organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N,N′-Bis(4-bromo­phen­yl)-N,N′-di­methyl­urea

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie de Coordination, C.N.R.S., 205 route de Narbonne, BP 44099, 31077 Toulouse Cedex 4, France
*Correspondence e-mail: emmanuel.gras@lcc-toulouse.fr

Edited by J. Simpson, University of Otago, New Zealand (Received 18 January 2018; accepted 30 January 2018; online 2 February 2018)

The structure of the title compound, C15H14Br2N2O, at 180 K has monoclinic (P21/n) symmetry. It was obtained unexpectedly from the decomposition of the parent 4-bromo-N-tert-but­oxy­carbonyl-N-methyl-aniline. It exhibits an `endo' conformation with angles between the two aromatic rings slightly lower than the average values found for similar compounds on the Cambridge Structural Database. In the crystal, C—H⋯O hydrogen bonds and short Br⋯Br halogen bonds [3.444 (1) Å] are observed.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In the title compound, an `endo' conformation is observed with the two aryl rings facing each other (Fig. 1[link]). This structural feature has been observed previously and shown to be specific to N,N,N′,N′-tetra­substituted-N,N′-diaryl urea derivatives (Clayden et al., 2010[Clayden, J., Hennecke, U., Vincent, M. A., Hillier, I. H. & Helliwell, M. (2010). Phys. Chem. Chem. Phys. 12, 15056-15064.]; Hisamatsu et al., 2011a[Hisamatsu, S., Masu, H., Azumaya, I., Takahashi, M., Kishikawa, K. & Kohmoto, S. (2011a). Cryst. Growth Des. 11, 1453-1457.],b[Hisamatsu, S., Masu, H., Azumaya, I., Takahashi, M., Kishikawa, K. & Kohmoto, S. (2011b). Cryst. Growth Des. 11, 5387-5395.]; Hisamatsu et al., 2012[Hisamatsu, S., Masu, H., Takahashi, M., Kishikawa, K. & Kohmoto, S. (2012). Tetrahedron Lett. 53, 3903-3906.]; Snape et al., 2012[Snape, T. J., Karakoula, K., Rowther, F. & Warr, T. (2012). RSC Adv. 2, 7557-7560.]). The planes of the two benzene rings are twisted by an angle of 29.51 (11)°, which compares moderately well with the average value found for similar structures in the CSD (Version 5.38, updated November 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). 44 structures were found, minimum angle 15.14°, maximum angle 81.25° with an average value of 33.59°. The C4—N1⋯N2—C10 torsion angle is 47.76° while the corresponding values obtained from the database for the 44 hits lie between 22.56 and 122.96° with an average value of 56.45°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound showing the atom numbering with displacement ellipsoids drawn at the 50% probability level.

In the crystal, O2 acts as a bifurcated acceptor, forming C6—H6⋯O2 and C11—H11⋯O2 hydrogen bonds, Table 1[link]. These combine with Br1⋯Br2iii short contacts [3.444 (1) Å; symmetry code: (iii) [{3\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z] to generate a three-dimensional network, Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O2i 0.95 2.59 3.526 (3) 170
C11—H11⋯O2ii 0.95 2.42 3.365 (3) 178
Symmetry codes: (i) x+1, y, z; (ii) -x, -y+1, -z+1.
[Figure 2]
Figure 2
A view of the extended structure of the title compound with hydrogen bonds drawn as dashed lines. Hydrogen atoms not involved in hydrogen bonding have been omitted.

Synthesis and crystallization

Crystals of the title compound were obtained from 1 g of the oil of neat tert-butyl (4-bromo­phen­yl)methyl­carbamate (previously purified by column chromatography), upon standing in air for two months. This indicates the unprecedented instability of this Boc-protected aniline (Fig. 3[link]). The crystals were washed with 10 mL of cyclo­hexane, providing 50 mg of crystals of the title compound.

[Figure 3]
Figure 3
Chemical scheme showing the formation of the title compound from the corresponding Boc-protected aniline

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C15H14Br2N2O
Mr 398.08
Crystal system, space group Monoclinic, P21/n
Temperature (K) 180
a, b, c (Å) 9.1622 (2), 12.8617 (4), 13.1863 (3)
β (°) 99.307 (3)
V3) 1533.44 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 5.28
Crystal size (mm) 0.4 × 0.36 × 0.28
 
Data collection
Diffractometer Agilent Xcalibur, Eos, Gemini ultra
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.319, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 31347, 3484, 2771
Rint 0.043
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.077, 1.05
No. of reflections 3484
No. of parameters 182
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.69, −0.77
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

N,N'-Bis(4-bromophenyl)-N,N'-dimethylurea top
Crystal data top
C15H14Br2N2OF(000) = 784
Mr = 398.08Dx = 1.724 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7189 reflections
a = 9.1622 (2) Åθ = 3.3–28.2°
b = 12.8617 (4) ŵ = 5.28 mm1
c = 13.1863 (3) ÅT = 180 K
β = 99.307 (3)°Block, colourless
V = 1533.44 (7) Å30.4 × 0.36 × 0.28 mm
Z = 4
Data collection top
Agilent Xcalibur, Eos, Gemini ultra
diffractometer
3484 independent reflections
Radiation source: Enhance (Mo) X-ray Source2771 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ω scansθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 1111
Tmin = 0.319, Tmax = 1.000k = 1616
31347 measured reflectionsl = 1717
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0356P)2 + 1.0497P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3484 reflectionsΔρmax = 0.69 e Å3
182 parametersΔρmin = 0.77 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5095 (3)0.1833 (2)0.44957 (19)0.0284 (6)
C20.3728 (3)0.1366 (2)0.4417 (2)0.0317 (6)
H20.35950.06670.41870.038*
C30.2553 (3)0.1923 (2)0.46768 (19)0.0295 (6)
H30.16090.16050.46340.035*
C40.2753 (3)0.2948 (2)0.49998 (17)0.0244 (5)
C50.4145 (3)0.3395 (2)0.50894 (19)0.0268 (5)
H50.42870.4090.53280.032*
C60.5329 (3)0.2842 (2)0.4835 (2)0.0295 (6)
H60.62810.3150.48940.035*
C70.1558 (3)0.3762 (3)0.6339 (2)0.0401 (7)
H7A0.08920.43440.6410.06*
H7B0.25650.39440.66610.06*
H7C0.1230.31450.66760.06*
C80.0184 (3)0.3570 (2)0.4626 (2)0.0278 (6)
C90.1240 (3)0.3325 (3)0.2923 (2)0.0450 (8)
H9A0.15360.25990.2990.068*
H9B0.11440.34670.22070.068*
H9C0.1990.37850.31320.068*
C100.1394 (3)0.3795 (2)0.30935 (18)0.0240 (5)
C110.2114 (3)0.4727 (2)0.33029 (19)0.0269 (5)
H110.17980.51960.3780.032*
C120.3302 (3)0.4984 (2)0.2819 (2)0.0286 (6)
H120.38140.56220.29710.034*
C130.3732 (3)0.4303 (2)0.21162 (19)0.0268 (6)
C140.3013 (3)0.3378 (2)0.1880 (2)0.0329 (6)
H140.33120.2920.13870.039*
C150.1840 (3)0.3128 (2)0.2376 (2)0.0327 (6)
H150.13330.24890.22230.039*
N10.1540 (2)0.35407 (18)0.52462 (15)0.0290 (5)
N20.0177 (2)0.35073 (18)0.35812 (16)0.0304 (5)
O20.0968 (2)0.36539 (16)0.49821 (15)0.0374 (5)
Br10.66952 (4)0.10678 (3)0.41141 (2)0.04620 (11)
Br20.53294 (3)0.46621 (3)0.14348 (2)0.04781 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0319 (14)0.0326 (14)0.0221 (12)0.0102 (12)0.0087 (11)0.0044 (11)
C20.0430 (17)0.0269 (14)0.0253 (13)0.0013 (12)0.0054 (12)0.0021 (11)
C30.0289 (14)0.0340 (15)0.0257 (13)0.0050 (11)0.0047 (11)0.0048 (11)
C40.0254 (13)0.0315 (14)0.0164 (11)0.0029 (11)0.0040 (9)0.0026 (10)
C50.0257 (13)0.0263 (14)0.0268 (13)0.0008 (10)0.0006 (10)0.0012 (10)
C60.0222 (13)0.0363 (15)0.0295 (13)0.0011 (11)0.0024 (10)0.0073 (11)
C70.0395 (17)0.059 (2)0.0213 (13)0.0147 (14)0.0037 (12)0.0055 (13)
C80.0238 (13)0.0339 (14)0.0262 (13)0.0004 (11)0.0052 (11)0.0005 (11)
C90.0289 (15)0.070 (2)0.0338 (16)0.0149 (15)0.0035 (12)0.0055 (15)
C100.0202 (12)0.0323 (14)0.0187 (11)0.0006 (10)0.0004 (9)0.0021 (10)
C110.0300 (14)0.0262 (13)0.0239 (12)0.0036 (11)0.0018 (10)0.0009 (10)
C120.0278 (14)0.0255 (13)0.0308 (14)0.0041 (11)0.0001 (11)0.0051 (11)
C130.0228 (13)0.0362 (14)0.0212 (12)0.0002 (11)0.0030 (10)0.0109 (11)
C140.0390 (16)0.0375 (16)0.0241 (13)0.0018 (12)0.0106 (12)0.0023 (11)
C150.0404 (16)0.0317 (15)0.0268 (13)0.0103 (12)0.0082 (12)0.0057 (11)
N10.0246 (11)0.0430 (13)0.0192 (10)0.0068 (10)0.0034 (9)0.0026 (9)
N20.0193 (11)0.0485 (14)0.0229 (11)0.0060 (10)0.0016 (9)0.0007 (10)
O20.0232 (10)0.0557 (13)0.0353 (10)0.0000 (9)0.0110 (8)0.0047 (9)
Br10.0511 (2)0.0519 (2)0.04037 (18)0.02521 (15)0.02171 (14)0.00926 (14)
Br20.03153 (17)0.0754 (3)0.03916 (18)0.00702 (15)0.01386 (13)0.01359 (15)
Geometric parameters (Å, º) top
C1—C21.377 (4)C8—N21.379 (3)
C1—C61.377 (4)C9—N21.459 (3)
C1—Br11.900 (2)C9—H9A0.98
C2—C31.382 (4)C9—H9B0.98
C2—H20.95C9—H9C0.98
C3—C41.388 (4)C10—C111.375 (4)
C3—H30.95C10—C151.387 (4)
C4—C51.386 (4)C10—N21.424 (3)
C4—N11.429 (3)C11—C121.388 (4)
C5—C61.383 (4)C11—H110.95
C5—H50.95C12—C131.379 (4)
C6—H60.95C12—H120.95
C7—N11.466 (3)C13—C141.371 (4)
C7—H7A0.98C13—Br21.894 (2)
C7—H7B0.98C14—C151.383 (4)
C7—H7C0.98C14—H140.95
C8—O21.227 (3)C15—H150.95
C8—N11.373 (3)Br1—Br2i3.4443 (4)
C2—C1—C6121.8 (2)N2—C9—H9C109.5
C2—C1—Br1119.0 (2)H9A—C9—H9C109.5
C6—C1—Br1119.2 (2)H9B—C9—H9C109.5
C1—C2—C3119.3 (2)C11—C10—C15119.5 (2)
C1—C2—H2120.3C11—C10—N2121.4 (2)
C3—C2—H2120.3C15—C10—N2119.1 (2)
C2—C3—C4119.9 (2)C10—C11—C12120.1 (2)
C2—C3—H3120C10—C11—H11119.9
C4—C3—H3120C12—C11—H11119.9
C5—C4—C3119.6 (2)C13—C12—C11119.2 (2)
C5—C4—N1119.9 (2)C13—C12—H12120.4
C3—C4—N1120.5 (2)C11—C12—H12120.4
C6—C5—C4120.8 (2)C14—C13—C12121.7 (2)
C6—C5—H5119.6C14—C13—Br2118.9 (2)
C4—C5—H5119.6C12—C13—Br2119.4 (2)
C1—C6—C5118.4 (2)C13—C14—C15118.4 (2)
C1—C6—H6120.8C13—C14—H14120.8
C5—C6—H6120.8C15—C14—H14120.8
N1—C7—H7A109.5C14—C15—C10121.1 (2)
N1—C7—H7B109.5C14—C15—H15119.5
H7A—C7—H7B109.5C10—C15—H15119.5
N1—C7—H7C109.5C8—N1—C4122.8 (2)
H7A—C7—H7C109.5C8—N1—C7116.5 (2)
H7B—C7—H7C109.5C4—N1—C7116.2 (2)
O2—C8—N1121.7 (2)C8—N2—C10124.0 (2)
O2—C8—N2121.5 (2)C8—N2—C9117.6 (2)
N1—C8—N2116.8 (2)C10—N2—C9117.4 (2)
N2—C9—H9A109.5C1—Br1—Br2i176.83 (8)
N2—C9—H9B109.5C13—Br2—Br1i90.26 (8)
H9A—C9—H9B109.5
Symmetry code: (i) x+3/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2ii0.952.593.526 (3)170
C11—H11···O2iii0.952.423.365 (3)178
Symmetry codes: (ii) x+1, y, z; (iii) x, y+1, z+1.
 

Funding information

The Association France Alzheimer and the Région Midi Pyrénées are acknowledged for financial support (PhD funding for AP).

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationClayden, J., Hennecke, U., Vincent, M. A., Hillier, I. H. & Helliwell, M. (2010). Phys. Chem. Chem. Phys. 12, 15056–15064.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHisamatsu, S., Masu, H., Azumaya, I., Takahashi, M., Kishikawa, K. & Kohmoto, S. (2011a). Cryst. Growth Des. 11, 1453–1457.  Web of Science CSD CrossRef CAS Google Scholar
First citationHisamatsu, S., Masu, H., Azumaya, I., Takahashi, M., Kishikawa, K. & Kohmoto, S. (2011b). Cryst. Growth Des. 11, 5387–5395.  Web of Science CSD CrossRef CAS Google Scholar
First citationHisamatsu, S., Masu, H., Takahashi, M., Kishikawa, K. & Kohmoto, S. (2012). Tetrahedron Lett. 53, 3903–3906.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSnape, T. J., Karakoula, K., Rowther, F. & Warr, T. (2012). RSC Adv. 2, 7557–7560.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]