organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3-(1,2,2-Tri­iodo­ethen­yl)benzoic acid

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Biomolecular Sciences & CCRI, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario K1N 6N5, Canada
*Correspondence e-mail: david.bryce@uottawa.ca

Edited by A. J. Lough, University of Toronto, Canada (Received 5 February 2018; accepted 12 February 2018; online 20 February 2018)

The title compound, C9H5I3O2, has a layered structure exhibiting O—H⋯O hydrogen bonds, as well as C—I⋯C and C—I⋯O halogen bonding. The C atoms of the ethenyl group are disordered over two sets of sites with refined occupancies of 0.545 (18) and 0.455 (18).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Upon analyzing the crystals obtained from recrystallizing 3-iodo­ethynyl­benzoic acid from aceto­nitrile, a trace qu­antity of 3-(1,2,2-tri­iodo­ethen­yl)benzoic acid (Fig. 1[link]) was observed. The crystal structure of 3-(1,2,2-tri­iodo­ethen­yl)benzoic acid has a disordered ethenyl group, with the disorder akin to that reported for 1,2,2-tri­iodo­vinyl­benzene (Berger et al., 2016[Berger, G., Robeyns, K., Soubhye, J., Wintjens, R. & Meyer, F. (2016). CrystEngComm, 18, 683-690.]). While the iodine atoms' coordinates are well ordered, the carbon atoms occupy two sets of sites.

[Figure 1]
Figure 1
The mol­ecular structure of 3-(1,2,2-tri­iodo­ethen­yl)benzoic acid, with displacement ellipsoids drawn at the 50% probability level.

In the crystal, the carb­oxy­lic acid group inter­acts with the carb­oxy­lic acid group from an adjacent mol­ecule via O—H⋯O hydrogen bonds (see Table 1[link]), forming inversion dimers. One of the iodine atoms participates in a C—I⋯O halogen bond [dI⋯O = 3.174 (6) Å, θC—I⋯O = 159.3 (6)° for C9—I2⋯O2, 161.3 (4)° for C9′—I2⋯O2] and a second iodine atom participates in a halogen bond (Table 2[link]) to the carbon atom on the benzene ring [dI⋯C = 3.511 (7) Å, θC—I⋯C = 165.0 (5)° for C9′—I1⋯C4 and 164.5 (6)° for C8—I1⋯C4]. As a result of the disorder of the carbon atoms and the dependence of the halogen-bond angle on the position of the carbon atoms, two sets of bond angles can be obtained from the crystal structure. Sheets of inversion dimers are stacked to give the crystal of 3-(1,2,2-tri­iodo­ethen­yl)benzoic acid. Overall, as shown in Fig. 2[link], the structure is convoluted as a result of co-present hydrogen and halogen bonds, in addition to disorder.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 (7) 1.83 (8) 2.614 (7) 159 (9)
Symmetry code: (i) -x+2, -y+1, -z+2.

Table 2
Halogen-bond geometry (Å, °)

C—I⋯X I⋯X C—I⋯X
C9—I2⋯O2i 3.174 (6) 159.3 (6)
C9′—I2⋯O2i 3.174 (6) 161.3 (4)
C8—I1⋯C4ii 3.511 (7) 164.5 (6)
C9′—I1⋯C4ii 3.511 (7) 165.0 (5)
Symmetry codes: (i) −[{1\over 2}] + x, [{1\over 2}] − y, −[{1\over 2}] + z, (ii) 1 − x, 1 − y, 1 − z.
[Figure 2]
Figure 2
The crystal packing of 3-(1,2,2-tri­iodo­ethen­yl)benzoic acid, showing O—H⋯O hydrogen bonds and the C—I⋯O and C—I⋯C halogen bonds as dashed lines. The disorder positions in the ethenyl group are also indicated.

Synthesis and crystallization

Crystals of 3-(1,2,2-tri­iodo­ethen­yl)benzoic acid were obtained as a trace impurity during the recrystallization of 3-iodo­ethynyl­benzoic acid from aceto­nitrile. The synthesis of 3-iodo­ethynyl­benzoic acid has been reported elsewhere (Szell et al., 2018[Szell, P. M. J., Dragon, J., Zablotny, S., Harrigan, S. R., Gabidullin, B. & Bryce, D. L. (2018). Submitted. New J. Chem.]).

Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 3[link]. The tri­iodo­ethenyl fragment is disordered over two positions with a 0.545 (18): 0.455 (18) occupancy ratio. It was refined using restraints applied to the atomic displacement parameters, bond distances and angles [RIGU, SAME in SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.])]. No additional restraints or constraints were applied.

Table 3
Experimental details

Crystal data
Chemical formula C9H5I3O2
Mr 525.83
Crystal system, space group Monoclinic, P21/n
Temperature (K) 200
a, b, c (Å) 4.7121 (9), 18.752 (4), 13.856 (3)
β (°) 92.379 (5)
V3) 1223.3 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 7.64
Crystal size (mm) 0.48 × 0.16 × 0.06
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.485, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 9164, 3033, 1539
Rint 0.065
(sin θ/λ)max−1) 0.670
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.078, 0.99
No. of reflections 3033
No. of parameters 159
No. of restraints 97
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.14, −1.11
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and CIFTAB (Sheldrick, 1997[Sheldrick, G. M. (1997). CIFTAB. University of Göttingen, Germany.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: APEX2 (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b) and WinGX (Farrugia, 2012); molecular graphics: Mercury (Macrae et al., 2008) and PLATON (Spek, 2009); software used to prepare material for publication: CIFTAB (Sheldrick, 1997).

3-(1,2,2-Triiodoethenyl)benzoic acid top
Crystal data top
C9H5I3O2F(000) = 936
Mr = 525.83Dx = 2.855 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 4.7121 (9) ÅCell parameters from 2073 reflections
b = 18.752 (4) Åθ = 2.6–27.2°
c = 13.856 (3) ŵ = 7.64 mm1
β = 92.379 (5)°T = 200 K
V = 1223.3 (4) Å3Prism, colourless
Z = 40.48 × 0.16 × 0.06 mm
Data collection top
Bruker APEXII CCD
diffractometer
1539 reflections with I > 2σ(I)
φ and ω scansRint = 0.065
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
θmax = 28.4°, θmin = 1.8°
Tmin = 0.485, Tmax = 0.746h = 66
9164 measured reflectionsk = 2424
3033 independent reflectionsl = 1818
Refinement top
Refinement on F297 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0238P)2 + 0.1535P]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
3033 reflectionsΔρmax = 1.14 e Å3
159 parametersΔρmin = 1.10 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The hydrogen atom bonded to the oxygen atom was located in the difference Fourier map and refined freely while the remaining hydrogen atoms were placed in idealized positions.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I10.47571 (12)0.38729 (3)0.47397 (4)0.04455 (17)
I20.23490 (14)0.21161 (3)0.51879 (4)0.0605 (2)
I30.07423 (13)0.26225 (3)0.75867 (4)0.05472 (19)
O10.7327 (13)0.5516 (3)0.9400 (4)0.0463 (16)
O20.8689 (11)0.4380 (3)0.9237 (4)0.0427 (14)
C10.7188 (16)0.4891 (4)0.8996 (5)0.0317 (18)
C20.5060 (15)0.4839 (4)0.8176 (5)0.0316 (18)
C30.3394 (15)0.5406 (4)0.7888 (5)0.0364 (19)
H30.3579310.5846000.8224750.044*
C40.1446 (15)0.5348 (4)0.7116 (5)0.037 (2)
H40.0285500.5743320.6929240.045*
C50.1209 (16)0.4713 (5)0.6623 (6)0.046 (2)
H50.0324210.4640490.6167010.055*
C70.4797 (16)0.4205 (4)0.7676 (6)0.047 (2)
H70.5685370.3785840.7928250.057*
C60.321 (6)0.4178 (10)0.6791 (17)0.038 (6)0.455 (18)
C80.318 (4)0.3591 (11)0.6082 (13)0.032 (4)0.455 (18)
C90.237 (4)0.2952 (12)0.6235 (14)0.032 (4)0.455 (18)
C6'0.259 (5)0.4101 (8)0.6977 (15)0.040 (6)0.545 (18)
C8'0.228 (3)0.3326 (9)0.6600 (12)0.033 (4)0.545 (18)
C9'0.284 (3)0.3147 (9)0.5707 (12)0.030 (4)0.545 (18)
H10.881 (17)0.550 (4)0.973 (6)0.06 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0602 (4)0.0418 (3)0.0321 (3)0.0075 (3)0.0067 (3)0.0011 (3)
I20.0916 (5)0.0355 (3)0.0558 (4)0.0137 (3)0.0181 (3)0.0144 (3)
I30.0790 (5)0.0431 (4)0.0438 (3)0.0026 (3)0.0223 (3)0.0041 (3)
O10.050 (4)0.037 (4)0.051 (4)0.002 (3)0.014 (3)0.010 (3)
O20.050 (4)0.030 (3)0.048 (3)0.003 (3)0.008 (3)0.002 (3)
C10.038 (5)0.027 (5)0.030 (4)0.005 (4)0.002 (4)0.007 (4)
C20.033 (5)0.032 (5)0.030 (4)0.002 (4)0.003 (4)0.001 (4)
C30.045 (5)0.033 (5)0.031 (4)0.003 (4)0.007 (4)0.006 (4)
C40.041 (5)0.032 (5)0.038 (5)0.008 (4)0.005 (4)0.004 (4)
C50.031 (5)0.060 (5)0.046 (5)0.003 (4)0.001 (4)0.013 (4)
C70.043 (5)0.031 (5)0.067 (6)0.009 (4)0.014 (4)0.015 (4)
C60.012 (11)0.054 (9)0.049 (8)0.007 (8)0.008 (8)0.017 (8)
C80.034 (11)0.036 (7)0.024 (7)0.000 (7)0.009 (7)0.003 (5)
C90.039 (11)0.037 (8)0.021 (9)0.002 (8)0.006 (9)0.002 (6)
C6'0.019 (11)0.047 (6)0.054 (10)0.002 (6)0.004 (9)0.023 (6)
C8'0.041 (9)0.031 (7)0.028 (7)0.002 (7)0.002 (6)0.001 (5)
C9'0.033 (9)0.030 (7)0.027 (7)0.010 (7)0.007 (6)0.003 (6)
Geometric parameters (Å, º) top
I1—C82.098 (19)C3—H30.9500
I1—C9'2.137 (16)C4—C51.375 (10)
I2—C9'2.072 (16)C4—H40.9500
I2—C92.14 (2)C5—C61.391 (15)
I3—C8'2.054 (17)C5—C6'1.398 (14)
I3—C92.14 (2)C5—H50.9500
O1—C11.299 (8)C7—C6'1.406 (14)
O1—H10.82 (7)C7—C61.410 (15)
O2—C11.229 (8)C7—H70.9500
C1—C21.488 (9)C6—C81.48 (2)
C2—C31.371 (9)C8—C91.28 (3)
C2—C71.379 (9)C6'—C8'1.55 (2)
C3—C41.385 (9)C8'—C9'1.32 (3)
C1—O1—H1103 (6)C6—C7—H7120.0
O2—C1—O1124.6 (7)C5—C6—C7116.8 (13)
O2—C1—C2121.2 (7)C5—C6—C8116.1 (11)
O1—C1—C2114.1 (7)C7—C6—C8126.6 (12)
C3—C2—C7119.0 (7)C9—C8—C6126 (2)
C3—C2—C1122.1 (7)C9—C8—I1120.2 (17)
C7—C2—C1118.9 (7)C6—C8—I1114.1 (17)
C2—C3—C4121.2 (7)C8—C9—I2124.6 (17)
C2—C3—H3119.4C8—C9—I3122.4 (17)
C4—C3—H3119.4I2—C9—I3112.9 (10)
C5—C4—C3119.3 (7)C5—C6'—C7116.6 (12)
C5—C4—H4120.4C5—C6'—C8'128.1 (11)
C3—C4—H4120.4C7—C6'—C8'114.7 (10)
C4—C5—C6120.1 (9)C9'—C8'—C6'122.4 (17)
C4—C5—C6'120.7 (9)C9'—C8'—I3123.4 (14)
C4—C5—H5119.9C6'—C8'—I3114.1 (13)
C6—C5—H5119.9C8'—C9'—I2122.7 (14)
C2—C7—C6'120.9 (8)C8'—C9'—I1122.1 (13)
C2—C7—C6120.1 (9)I2—C9'—I1114.9 (8)
C2—C7—H7120.0
O2—C1—C2—C3179.1 (7)C5—C6—C8—I172 (3)
O1—C1—C2—C30.6 (10)C7—C6—C8—I1116 (3)
O2—C1—C2—C70.4 (11)C6—C8—C9—I2179.8 (13)
O1—C1—C2—C7178.1 (7)I1—C8—C9—I22 (2)
C7—C2—C3—C40.7 (11)C6—C8—C9—I32 (3)
C1—C2—C3—C4179.4 (6)I1—C8—C9—I3179.9 (8)
C2—C3—C4—C50.8 (11)C4—C5—C6'—C718 (3)
C3—C4—C5—C611 (2)C4—C5—C6'—C8'171.7 (18)
C3—C4—C5—C6'9.6 (18)C2—C7—C6'—C517 (3)
C3—C2—C7—C6'9.3 (18)C2—C7—C6'—C8'170.5 (13)
C1—C2—C7—C6'172.0 (16)C5—C6'—C8'—C9'59 (3)
C3—C2—C7—C611 (2)C7—C6'—C8'—C9'112 (2)
C1—C2—C7—C6168.0 (18)C5—C6'—C8'—I3118 (2)
C4—C5—C6—C721 (3)C7—C6'—C8'—I371 (2)
C4—C5—C6—C8166.2 (17)C6'—C8'—C9'—I2178.6 (11)
C2—C7—C6—C522 (3)I3—C8'—C9'—I22 (2)
C2—C7—C6—C8167 (2)C6'—C8'—C9'—I19 (2)
C5—C6—C8—C9109 (3)I3—C8'—C9'—I1174.8 (7)
C7—C6—C8—C962 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.82 (7)1.83 (8)2.614 (7)159 (9)
Symmetry code: (i) x+2, y+1, z+2.
Halogen-bond geometry (Å, °) top
C—I···XI···XC—I···X
C9—I2···O2i3.174 (6)159.3 (6)
C9'—I2···O2i3.174 (6)161.3 (4)
C8—I1···C4ii3.511 (7)164.5 (6)
C9'—I1···C4ii3.511 (7)165.0 (5)
Symmetry codes: (i) -1/2+x, 1/2-y, -1/2+z, (ii) 1-x, 1-y, 1-z.
 

Funding information

Funding for this research was provided by: Natural Sciences and Engineering Research Council of Canada .

References

First citationBerger, G., Robeyns, K., Soubhye, J., Wintjens, R. & Meyer, F. (2016). CrystEngComm, 18, 683–690.  CSD CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). CIFTAB. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSzell, P. M. J., Dragon, J., Zablotny, S., Harrigan, S. R., Gabidullin, B. & Bryce, D. L. (2018). Submitted. New J. ChemGoogle Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]