organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(4-Methyl­phen­yl)methanaminium bromide hemi­hydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Government Arts College (Autonomous), Kumbakonam 612 002, Tamilnadu, India, and bKunthavai Naacchiyaar Government Arts College for Women (Autonomous), Thanjavur 613 007, Tamilnadu, India
*Correspondence e-mail: thiruvalluvar.a@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 14 February 2018; accepted 15 February 2018; online 20 February 2018)

In the title hydrated salt, C8H12N+·Br·0.5H2O, which is isostructural with its chloride congener, the water O atom lies on a crystallographic twofold axis. In the crystal, the components are linked via C—H⋯Br, O—H⋯Br, N—H⋯Br and N—H⋯O hydrogen bonds to generate (100) sheets. The sheets are linked by two weak C—H⋯π inter­actions, generating a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Some noncentrosymmetric organic crystals exhibit high nonlinear efficiency and can be functionalized very easily but it is difficult to grow bulk crystals and their physical and mechanical properties are poor (Dolbecq et al., 2010[Dolbecq, A., Dumas, E., Mayer, C. R. & Mialane, P. (2010). Chem. Rev. 110, 6009-6048.]). As part of our ongoing studies in this area (Aarthi et al., 2017[Aarthi, R., Thiruvalluvar, A. & Ramachandra Raja, C. (2017). IUCrData, 2, x171213.]), we now describe the synthesis and structure of (4-methyl­phen­yl)methanaminium bromide hemihydrate, (I) (Fig. 1[link]), which crystallized in a centrosymmetric space group.

[Figure 1]
Figure 1
A view of (I), with displacement ellipsoids drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dotted lines. [Symmetry code: (i) 1 − x, y, [{1\over 2}] − z.]

The water O atom lies on a crystallographic twofold axis. In the crystal, the components are linked via C8—H8B⋯Br1i, O1—H1⋯Br1i, N1—H1D⋯Br1, N1—H1E⋯O1ii, N1—H1F⋯Br1i and N1—H1F⋯Br1ii hydrogen bonds (see Fig. 2[link] and Table 1[link]), generating layers lying parallel to the bc plane. Furthermore, the crystal structure features weak C1—H1Aπiii and C8—H8Aπi inter­actions, forming a three-dimensional network (see Fig. 3[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C2–C7 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯Br1i 0.85 (2) 2.45 (2) 3.2870 (17) 169 (3)
N1—H1D⋯Br1 0.92 (2) 2.40 (2) 3.314 (2) 178 (2)
N1—H1E⋯O1ii 0.90 (2) 2.05 (2) 2.883 (3) 155 (2)
N1—H1F⋯Br1i 0.91 (2) 2.89 (2) 3.554 (2) 131 (2)
N1—H1F⋯Br1ii 0.91 (2) 2.74 (3) 3.4383 (17) 134 (2)
C8—H8B⋯Br1i 0.97 3.05 3.670 (2) 123
C1—H1ACg1iii 0.96 2.73 3.634 (2) 157
C8—H8ACg1i 0.97 2.90 3.530 (2) 123
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y+1, -z+1; (iii) x, y+1, z.
[Figure 2]
Figure 2
The crystal structure of (I), viewed down the b axis, showing the formation of hydrogen bonding. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.
[Figure 3]
Figure 3
A partial packing diagram of (I), viewed down the b axis, showing the C—H⋯π inter­actions.

Souissi et al. (2010[Souissi, S., Smirani Sta, W., Al-Deyab, S. S. & Rzaigui, M. (2010). Acta Cryst. E66, o1627.]) have reported the related crystal structure of (4-chloro­phen­yl)methanaminium chloride hemihydrate.

Synthesis and crystallization

An aqueous solution containing 2 mmol of HBr in 20 ml of water was added to 2 mmol of 4-methyl­benzyl­amine in 20 ml of water. The resultant solution was well stirred using a magnetic stirrer for 3 h and left to stand at room temperature. After 15 d, colourless blocks of (I) were harvested.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The O– and N-bonded H atoms were refined with restraints and the C-bound H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic), 0.97 (–CH2–) and 0.96 Å (–CH3), and with Uiso(H) = 1.2–1.5Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C8H12N+·Br·0.5H2O
Mr 211.11
Crystal system, space group Monoclinic, C2/c
Temperature (K) 293
a, b, c (Å) 30.7456 (18), 5.0266 (3), 12.0636 (7)
β (°) 98.430 (2)
V3) 1844.24 (19)
Z 8
Radiation type Mo Kα
μ (mm−1) 4.40
Crystal size (mm) 0.10 × 0.10 × 0.05
 
Data collection
Diffractometer Bruker KappaCCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.534, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 11261, 2479, 2129
Rint 0.025
(sin θ/λ)max−1) 0.687
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.067, 1.06
No. of reflections 2479
No. of parameters 113
No. of restraints 7
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.35, −0.51
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

(4-Methylphenyl)methanaminium bromide hemihydrate top
Crystal data top
C8H12N+·Br·0.5(H2O)F(000) = 856
Mr = 211.10Dx = 1.521 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 30.7456 (18) ÅCell parameters from 7215 reflections
b = 5.0266 (3) Åθ = 3.4–29.2°
c = 12.0636 (7) ŵ = 4.40 mm1
β = 98.430 (2)°T = 293 K
V = 1844.24 (19) Å3Block, colourless
Z = 80.10 × 0.10 × 0.05 mm
Data collection top
Bruker KappaCCD
diffractometer
2479 independent reflections
Radiation source: fine-focus sealed tube2129 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω and φ scanθmax = 29.2°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 4042
Tmin = 0.534, Tmax = 0.746k = 66
11261 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0267P)2 + 2.3541P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2479 reflectionsΔρmax = 0.35 e Å3
113 parametersΔρmin = 0.51 e Å3
7 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.27703 (8)1.1301 (4)0.6636 (2)0.0494 (6)
H1A0.2860211.2990790.6376530.074*
H1B0.2757551.1400430.7425640.074*
H1C0.2485041.0852240.6244680.074*
C20.30965 (6)0.9198 (4)0.64201 (18)0.0340 (4)
C30.31078 (7)0.8211 (4)0.53533 (18)0.0406 (4)
H30.2910450.8864550.4757330.049*
C40.34066 (7)0.6273 (4)0.51557 (17)0.0399 (4)
H40.3408220.5650590.4430380.048*
C50.37039 (6)0.5248 (4)0.60273 (17)0.0321 (4)
C60.36998 (7)0.6264 (4)0.70908 (17)0.0385 (4)
H60.3901040.5632290.7683320.046*
C70.34002 (7)0.8212 (4)0.72890 (18)0.0402 (4)
H70.3402890.8862520.8011600.048*
C80.40117 (7)0.3025 (4)0.5831 (2)0.0427 (5)
H8A0.4008330.1692450.6411770.051*
H8B0.3906750.2190260.5117050.051*
N10.44665 (6)0.3933 (4)0.58300 (18)0.0420 (4)
Br10.44849 (2)0.86079 (4)0.38999 (2)0.04217 (8)
O10.5000000.2903 (5)0.2500000.0548 (6)
H10.4840 (11)0.196 (6)0.286 (3)0.096 (13)*
H1D0.4466 (9)0.520 (4)0.5282 (17)0.065 (8)*
H1E0.4585 (9)0.465 (5)0.6483 (14)0.063 (8)*
H1F0.4636 (9)0.255 (4)0.566 (2)0.072 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0401 (11)0.0394 (11)0.0728 (16)0.0092 (9)0.0221 (11)0.0048 (11)
C20.0284 (9)0.0293 (8)0.0465 (11)0.0002 (7)0.0126 (8)0.0030 (8)
C30.0335 (10)0.0479 (11)0.0391 (10)0.0058 (9)0.0005 (8)0.0056 (9)
C40.0382 (10)0.0492 (11)0.0330 (9)0.0004 (9)0.0073 (8)0.0061 (9)
C50.0274 (9)0.0287 (8)0.0416 (10)0.0015 (7)0.0096 (7)0.0021 (7)
C60.0379 (10)0.0410 (10)0.0359 (9)0.0089 (9)0.0027 (8)0.0029 (8)
C70.0459 (11)0.0410 (10)0.0348 (10)0.0063 (9)0.0096 (8)0.0016 (8)
C80.0373 (11)0.0319 (9)0.0615 (14)0.0011 (8)0.0165 (10)0.0053 (9)
N10.0315 (8)0.0403 (9)0.0550 (11)0.0086 (8)0.0094 (8)0.0002 (9)
Br10.03836 (12)0.03826 (12)0.05064 (14)0.00097 (9)0.00907 (8)0.00115 (9)
O10.0631 (16)0.0452 (13)0.0609 (16)0.0000.0250 (13)0.000
Geometric parameters (Å, º) top
C1—C21.506 (3)C6—C71.389 (3)
C1—H1A0.9600C6—H60.9300
C1—H1B0.9600C7—H70.9300
C1—H1C0.9600C8—N11.471 (3)
C2—C31.384 (3)C8—H8A0.9700
C2—C71.389 (3)C8—H8B0.9700
C3—C41.384 (3)N1—H1D0.919 (15)
C3—H30.9300N1—H1E0.895 (15)
C4—C51.387 (3)N1—H1F0.909 (15)
C4—H40.9300O1—H10.848 (17)
C5—C61.383 (3)O1—H1i0.848 (17)
C5—C81.505 (3)
C2—C1—H1A109.5C5—C6—H6119.4
C2—C1—H1B109.5C7—C6—H6119.4
H1A—C1—H1B109.5C6—C7—C2120.74 (19)
C2—C1—H1C109.5C6—C7—H7119.6
H1A—C1—H1C109.5C2—C7—H7119.6
H1B—C1—H1C109.5N1—C8—C5112.91 (17)
C3—C2—C7117.90 (18)N1—C8—H8A109.0
C3—C2—C1121.4 (2)C5—C8—H8A109.0
C7—C2—C1120.7 (2)N1—C8—H8B109.0
C4—C3—C2121.34 (19)C5—C8—H8B109.0
C4—C3—H3119.3H8A—C8—H8B107.8
C2—C3—H3119.3C8—N1—H1D108.4 (18)
C3—C4—C5120.75 (18)C8—N1—H1E113.0 (18)
C3—C4—H4119.6H1D—N1—H1E108.0 (19)
C5—C4—H4119.6C8—N1—H1F109.8 (19)
C6—C5—C4118.12 (18)H1D—N1—H1F107.9 (19)
C6—C5—C8120.76 (19)H1E—N1—H1F110 (2)
C4—C5—C8121.08 (19)H1—O1—H1i112 (5)
C5—C6—C7121.11 (19)
C7—C2—C3—C41.0 (3)C8—C5—C6—C7176.38 (19)
C1—C2—C3—C4179.8 (2)C5—C6—C7—C20.2 (3)
C2—C3—C4—C50.3 (3)C3—C2—C7—C61.1 (3)
C3—C4—C5—C61.6 (3)C1—C2—C7—C6179.71 (19)
C3—C4—C5—C8176.30 (19)C6—C5—C8—N177.2 (3)
C4—C5—C6—C71.5 (3)C4—C5—C8—N1105.0 (2)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the (C2-C7) benzene ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···Br1ii0.85 (2)2.45 (2)3.2870 (17)169 (3)
N1—H1D···Br10.92 (2)2.40 (2)3.314 (2)178 (2)
N1—H1E···O1iii0.90 (2)2.05 (2)2.883 (3)155 (2)
N1—H1F···Br1ii0.91 (2)2.89 (2)3.554 (2)131 (2)
N1—H1F···Br1iii0.91 (2)2.74 (3)3.4383 (17)134 (2)
C8—H8B···Br1ii0.973.053.670 (2)123
C1—H1A···Cg1iv0.962.733.634 (2)157
C8—H8A···Cg1ii0.972.903.530 (2)123
Symmetry codes: (ii) x, y1, z; (iii) x+1, y+1, z+1; (iv) x, y+1, z.
 

Acknowledgements

The authors thank the Sophisticated Analytical Instrument Facility (SAIF), IITM, Chennai, Tamilnadu, India, for the single-crystal X-ray diffraction data.

Funding information

Funding for this research was provided by: Council of Scientific and Industrial Research (CSIR), New Delhi, India (grant No. 03(1301)13/EMR II to CRR).

References

First citationAarthi, R., Thiruvalluvar, A. & Ramachandra Raja, C. (2017). IUCrData, 2, x171213.  Google Scholar
First citationBruker (2016). APEX3, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolbecq, A., Dumas, E., Mayer, C. R. & Mialane, P. (2010). Chem. Rev. 110, 6009–6048.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSouissi, S., Smirani Sta, W., Al-Deyab, S. S. & Rzaigui, M. (2010). Acta Cryst. E66, o1627.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]