameters (Å, º) top
Br1—C191.905 (3)C15—N11.309 (4)
C1—N11.374 (4)C16—C231.511 (4)
C1—C61.410 (4)C16—C171.520 (4)
C1—C21.413 (4)C16—H160.9800
C2—C31.360 (5)C17—N41.502 (4)
C2—H20.9300C17—C241.529 (4)
C3—C41.401 (5)C17—H170.9800
C3—H30.9300C18—C191.385 (4)
C4—C51.363 (5)C18—C231.393 (4)
C4—H40.9300C18—H180.9300
C5—C61.412 (4)C19—C201.366 (5)
C5—H50.9300C20—C211.376 (5)
C6—N21.380 (4)C20—H200.9300
C7—N21.299 (4)C21—C221.390 (5)
C7—C151.425 (4)C21—H210.9300
C7—C81.524 (4)C22—C231.383 (4)
C8—N31.486 (3)C22—H220.9300
C8—C91.523 (4)C24—N31.455 (3)
C8—C161.568 (4)C24—C251.539 (4)
C9—C101.387 (4)C24—H240.9800
C9—C141.399 (4)C25—S11.795 (4)
C10—C111.382 (4)C25—H25A0.9700
C10—H100.9300C25—H25B0.9700
C11—C121.382 (5)C26—N31.430 (4)
C11—H110.9300C26—S11.857 (3)
C12—C131.378 (5)C26—H26A0.9700
C12—H120.9300C26—H26B0.9700
C13—C141.389 (4)N4—O1'1.158 (13)
C13—H130.9300N4—O21.199 (4)
C14—C151.465 (4)N4—O11.290 (7)
N1—C1—C6122.2 (2)N4—C17—C16112.5 (2)
N1—C1—C2118.8 (3)N4—C17—C24111.6 (2)
C6—C1—C2119.0 (3)C16—C17—C24103.7 (2)
C3—C2—C1120.3 (3)N4—C17—H17109.6
C3—C2—H2119.8C16—C17—H17109.6
C1—C2—H2119.8C24—C17—H17109.6
C2—C3—C4120.5 (3)C19—C18—C23119.6 (3)
C2—C3—H3119.8C19—C18—H18120.2
C4—C3—H3119.8C23—C18—H18120.2
C5—C4—C3120.9 (3)C20—C19—C18121.5 (3)
C5—C4—H4119.5C20—C19—Br1118.5 (2)
C3—C4—H4119.5C18—C19—Br1119.9 (2)
C4—C5—C6119.7 (3)C19—C20—C21118.9 (3)
C4—C5—H5120.1C19—C20—H20120.5
C6—C5—H5120.1C21—C20—H20120.5
N2—C6—C1121.8 (2)C20—C21—C22120.8 (3)
N2—C6—C5118.6 (3)C20—C21—H21119.6
C1—C6—C5119.6 (3)C22—C21—H21119.6
N2—C7—C15123.7 (2)C23—C22—C21120.1 (3)
N2—C7—C8125.5 (2)C23—C22—H22120.0
C15—C7—C8110.8 (2)C21—C22—H22120.0
N3—C8—C9119.3 (2)C22—C23—C18119.0 (3)
N3—C8—C7110.2 (2)C22—C23—C16122.8 (3)
C9—C8—C7101.1 (2)C18—C23—C16118.2 (2)
N3—C8—C16103.60 (19)N3—C24—C17101.3 (2)
C9—C8—C16110.6 (2)N3—C24—C25108.6 (2)
C7—C8—C16112.4 (2)C17—C24—C25116.2 (3)
C10—C9—C14119.9 (3)N3—C24—H24110.1
C10—C9—C8128.5 (3)C17—C24—H24110.1
C14—C9—C8111.4 (2)C25—C24—H24110.1
C11—C10—C9118.8 (3)C24—C25—S1105.0 (2)
C11—C10—H10120.6C24—C25—H25A110.7
C9—C10—H10120.6S1—C25—H25A110.7
C12—C11—C10121.2 (3)C24—C25—H25B110.7
C12—C11—H11119.4S1—C25—H25B110.7
C10—C11—H11119.4H25A—C25—H25B108.8
C13—C12—C11120.7 (3)N3—C26—S1107.8 (2)
C13—C12—H12119.7N3—C26—H26A110.1
C11—C12—H12119.7S1—C26—H26A110.1
C12—C13—C14118.7 (3)N3—C26—H26B110.1
C12—C13—H13120.7S1—C26—H26B110.1
C14—C13—H13120.7H26A—C26—H26B108.5
C13—C14—C9120.7 (3)C15—N1—C1114.2 (2)
C13—C14—C15130.5 (3)C7—N2—C6114.4 (2)
C9—C14—C15108.7 (2)C26—N3—C24110.8 (2)
N1—C15—C7123.6 (2)C26—N3—C8122.2 (2)
N1—C15—C14128.5 (2)C24—N3—C8111.7 (2)
C7—C15—C14107.9 (2)O1'—N4—O2115.1 (8)
C23—C16—C17117.1 (2)O2—N4—O1125.8 (4)
C23—C16—C8116.7 (2)O1'—N4—C17120.1 (8)
C17—C16—C8101.2 (2)O2—N4—C17119.9 (3)
C23—C16—H16107.0O1—N4—C17112.4 (5)
C17—C16—H16107.0C25—S1—C2693.06 (14)
C8—C16—H16107.0
N1—C1—C2—C3178.8 (3)C23—C16—C17—C24169.2 (2)
C6—C1—C2—C30.5 (5)C8—C16—C17—C2441.2 (3)
C1—C2—C3—C41.2 (5)C23—C18—C19—C200.2 (5)
C2—C3—C4—C50.7 (6)C23—C18—C19—Br1178.9 (2)
C3—C4—C5—C60.5 (5)C18—C19—C20—C210.5 (5)
N1—C1—C6—N20.6 (4)Br1—C19—C20—C21179.7 (3)
C2—C1—C6—N2178.7 (3)C19—C20—C21—C220.6 (6)
N1—C1—C6—C5180.0 (3)C20—C21—C22—C230.1 (6)
C2—C1—C6—C50.7 (4)C21—C22—C23—C180.9 (5)
C4—C5—C6—N2178.2 (3)C21—C22—C23—C16178.2 (3)
C4—C5—C6—C11.2 (5)C19—C18—C23—C220.9 (4)
N2—C7—C8—N350.7 (3)C19—C18—C23—C16178.2 (2)
C15—C7—C8—N3130.0 (2)C17—C16—C23—C2233.0 (4)
N2—C7—C8—C9177.8 (3)C8—C16—C23—C2287.1 (3)
C15—C7—C8—C92.8 (3)C17—C16—C23—C18146.1 (3)
N2—C7—C8—C1664.3 (3)C8—C16—C23—C1893.8 (3)
C15—C7—C8—C16115.1 (2)N4—C17—C24—N3162.2 (2)
N3—C8—C9—C1059.7 (4)C16—C17—C24—N340.8 (3)
C7—C8—C9—C10179.4 (3)N4—C17—C24—C2544.7 (4)
C16—C8—C9—C1060.2 (4)C16—C17—C24—C2576.6 (3)
N3—C8—C9—C14124.6 (3)N3—C24—C25—S135.8 (3)
C7—C8—C9—C143.6 (3)C17—C24—C25—S1149.1 (2)
C16—C8—C9—C14115.6 (2)C7—C15—N1—C10.2 (4)
C14—C9—C10—C110.2 (4)C14—C15—N1—C1178.9 (3)
C8—C9—C10—C11175.2 (3)C6—C1—N1—C150.6 (4)
C9—C10—C11—C120.5 (5)C2—C1—N1—C15178.7 (3)
C10—C11—C12—C130.8 (6)C15—C7—N2—C60.2 (4)
C11—C12—C13—C140.8 (5)C8—C7—N2—C6179.5 (2)
C12—C13—C14—C90.5 (5)C1—C6—N2—C70.2 (4)
C12—C13—C14—C15179.4 (3)C5—C6—N2—C7179.6 (3)
C10—C9—C14—C130.2 (4)S1—C26—N3—C2426.9 (3)
C8—C9—C14—C13175.9 (3)S1—C26—N3—C8108.2 (2)
C10—C9—C14—C15179.3 (3)C17—C24—N3—C26164.5 (2)
C8—C9—C14—C153.2 (3)C25—C24—N3—C2641.6 (3)
N2—C7—C15—N10.2 (4)C17—C24—N3—C824.4 (3)
C8—C7—C15—N1179.6 (2)C25—C24—N3—C898.4 (3)
N2—C7—C15—C14179.5 (3)C9—C8—N3—C2610.6 (4)
C8—C7—C15—C141.2 (3)C7—C8—N3—C26105.6 (3)
C13—C14—C15—N13.1 (5)C16—C8—N3—C26134.0 (3)
C9—C14—C15—N1178.0 (3)C9—C8—N3—C24124.2 (3)
C13—C14—C15—C7177.8 (3)C7—C8—N3—C24119.6 (2)
C9—C14—C15—C71.2 (3)C16—C8—N3—C240.8 (3)
N3—C8—C16—C23154.1 (2)C16—C17—N4—O1'175.5 (7)
C9—C8—C16—C2376.9 (3)C24—C17—N4—O1'59.3 (8)
C7—C8—C16—C2335.2 (3)C16—C17—N4—O221.6 (5)
N3—C8—C16—C1725.8 (2)C24—C17—N4—O294.6 (4)
C9—C8—C16—C17154.8 (2)C16—C17—N4—O1143.6 (4)
C7—C8—C16—C1793.1 (2)C24—C17—N4—O1100.3 (4)
C23—C16—C17—N470.0 (3)C24—C25—S1—C2617.4 (2)
C8—C16—C17—N4161.9 (2)N3—C26—S1—C254.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···N20.982.783.345 (4)117
C20—H20···S1i0.932.943.775 (4)151
C26—H26A···Br1ii0.973.143.725 (3)120
C26—H26B···N1iii0.972.633.547 (4)158
C16—H16···O2iv0.982.693.660 (4)172
C25—H25A···O2iv0.972.913.867 (5)170
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y+1, z; (iii) x+3/2, y+3/2, z+1; (iv) x+1, y+1, z+1.
 

Acknowledgements

The authors CM, BR and SP thank the management of Devanga Arts College, Aruppukkottai for their constant support and encouragement.

References

First citationArun, Y., Saranraj, K., Balachandran, C. & Perumal, P. T. (2014). Eur. J. Med. Chem. 74, 50–64.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBozdağ-Dündar, O., Verspohl, E. J., Daş-Evcimen, N., Kaup, R. M., Bauer, K., Sarıkaya, M., Evranos, B. & Ertan, R. (2008). Bioorg. Med. Chem. 16, 6747–6751.  Google Scholar
First citationBruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCampeau, L. C., Bertrand-Laperle, M., Leclerc, J. P., Villemure, E., Gorelsky, S. & Fagnou, K. (2008). J. Am. Chem. Soc. 130, 3276–3277.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHe, W., Myers, M. R., Hanney, B., Spada, A. P., Bilder, G., Galzcinski, H., Amin, D., Needle, S., Page, K., Jayyosi, Z. & Perrone, M. H. (2003). Bioorg. Med. Chem. Lett. 13, 3097–3100.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKnox, C., Law, V., Jewison, T., Liu, P., Ly, S., Frolkis, A., Pon, A., Banco, K., Mak, C., Neveu, V., Djoumbou, Y., Eisner, R., Guo, A. C. & Wishart, D. S. (2011). Nucleic Acids Res. 39, D1035–D1041.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMuralikrishnan, S., Raveendrareddy, P., Ravindranath, L. K., Harikrishna, S. & Jagadeeswara, R. P. (2013). Der Pharm. Chem. 5, 87–93.  Google Scholar
First citationMuthuselvi, C., Muthu, M., Athimoolam, S., Ravikumar, B., Pandiarajan, S. & Krishnakumar, R. V. (2017). IUCrData, 2, x171305.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwarnkar, P. K., Kriplani, P., Gupta, G. N. & Ojha, K. G. (2007). E-J. Chem. 4, 14–20.  CrossRef CAS Google Scholar
First citationVerma, A. & Saraf, S. K. (2008). Eur. J. Med. Chem. 43, 897–905.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWermuth, C. G. (2003). In The Practice of Medicinal Chemistry. San Diego: Elsevier Academic Press.  Google Scholar
First citationZheng, Y., Tice, C. M. & Singh, S. B. (2014). Bioorg. Med. Chem. Lett. 24, 3673–3682.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]